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Using this problem set. The goal of this problem set is to become friends with low genus curves
by taking a tour though some constructions and techniques that appear frequently when studying
their geometry and arithmetic. The problem set is broken into two chapters as follows:

Chapter I: Geometry. The philosophy of this chapter is that one encounters interesting low
genus curves “in nature”: as covers of other curves, as divisors on surfaces, and so on. Since we
care about arithmetic, in this section we do not assume that the ground field is algebraically closed,
and pay careful attention to fields of definition.

Chapter II: Arithmetic. The main theme of this section is techniques for understanding the
rational points on curves defined over number fields, especially étale descent. We’ve focused on
descent, since it is both a powerful tool to bound the rank of a Jacobian (which is an input to
classical Chabauty’s method), and can be used in combination with Chabauty arguments to find
rational points. We present these ideas in some generality because of their prevalence and usefulness
in other contexts.
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CHAPTER 1

Geometry

For this section, C denotes a nice (smooth, projective, and geometrically integral) curve of genus
g defined over a perfect field k. We will write k for an algebraic closure of k. We write OC for the
structure sheaf on C.

‚ Given a coherent sheaf F on C, we write hipC,F q for the dimension of the coherent
cohomology group H ipC,F q as a k-vector space.

‚ We use KC to denote the canonical line bundle on C; by definition g “ h0pC,KCq.
‚ We will use divisor notation for line bundles, and write L1`L2 for L1bL2 and ´L for L_.
‚ A curve C is called hyperelliptic if it admits a map of degree 2 to a nice curve of genus 0.

(Warning: some authors use a different convention and require that the target is P1
k. We

will use the term gonpCq “ 2 for this situation.)
‚ We write Cpkq “ CpSpec kq for the k-rational points on C (i.e., the set of maps Spec k Ñ C).

This is the same as the set of closed points of degree 1. More on this in the next chapter!
‚ Given a rational function f P kpCq, we write pfq for the (principal) divisor of zeros and

poles of that function.
‚ We write PicpCq for the group of line bundles on C over k (equivalently divisors on C over
k modulo principal divisors). We write PicC{k for the Picard scheme of C{k.

‚ The Jacobian of C{k is the identity component Pic0
C{k and will be denoted JC (or simply

J when the curve C is implicit).

1. Background exercises

Divisors on curves.

I.1.1 Consider the smooth projective curve P1
k, obtained by gluing the two affine spaces A1

k “

Specpkrxsq and A1
k “ Specpkr1{xsq (along the common open subset Specpkrx, 1{xsq “ A1

k r
0). The function field of P1

k is kpxq, the field of rational functions in x.

(a) What is the divisor of the rational function x on P1?
(b) What is the divisor of the rational function 1{x on P1?
(c) Let a1, . . . , an P k and b1, . . . , bm P k be distinct elements of the ground field k. What

is the divisor of the rational function

px´ a1qpx´ a2q ¨ ¨ ¨ px´ anq

px´ b1qpx´ b2q ¨ ¨ ¨ px´ bmq

on P1. What is it’s degree?
(d) In general, describe the divisor of a rational function fpxq{gpxq.

I.1.2 Let e1, e2, e3 P k be distinct elements and consider the projective curve E in P2
k cut out by

the homogeneous equation

ZY 2 “ pX ´ e1ZqpX ´ e2ZqpX ´ e3Zq.

(a) Show that the curve E is smooth.
2



GEOMETRY AND ARITHMETIC OF LOW GENUS CURVES 3

(b) Describe an affine open covering of E. Show that the function field of E is given by

kpx, yq

y2 ´ px´ e1qpx´ e2qpx´ e3q

(What are the functions x and y on E in terms of the “coordinate functions”1 X,Y, Z
on P2?)

(c) Show that any rational function on E is of a quotient of polynomials of the form

(1) h1pxq ` yh2pxq,

where h1 and h2 are polynomials in x.
(d) What is the divisor of the rational function x?
(e) What is the divisor of the rational function x´ ei?
(f) What is the divisor of the rational function y?
(g) What is the divisor of the rational function x{y?
(h) Describe the divisor of a polynomial y ´ hpxq.

I.1.3 Let D and E be effective (Cartier) divisors on C. Then H0pC,D´Eq is identified with the
k-vector space of functions

(2) tf P kpCq : pfq `D ´ E is effective.u2

(Some authors call this the Riemann–Roch space. We avoid introducing any extra terminol-
ogy, and just refer to this space by H0pC,D ´ Eq.)

(a) If C is P1, call8 P P1 the unique point where x has a pole. Otherwise, we will represent
points by the x coordinate. Use (2) to explicitly calculate:

i H0pP1,8q
ii H0pP1, 28´ 0q

(b) If C is the curve E as in Exercise (I.1.2). Call 8 P E the unique point where x has a
pole. Otherwise, represent points by their x and y coordinates. Use (2) to explicitly
calculate:

i H0pE,8q
ii H0pE, 28q

Linear systems and Riemann–Roch.

I.1.4 A subspace V Ď H0pC,Lq is called p-very ample if for all length p ` 1 zero-dimensional
subschemes Z Ď Ck, the evaluation map

V
ev
ÝÑ L|Z

is surjective. When p “ 0, we call it basepoint-free and when p “ 1, we call it simply very
ample. When H0pC,Lq is p-very ample, we say that L itself is p-very ample.

Give a bijection between

tmorphisms ϕV : C Ñ Prku and tpL, σ0, . . . , σrqu{ »,

where L is a line bundle and σ0, . . . , σr P H
0pC,Lq span a basepoint-free subspace V . (When

V “ H0pC,Lq, we will write ϕL for the corresponding morphism.)

Show, further, that the associated map is a closed immersion if and only if the sections
σ0, . . . , σr P H

0pC,Lq span a very ample subspace.

Hint: The target Prk is intrinsically PV in Grothendieck’s sense: codimension 1 subspaces
in V . In the second part, a map is a closed immersion if and only if it “separates points
and tangent vectors”.

1This is commonly a point of confusion; these are not functions on P2, they are sections of the line bundle OP2p1q!
2The function f “ 0 is declared to be in this space; otherwise f P kpCqˆ.
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I.1.5 Let L be a line bundle on C.

(a) If degL ă 0, then h0pC,Lq “ 0.
(b) If degL “ 0, then h0pC,Lq “ 1 if and only if L » OC .
(c) If degL “ 1, then h0pC,Lq ą 1 if and only if C » P1

k.

Hint: Use the definition of degree of a line bundle in terms of a global section.

I.1.6 Let L be a line bundle on C. By the Riemann–Roch theorem, we have

h0pC,Lq ´ h1pC,Lq “ degL` 1´ g.

Furthermore, as a consequence of the Serre duality theorem, we have

hipC,Lq “ h1´ipC,KC ´ Lq.

(a) If h0pC,Lq “ r ` 1, give a formula for h1pC,Lq.
(b) Prove that h0pC,Lq ď degL` 1.
(c) Compute the degree of KC and show that it is the only bundle of that degree with g

global sections.
(d) Prove that if g ą 0, the canonical bundle KC is basepoint-free.
(e) Show that if degL ě g, then L is effective (i.e., h0pC,Lq ą 0).
(f) Show that if degL ě 2g ´ 1, then h1pC,Lq “ 0. (Show that this is sharp: exhibit a

bundle L of degree 2g ´ 2 for which h1pC,Lq ą 0.)
(g) Show that if degL ě 2g, then L is basepoint-free.
(h) Show that if degL ě 2g ` 1, then L is very ample.
(i) A bundle is called ample if there exists some positive integer n ą 0 such that nL is very

ample. Find a necessary and sufficient criterion for a line bundle on C to be ample.

Hint: Use Serre Duality to re-express Riemann–Roch in terms of only h0’s, and when
necessary, use Exercise (I.1.5) to address global sections of line bundles of low degree.

I.1.7 The gonality – denoted gonpCq – of a curve C is the minimal degree of a dominant map
C Ñ P1

k.

(a) Prove that if KC is p-very ample, then gonpCq ě p` 2.
(b) Conversely, show that if KC is not p-very ample, then gonpCkq ď p` 1.
(c) * Give an example showing that when KC is not p-very ample, gonpCq can be larger

than p` 1.
(d) In the case p “ 1, show the stronger statement that KC is very ample if and only if C

is not hyperelliptic.
Therefore, if C is not hyperelliptic, the morphism ϕKC : C Ñ Pg´1

k is an embedding called
the canonical embedding. The image is called a canonical curve of genus g.

Hint: Let Z Ď Ck be a hypothetical length p`1 subscheme. Apply the long exact sequence
in cohomology to exact sequence of sheaves

0 Ñ KCp´Zq Ñ KC Ñ KC |Z Ñ 0,

and use Riemann–Roch and Serre Duality. In the last part, it might help to solve Exercise
(I.3.6). This is also quite related to Exericse (I.3.9).

I.1.8 Let D be an effective divisor on a curve C of degree d. Suppose that h0pC,OpDqq “ r ` 1.

Show that under ϕKC , the image of the points of D span a linear space Pd´1´r
k . (This

statement is sometimes called geometric Riemann–Roch.)

Hint: Use the Riemann–Roch theorem to understand the vector space H0pC,KC ´Dq.

I.1.9 Compute the following dimensions:

(a) h0pC, TCq
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(b) h1pC, TCq
(c) h2pC, TCq

Comment: These dimensions all have significance in the moduli of curves. By deformation
theory, the vector space H0pC, TCq is space of infinitesimal automorphisms of a curve C. The
vector space H1pC, TCq is the space of first order deformations of C. The obstructions to
lifting first order deformations to all orders live in the vector space H2pC, TCq.

I.1.10 Let C be a curve and L a line bundle on C. Let p be a degree 1 point.
(a) Show that h0pC,Lp´pqq ě h0pC,Lq ´ 1. If equality holds, what do we know about p?

Hint: Use the long exact sequence in cohomology associated to

0 Ñ Lp´pq Ñ LÑ L|p Ñ 0.

(b) Show that if h0pCk, Lq ą 0 and p is a general geometric point (p P Cpkq), then

h0pCk, Lp´pqq “ h0pCk, Lq ´ 1.

(c) If L and M are two line bundles such that h0pC,Lq ą 0 and h0pC,Mq ą 0, show that

h0pC,LbMq ě h0pC,Lq ` h0pC,Mq ´ 1.

When does equality hold?
Hint: Base change to k and use part (b).

I.1.11 (Clifford’s Theorem) Let C be a curve of genus g and let L be a line bundle of degree d on
the curve C.

(a) If d ą 2g ´ 2, what is h0pC,Lq?
(b) If 0 ď d ď 2g ´ 2, show that

h0pC,Lq ď 1`
d

2
.

Hint: Use Exercise (I.1.10).

(c) * What can you say if equality holds in part (b)?

2. Genus 0 curves

In this section, C is a nice curve of genus 0 defined over a field k.

I.2.1 The simplest example of a curve of genus 0 is P1
k.

(a) Show that PicpP1
kq » Z by the degree. Write Opdq for the unique (up to isomorphism)

line bundle of degree d on P1
k.

(b) In this notation, what is the canonical bundle?
(c) Determine the cohomology

h0pP1
k,Opdq, and h1pP1

k,Opdqq.

Hint: Use Riemann–Roch.

I.2.2 Choose a coordinate x such that kpP1
kq » kpxq; write 8 for the point in P1

k where x has a
pole so that pxq “ 0´8.

(a) Let L “ OP1p8q be the line bundle associated to the divisors 8. Using the identifica-
tion

H0pP1
k, Lq “ tf P kpP1

kq s.t. pfq ` 8 is effectiveu,

give a basis for H0pP1
k, Lq.

(b) Similarly, give a basis for H0pP1
k, nLq for all n. Compare you answers to those for

Exercise (I.2.1).
(c) What is the divisor of the meromorphic differential dx?
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I.2.3 More generally, show that PicC{kpkq » Z. Exhibit a field k and a genus 0 curve C defined
over k where deg : PicpCq Ñ Z is not surjective. In this case, what is # PicC{kpkq{PicpCq?

Hint: Using Exercise (I.2.1), the existence of certain line bundles implies the existence of
closed points of prescribed degree.

I.2.4 Show that every genus 0 curve admits an embedding C ãÑ P2
k. What is the degree of the

image?

Hint: By Exercise (I.1.4) it suffices to show that every genus 0 curve admits a line bundle
with a 3-dimensional very ample subspace of sections.

I.2.5 Show that Cpkq ‰ H if and only if C has a closed point of odd degree.

I.2.6 Determine the gonality of C.

Hint: This is going to depend on #Cpkq.

3. Finite branched covers

Description of the canonical bundle: Riemann–Hurwitz.
Given a finite separable map π : X Ñ Y of nice curves, the relative cotangent sheaf Ω1

X{Y is

defined by

Ω1
X{Y “ KX ´ π

˚KY .

Write gX and gY for the genera of X and Y respectively.

I.3.1 Given a closed point P P X with image Q “ πpP q P Y , let eP be such that

mQ ¨OX,P “ meP
P .

Show that if the map π is tamely ramified – i.e., the characteristic of k does not divide eP
for any closed point P – then

(3) Ω1
X{Y “

ÿ

PPX
closed point

peP ´ 1qP.

Deduce the Riemann–Hurwitz formula:

2gX ´ 2 “ pdeg πqp2gY ´ 2q `
ÿ

PPXpkq

peP ´ 1q.

Closed points P P X where eP ą 1 are called ramification points of π. Closed points Q P Y

such that there exists a ramification point P P π´1pQq are called branch points of π.

Hint: The equation mQ ¨OX,P “ meP
P tells you how to write a local equation for the cover

in a neighborhood of P .

I.3.2 Let G be a finite group. A finite branched cover π : X Ñ Y is called a Galois cover with
Galois group G (or simply a G-Galois cover) if kpXq{kpY q is a Galois extension of function
fields with Galois group G.

(a) Interpret G as a constant finite group scheme over k. Show that if π : X Ñ Y is a
G-Galois cover, then X admits a right G-action

X ˆGÑ X,

px, gq ÞÑ xg



GEOMETRY AND ARITHMETIC OF LOW GENUS CURVES 7

that respects π : X Ñ Y ; i.e., such that for all g P G, the diagram

(4)

X X

Y

g

π
π

commutes.
(b) Given an action of a group G on a scheme X, a scheme Y is called the scheme-quotient

of X by G if it is universal for schemes fitting into diagram (4). We write Y “ X{G.
Phrase this precisely and show that π is a G-Galois cover if and only if Y “ X{G.

(c) If π : X Ñ Y is a G-Galois cover, what can you say about the ramification indices eP
for P P X?

(d) Suppose further now that π : X Ñ Y is a G-Galois étale cover (i.e., all eP “ 1). Show
that

X ˆGÑ X ˆY X,

px, gq ÞÑ px, xgq

is an isomorphism of k-varieties.

Hint: Remember that giving a nice curve is the same as giving it’s function field. If you
need a hint on the function field side, look forward to Exercise (II.1.11).

I.3.3 If the genus g of C is at least 2, then the group of automorphisms AutpCq is finite.3 Assuming
this fact, this exercise will lead you through the proof of the 84(g-1) theorem: if g ě 2 and
the characteristic of k is 0, then # AutpCq ď 84pg ´ 1q.

Let K :“ kpCqAutpCq denote the fixed field of the AutpCq-action on kpCq.

(a) Show that K is a finitely-generated extension of k of transcendence degree 1 that
contains no finite extensions of K, and therefore the function field of a nice curve Y
over k. By Exercise (I.3.2), π : C Ñ Y is a AutpCq-Galois cover and Y “ C{AutpCq.

(b) Give a formula for #G in terms of g, gY , and the ramification of π : C Ñ Y over its
branch points.

(c) If the genus of Y is at least 1, derive an upper bound on # AutpCq.
(d) If the genus of Y is 0, show that # AutpCq ď 84pg ´ 1q.
(e) * Where did you use that the characteristic of the ground field was 0?

Hint: It might be helpful to break into cases based on the number of branch points and
the ramification indices over each point.

Comment: This bound is sharp for infinitely many genera; for example genus 3 and 7.
Curves achieving this bound are called Hurwitz curves. The proof of this theorem shows
that it is sharp only if the curve can be exhibited as a certain Galois cover of P1; therefore
finding Hurwitz curves in fact amounts to a problem in group theory.

I.3.4 Suppose that f : X Ñ Y is a G-cover of curves over k and assume that #G is coprime to
the characteristic of k.

(a) Show that the subspace of differentials pulled back from Y lies in H0pX,KXq
G.

(b) Conversely, show that every G-invariant differential on X gives rise to a differential on
Y .
Hint: Do this calculation in local coordinates; our assumptions imply that the map f
is tamely ramified, so you’ve worked out in Exercise (I.3.1) what the local equations
are.

3Compare this to Exercise (I.1.9), which computed the infinitessimal automorphisms.
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(c) Show that the genus gY of Y can be computed as

gY “ dimH0pX,KXq
G.

Hyperelliptic curves. For this section, let Y be a nice curve of genus 0 and assume that C admits
a degree 2 map to Y .

I.3.5 For what genera do there exist hyperelliptic curves?

Hint: Relate the genus of C to the number of ramification points.

I.3.6 For this problem, C is a nice hyperelliptic curve of genus at least 2.
(a) Suppose that L is a line bundle of degree 2 on C with h0pC,Lq “ 2. Determine

h0pC, nLq as a function of n.
(b) What can you say about pg ´ 1qL? Describe ϕpg´1qL.
(c) If C is hyperelliptic of genus at least 2, show that the hyperelliptic map C Ñ Y is

unique.

Hint: Use Exercise (I.1.6). It suffices to prove the final part after base-changing to the
algebraic closure; use the previous part.

The next two problems do these calculations (and more) explicitly.

I.3.7 Suppose that C has gonality 2. Let L be such that ϕL is a degree 2 map onto P1
k.

(a) Let D8 “ ϕ˚Lp8q P DivpCq. Write x P kpCq for the pullback of a coordinate function
such that t1, xu form a basis for H0pC,D8q (as in Exercise (I.2.2)). What is the
relationship between D8 and L?

(b) Give a basis for H0pC, nD8q for n ď g.
(c) What does an explicit basis for H0pC, pg ` 1qD8q look like?
(d) In terms of your previous answer, give a basis for H0pC, nD8q for g ă n ď 2g ` 1.

What happens when n “ 2g ` 2?
(e) Assume that the characteristic of the ground field is not 2. Show that every nice curve

of gonality 2 is birational to a plane curve with affine equation

(5) y2 “ fpxq “ a2g`2x
2g`2 ` a2g`1x

2g`1 ` ¨ ¨ ¨ ` a0.

Show that we may further assume that f is monic, square-free, and of degree 2g ` 2
or 2g ` 1. What happens in arbitrary characteristic?

Hint: Compare this to Exercise (I.2.2).

I.3.8 Suppose that Ci is birational to the plane curve with equation

C1 : y2 “ f1pxq “ x2g`2 ` a2g`1x
2g`1 ` ¨ ¨ ¨ ` a0,

C2 : y2 “ f2pxq “ x2g`1 ` b2gx
2g ` ¨ ¨ ¨ ` b0

for g ě 1, where fi is squarefree. We will refer to a curve of type C1 as gonality 2 of even
degree and type C2 as gonality 2 of odd degree. (Or we will drop the pedantic “gonality 2”
and simply refer to them as hyperellitpic of even/degree.) As in the previous problem, write
D8 :“ ϕ˚Lp8q.

(a) Compute the ramification of the x-coordinate map using (3) and the equations of C1

and C2. Comment on the difference between these two situations. The closed points
P P C for which eP ą 1 are called Weierstrass points of the hyperelliptic curve C.

(b) Compute the ramification divisor of the x-coordinate map using Riemann–Hurwitz
by comparing the divisor of dx to the pullback of the divisor of the corresponding
differential on P1.
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(c) Show that the divisor of the differential dx{y is pg ´ 1qD8. Compare this to Exercise
((b)).

(d) Show that

dx

y
,
xdx

y
,
x2dx

y
, . . . ,

xg´1dx

y

form a basis for the space of regular differentials on Ci.

I.3.9 Assume that g ě 1.

(a) Show that C is hyperelliptic if and only if gonpCkq “ 2.
(b) Show that if g is even, then gonpCq “ 2.

Hint: Use exercise (I.3.6).

I.3.10 More generally, can you find (birational) equations for any hyperelliptic curve over k?

I.3.11 (Mumford coordinates on the Jacobian) Let π : C Ñ P1
k be a gonality 2 curve of odd degree

with affine equation y2 “ fpxq and let L be a degree 0 line bundle on C. Write 8 P C for
the unique point of C over 8 P P1

k.

(a) Show that for some d ď g, we have that h0pC,Lpd8qq ą 0.
Hint: Use Riemann-Roch.

(b) Show that for the minimal such d, h0pC,Lpd8qq “ 1. Call D the unique effective
divisor linearly equivalent to Lpd8q. Show:

i. 8 R supppDq.
ii. If P P supppDq, then ιpP q R supppDq (where ι is the hyperelliptic involution).

We will refer to such an effective divisor as general relative to π.
Hint: What would you know about h0pC,Dq if any of these conditions was violated?

(c) Let D be an effective divisor of degree d on C that is general relative to π. Show
that there exist unique polynomials apxq, bpxq P krxs with a monic of degree d and
degpbq ă d such that

i. a divides f ´ b2,
ii. For all P “ px0, y0q P supppDq,

apx0q “ 0, bpx0q “ y0.

And the multiplicity of P in supppDq is the order of vanishing of apxq at x0.
The pair papxq, bpxqq are called Mumford coordinates for the divisor D. When d ď g, the
pair papxq, bpxqq are caled the Mumford representation for the point rOpD´d8qs P Jpkq.
Hint: This is, essentially, Lagrange interpolation to find a polynomial with certain
values at certain points.

(d) Suppose that pa, bq are Mumford coordinates for a divisor D. Describe the principal
divisor py ´ bq on C.

I.3.12 (Group law on hyperelliptic Jacobians) In this problem we will explicitly see the group law
on the Jacobian J of an odd degree gonality 2 curve π : C Ñ P1 using Mumford coordinates.

(a) Let L1 and L2 be line bundles on C, and suppose that D1 and D2 are the unique
divisors of minimal degrees d1, d2 ď g such that Li » OpDi ´ di8q. By Exercise
(I.3.11), these are general relative to π. Describe the line bundle

L “ L1 `J L2.

(b) Is the divisor D “ D1 `D2 general relative to π? If not, how can you make it so?
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(c) Let pai, biq be the Mumford coordinates of Di (and hence the Mumford representation
for Li). Show that the following is an algorithm which terminates with the Mumford
representation of L1 `J L2:

i. Let e “ gcdpa1, a2, b1` b2q. Let a “ a1a2
e2

. Let b the unique polynomial of degree
less than degpaq such that

ai
e

divides b´ bi, and a divides f ´ b2.

ii. While degpaq ą g:
‚ Write f ´ b2 “ λac for some λ P kˆ and c monic. Replace a with c.
‚ Replace b with ´b modulo a.

Hint: The steps of the algorithm should follow your description of the group law in parts
(a) and (b). Use the Chinese remainder theorem. To complete the reduction step in part
ii., think about Exercise ((d)).

I.3.13 (Explicit arithmetic in a hyperelliptic Jacobian) Let C be the odd degree hyperelliptic curve
of genus 2 with affine equation

y2 “ xpx´ 1qpx´ 2qpx2 ´ 3q

over F5.

(a) What are the Mumford coordinates of every point in JpF5qr2s?
(b) Let P “ p3, 1q be a point in JpF5q. What are the Mumford coordinates of P? What

are the Mumford coordinates of 2P? What are the Mumford coordinates of 3P? What
is the order of P in JpF5qr2s?

I.3.14 (Jacobian arithmetic in Magma) Given a hyperelliptic curve of odd degree, Magma rep-
resents points on the Jacobian via thier Mumford coordinates P “ pa, b, dq, where a and
b are the polynomials giving the Mumford representation of the effective divisor general
with respect to the hyperelliptic map (c.f., Exercise (I.3.11)), and d records the (negative)
multiple of 8 (i.e., the degree of this divisor). For example, to create the previous curve
and point P , one could type:

R<x> := PolynomialRing(GF(5));

C := HyperellipticCurve(x*(x-1)*(x-2)*(x^2-3));

J := Jacobian(C);

P := elt<J|x + 2, 1, 1>;

Using this, redo the previous problem in Magma.

I.3.15 Let π : C Ñ P1 be a gonality 2 curve.

(a) A line bundle L on a curve is called special if h1pC,Lq ą 0. Show that every special
line bundle on C is of the form

L “ r ¨ π˚OP1p1q ` L0,

where h0pC,L0q “ 0 and r ` 1 “ h0pC,Lq. Conclude that if L is special, then ϕL is
never an embedding.

(b) Show that the smallest degree of an embedding of C into Pr is g ` r (r ě 3 if g ě 2).

Hint: Use Exercise (I.1.8).
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Bielliptic curves.
A curve C is called bielliptic if it admits a degree 2 map to a nice curve of genus 1.

I.3.16 Let C be a nice curve. Show that C is bielliptic if and only if there exists an involution
α P AutpCq such that the induced action of α on the regular differential H0pC,KCq has a
1-dimensional `1-eigenspace.

Hint: What do the differentials in the `1-eigenspace correspond to (c.f., Exercise (I.3.4))?

I.3.17 (Bielliptic genus 2 curves – adapted from Exercise 5.8 of [Poo]) Let C be a nice genus 2
curve over a field k of characteristic not 2. Write ι P AutpCq for the hyperelliptic involution.
Suppose that C has another involution α P AutpCq.

(a) Show that α and ι commute.
(b) Write Y :“ C{xαy and Y 1 :“ C{xαιy for the nice curves corresponding to the fixed

fields of α and αι acting on kpCq (c.f. Exercise (I.3.2)).
(c) Show that Y and Y 1 are of genus 1.
(d) Show that there is a diagram of finite covers:

C

Y Y 1 P1

P1

f
f 1

π

g
g1

α

(e) What is the ramification of the map g1 ˝ f 1 : C Ñ P1?
Hint: This is a Galois extension!

(f) Compute the ramification of g, g1 and α. Show that there is a unique point in P1 that
is a branch point of g and α. Show that this is a k-point.
Hint: All of the squares in the above diagram of curves are Cartesian.

(g) Prove that Y has affine equation

y2 “ hpxq “ h3x
3 ` h2x

2 ` h1x` h0,

for some polynomial hpxq of degree 3.
(h) Prove that C has affine equation y2 “ hpx2q.
(i) Prove that Y 1 has affine equation

y2 “ hrevpxq “ h0x
3 ` h1x

2 ` h2x` h3.

(j) Explicitly, what is the action of ι and α on the vector space H0pC,KCq? Verify the
genus calculations you did.

(k) * Show that JC is isogenous to Y ˆ Y 1.

4. Curves on surfaces

Description of the canonical bundle: Adjunction.
The adjunction formula says that if C Ď X is a nice curve on a nice surface, then

KC “ pKX ` Cq|C .
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Smooth plane curves. In this section, unless otherwise stated, let C Ď P2
k be a smooth plane

curve of degree

degC “ degOP2p1q|C “ d.

I.4.1 Show that KP2 “ det Ω1
P2{k “ OP2p´3q.

Hint: Explicitly write down a (meromorphic) top form and compute its divisor. Or,
perhaps, construct the Euler sequence

0 Ñ OP2 Ñ OP2p1q‘3 Ñ TP2 Ñ 0,

and use the determinant there.

I.4.2 (a) Give a formula for the canonical bundle KC in terms of line bundles on P2
k.

(b) Prove the degree-genus formula

g “
pd´ 1qpd´ 2q

2
.

(c) When d ě 3, prove that the canonical bundle KC is pd´ 3q-very ample.

Hint: Use the adjunction formula.

I.4.3 Compute the gonality of C.

Hint: This will depend on #Cpkq.

I.4.4 (Explicit Adjuction) Suppose that the characteristic of k does not divide d and that C Ď P2
k

is the vanishing of a single homogeneous equation F pX,Y, Zq of degree d.

(a) Show that symbolically

X ¨ dY ´ Y ¨ dX

BF {BZ
“
Y ¨ dZ ´ Z ¨ dY

BF {BX
“
Z ¨ dX ´X ¨ dZ

BF {BY
.

(b) Using this, give an explicit basis for the space of global regular differentials on C.

Hint: In the first part, use the two identities dF “ 0 and d ¨ F “ 0 (d means two different
things here!) In the second part, use the first part; why is that expression NOT a differential
on the curve? How can you use it to obtain a single regular differential?

I.4.5 Show that the smooth curve C in P2
k with equation

X4 ` Y 4 “ Z4

is bielliptic.

Hint: Work this out explicitly, or use Exercise (I.3.16).

I.4.6 For what degrees d ď 4 do all automorphisms of a smooth plane curve of degree d come
from automorphisms of P2

k?

Hint: How canonical is the map to P2?

I.4.7 If C is a smooth plane curve, write OCpkq for the restriction of OP2pkq to C. Show that
every section of OCpkq is the restriction of a section of OP2pkq. (This means that C is what
is called projectively normal.)

Hint: What is the kernel of the surjective map of sheaves OP2pkq Ñ OCpkq? Use the long
exact sequence in cohomology.
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Curves on Hirzebruch surfaces. In this section we make a brief foray into the geometry of
surfaces, for the eventual purpose of understanding the curves on these surfaces. For that reason,
this section requires a bit more background in algebraic geometry.

A Hirzebruch surface over Y is a surface S that is isomorphic (over k) to the projectivization
of a rank 2 vector bundle on a nice genus 0 curve Y . (We use the Grothendieck convention for
projective space: the fiber of PpEq over point y P Y is PpEyq, the space of codimension 1 subspaces
in Ey.)

I.4.8 Show that every Hirzebruch surface over P1
k is isomorphic to Fn, the projective bundle

P pOP1 ‘OP1pnqq over P1
k.

Hint: Recall the Birkoff-Grothendieck Theorem on vector bundles on P1
k. Then show that

PpEq » PpE b Lq for any line bundle L.

I.4.9 (a) Describe all maps of a curve C to the Hirzebruch surface PpEq. (This should be, in
part, reminiscent of the case of maps to projective space as in Exercise (I.1.4).)

(b) A section of a Hirzebruch surface S is a map Y
σ
ÝÑ S, such that post-composition with

the projection to Y is the identity. Describe all sections.
(c) Let σpY q be a the image of a section of S Ñ Y . In terms of your description above,

what is the self-intersection σpY q2?
(d) For n ą 0, show that the Hirzebruch surface Fn over P1

k has a unique section with
negative self-intersection. What is the self-intersection?

I.4.10 Let n ą 0 and let Cn be the image of the unique section with negative self-intersection on
Fn. Let F be a fiber of Fn Ñ P1

k over a k-point of P1
k.

(a) Show that the Picard group of Fn is a free abelian group of rank 2 with generators Cn
and F .

(b) What is the self-intersection of a curve in class aCn ` bF?
(c) Use adjunction on Fn to determine the canonical class KFn .

I.4.11 Show that F0 » P1
k ˆ P1

k.

(a) Show that the Picard group of F0 is the free abelian group with generators F1 and F2,
the fibers over rational points under the two natural projections. Write Opa, bq for the
line bundle aF1 ` bF2.

(b) Let C be a smooth curve on P1 ˆ P1 with OpCq » Opa, bq. What is the genus of C?
(c) What is the canonical class KF0?
(d) What is h0pP1 ˆ P1,Opa, bqq?
(e) Show that the line bundle Op1, 1q is very ample and describe the embedding into

projective space this gives.

I.4.12 (a) (Castelnuovo–Severi inequality) Suppose that C has two independent maps to P1 of
degrees d1 and d2. Then show that the genus g of C satisfies

g ď pd1 ´ 1qpd2 ´ 1q.

(b) Use the Castelnuovo–Severi inequality to give another proof that if g ě 1, the hyper-
elliptic map on a curve of genus g is unique (up to obvious post-compositions with
automorphisms on P1).

I.4.13 Consider F1.

(a) Show that the linear system associated to C1 ` F is basepoint-free and describe the
associated map.

(b) Show that F1 » Blp P2
k for some point p P P2pkq. What is the exceptional divisor of

the blowup?
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I.4.14 Consider F2. Show that the linear system associated to C2 ` 2F is basepoint-free and
describe the associated map.

I.4.15 Suppose that Y pkq “ H. (However, Yk » P1
k
, see Exercise (I.2.6).)

(a) Show that there exists a rank 2 vector bundle E on Y fitting in the exact sequence

0 Ñ OY Ñ E Ñ TY Ñ 0,

which is indecomposable over k, but for which the base change Ek » OP1
k
p1q‘OP1

k
p1q.

(b) Show that every Hirzebruch surface over Y is isomorphic to PpEq or PpOY ‘ pmKY qq.
Which Fn are these isomorphic to over k?

(c) Give a more down-to-earth description of PpEq.
(Fun but unnecessary exercise: can you explicitly show that we cannot construct any

other indecomposable bundles other than E (and its twists) as extensions of nTY by OY by
showing that the subvarities of Ext1pnTY ,OY q parameterizing such a splitting types have no
rational points? For example: there are no rank 2 vector bundles on Y that geometrically
split as Op1q ‘Op3q coming from Ext1p2TY ,OY q.)

5. Canonical curves of low genus

In this section, we will assume that C is a nice curve over a field k. Since we already know that
if C is hyperelliptic, the canonical map is 2 : 1 onto a degree g ´ 1 and genus 0 curve in Pg´1, we
will also assume that C is not hyperelliptic.

I.5.1 Show that every nice curve C over a field k has:

(a) A closed point of degree at most 2g ´ 2 over k.
(b) Gonality at most 2g ´ 2.
(c) Infinitely many closed points of degree at most 2g ´ 2 over k.

Genus 3 curves.

I.5.2 Show that every non-hyperelliptic curve of genus 3 is a smooth plane quartic curve in P2
k

and conversely that every smooth plane quartic is a canonical curve of genus 3. What is
the gonality of C?

Hint: Use adjunction.

I.5.3 * Can you match an “expected” dimension count for the moduli space of genus 3 curves with
earlier calculations? Compare this with Exercise (I.1.9). What should be the codimension
of the locus of hyperelliptic curves?

Genus 4 curves.

I.5.5 Suppose that C is a nice non-hyperelliptic curve of genus 4.
(a) Show that the canonical map is an embedding

ϕK : C ãÑ P3
k.

(b) Show that C lies on a unique quadric surface Q. Show that this quadric has rank at
least 3 (i.e., it is smooth or a quadric cone).

(c) Show that C lies on a cubic surface S over k. How unique is this surface?
(d) Show that C is the complete intersection of Q and S.

I.5.6 Show that every smooth complete intersection of a quadric surface and a cubic surface in
P3
k is a canonical curve of genus 4.

Hint: Use the adjunction formula to understand the canonical bundle.
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I.5.7 Suppose that C is a nice non-hyperelliptic curve of genus 4. If

f : C Ñ P1

is a map of degree 3, show that the fibers of f are 3 collinear points in P3 (i.e., in the
canonical embedding). Show that the line through these points must be contained in the
unique quadric containing C.

Hint: Use exercise (I.1.8).

I.5.8 Suppose that the unique quadric Q containing C is a quadric cone (i.e., Q is the cone over
a smooth plane conic X).

(a) Show that C admits a unique map of degree 3 to a genus 0 curve (over k and over k).
When is the gonality of C equal to 3?

(b) * Show that the blow up of Q at the cone point is a projective bundle over X. When
X is P1, do you recognize Q as the image of a map from a Hirzebruch surface?

(c) * What is the class of C on this Hirzebruch surface?

Hint: Use the previous problem; what do lines on a quadric cone look like?

I.5.9 Suppose that the unique quadric Q containing C is a smooth quadric.

(a) Over k, Qk » P1 ˆ P1 “ F0. What is the class of Ck on this surface?

(b) Show that over k, C admits two maps of degree 3 to a genus 0 curve. Describe these
maps geometrically.

(c) Let L{k be the discriminant extension of the quadric Q over k; i.e., if Q is represented
by a symmetric 4ˆ 4 matrix A, then

L “ k
´

a

detpAq
¯

.

Show that over L, CL admits two maps of degree 3 to genus 0 curves.
(d) Conversely show that if C admits a degree 3 map to a genus 0 curve over k, then L “ k.

Hint: Show that QL is isomorphic to the product of two conics.

I.5.10 * Can you match an “expected” dimension count for the moduli space of genus 4 curves with
earlier calculations? Compare this with Exercise (I.1.9). What should be the codimension
of the locus of hyperelliptic curves?

Genus 5 curves.

I.5.11 Suppose that C is a nice non-hyperelliptic curve of genus 5.

(a) Show that the canonical map is an embedding

ϕK : C ãÑ P4
k,

and exhibits C as a smooth curve of degree 8 and genus 5 in P4
k.

(b) Show that there is a 3-dimensional vector space of quadratic polynomials on P4
k that

vanish along C. Let Q1, Q2 and Q3 be a choice of three independent quadrics spanning
this space.

(c) Show that the complete intersection of three quadrics in P4
k is always a canonical curve

of genus 5.
Hint: Use adjunction.

(d) If Ck admits a degree 3 map to P1
k
, show that the ideal of C is not generated by Q1,

Q2 and Q3 (i.e., it is not the complete intersection).
Hint: Use geometric Riemann-Roch; what can you say about a quadric vanishing at
three points on a line?
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I.5.12 Let C be a canonical curve of genus 5. Let Q1, Q2 and Q3 be a choice of three independent
quadrics spanning the space of quadrics vanishing along C.

(a) If C Ĺ V pQ1, Q2, Q3q, then show that V pQ1, Q2, Q3q has dimension 2.
(b) Let S “ V pQ1, Q2q be the surface cut out by the first two quadrics. If S is irreducible,

show that any other quadric containing S must be a linear combination of Q1 and Q2.
Hint: This goes by the name of Noether’s af ` bg theorem.

(c) Conclude that if S is irreducible, C “ V pQ1, Q2, Q3q is a complete intersection.
(d) Show that if S is reducible, it must be the union of a surface of degree 3 and a surface

of degree 1. Which one contains C?
Hint: Show that a surface of degree less than 3 is contained in a hyperplane.

(e) A degree 3 surface is a minimal degree surface T called a cubic scroll. Such a surface
is the image of a map from F1 or F3. What is this map?

(f) Give an intrinsic description of T in P4.
Hint: What is the image of the unique curve of negative self-intersection?

(g) Show that if C lies on T , then gonpCkq “ 3. Conclude that Ck does not admit a degree

3 map to P1
k
, then C is the complete intersection of three quadrics in P3.

I.5.13 Suppose that gonpCkq “ 3.

(a) Show that C lies on a cubic scroll T and find its class on T .
(b) Show that the degree 3 map Ck Ñ P1 is unique.
(c) Show that gonpCq “ 3. (This should be somewhat surprising!)

I.5.14 Now suppose that gonpCkq ą 3. Then we know that C is the complete intersection of three

quadrics in P4
k.

(a) Let Q be a singular quadric cone containing C. Show that a 2-plane in Q meets C in
4 geometric points. Show that the divisor of these four points defines a map of degree
4 from Ck to P1

k
.

(b) Show that if the locus of singular quadrics in the projective space P2 of quadrics
containing C is smooth, then the variety parameterizing degree 4 maps from C to P1

is a curve of genus 11.
(c) * Explicitly, what is this curve? (E.g., can you write down equations for its function

field in terms of equations for C?)
I.5.15 * Can you match an “expected” dimension count for the moduli space of genus 5 curves with

earlier calculations? Compare this with Exercise (I.1.9). What should be the codimension
of the locus of hyperelliptic curves? What should be the codimension of the locus of trigonal
curves?

Genus at least 6 curves.

I.5.16 Show that a canonical curve C Ď Pg´1 with g ě 6 is never a complete intersection.

I.5.17 * (If you know something about del Pezzo surfaces) Descriptions of general canonical curves
of genus up to 10 are known, partly worked out in a series of papers Mukai [Muk92, Muk95,
Muk10].

(a) Fill in the details for the following: a general canonical curve of genus 6 is a transverse
quadric section of a del Pezzo surface of degree 5 in P5.

(b) What does general mean in the previous sentence?
(c) Can you give a description of every canonical curve of genus 6?

I.5.18 * Try to generalize the results about geometrically trigonal curves: is it true that if
gonpCkq “ 3 and the genus of C is odd and at least 5, then gonpCq “ 3?



CHAPTER 2

Arithmetic

For this section, we focus on the technique of descent for understanding the rational points on
a variety. Most of the exercises in the first part of this chapter are done is greater generality than
needed in the second part, since this is a robust technique that appears in other contexts. We
assume familiarity with (non-abelian) Galois cohomolgy, for example as in [Ser97].

‚ As in the first chapter, k will denote a perfect field, and k an algebraic closure.

1. Twists and Torsors

Twists.

‚ We always use the left action of Galpk{kq on k, giving a right action on Spec k.

II.1.1 Let X be a k-scheme and let σ P Autpkq, which induces a map Spec k
σ
ÝÑ Spec k. Write σX

for the pullback of X over Spec k under this map:
σX X

Spec k Spec kσ

(The top horizontal map is not an morphism of k-schemes if σ is nontrivial!)
(a) Suppose thatX is an affine variety cut out by equations g1px1, . . . , xnq, . . . , gmpx1, . . . , xmq.

Give equations for σX.
(b) Show that σXpkq is in bijection with Xpkq. (In the affine case, as above, can you make

this explicit?)
(c) More generally, let S be any k-scheme. Give a bijection

XpSq Ñ σXpσSq

f ÞÑ σf

(d) * While σX and X are isomorphic as abstract schemes, give an example of X and σ
for which σX and X are not isomorphic as k-schemes.

Hint: It might be helpful to use the universal property of a fiber product.

II.1.2 Let k1{k be a finite Galois extension. Suppose that X is a k-scheme. Show that there exists
a collection of isomorphisms pfσqσPGalpk1{kq of k1-varieties

fσ : σXk1 Ñ Xk1 ,

such that for all σ, τ P Galpk1{kq

(6) fστ “ fσ
σpfτ q.

In other words, such that the following diagram commutes.

στXk1
σXk1 Xk1

fστ

σpfτ q fσ

17
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II.1.3 (Necessity of Condition (6) – adapted from Exercise 4.1 of [Poo17]) Let σ P GalpC{Rq be
complex conjugation. Suppose that a0, . . . , a6 P C are such that

σa6´j “ p´1qj`1aj .

Let X be the hyperelliptic curve with affine equation

y2 “ fpxq “ a6x
6 ` a5x

5 ` a4x
4 ` a3x

3 ` a2x
2 ` a1x` a0,

over C. Assume that fpxq is separable and AutpXq “ Z{2Z generated by the hyperelliptic
involution.

(a) What is the equation of σX? Show that σX is isomorphic to X as curves over C.
(b) Show that X is not the base-change of a curve from R to C.

Hint: In the previous part you wrote down a particular choice of fσ : σX Ñ X. What
does any other choice of σf have to look like?

(c) Show that the hypotheses on f and AutpXq can be satisfied for some choice of param-
eters a0, . . . , a6 P C.
Hint: Any automorphism of X induces an automorphism of the branch points on P1;
the only automorphism acting trivially is the hyperelliptic involution.

II.1.4 Let k1{k be a finite Galois extension and let X 1 be a quasi-projective k1-variety. A k1{k-
descent datum on X 1 is a collection of k1-isomorphisms pfσqσPGalpk1{kq satisfying (6).

(a) Formulate what a morphism of k1-schemes with k1{k-descent data is. What is an
isomorphism?

(b) By Weil’s Galois descent, there is an equivalence of categories
"

quasi-projective

k-varieties

*

ÐÑ

"

quasi-projective k1-varieties

with k1{k-descent data

*

.

If X is a k-variety, what should be the corresponding k1-variety with k1{k-descent data
corresponding to it?

(c) Given that k1{k-descent data for X 1 exists, show that the set of all k1{k-descent data
is non-canonically isomorphic to H1pGalpk1{kq,AutpX 1qq.
Hint: After making a choice of one descent datum, what do all other descent data
looks like?

II.1.5 Varieties X and Y over k are called twists (or forms) of each other if Xk » Yk. Given an
extension k1{k, we say that X and Y are k1{k-twists of each other if Xk1 » Yk1 . A twist Y
of X together with a choice of isomorphism ϕ : Xk1 Ñ Yk1 will be called a rigidified twist.

(a) Let k1{k be a finite Galois extension. Explicitly show that the set of rigidified k1{k-
twists of a k-variety X are in bijection with 1-cocycles

Galpk1{kq Ñ AutpXk1q.

(b) Show that isomorphism classes of twists of X are canonically isomorphic to the pointed
set H1pk,AutpXk1qq.

Hint: In the first part, verify that the following is the explicit 1-cocycle:

σ ÞÑ ϕ´1 pσϕq .

In the second part, you may reduce to the case of k1{k-twists for k1{k a finite Galois extension
by taking appropriate inverse limits. Use your description of isomorphisms of k1-varieties
with descent data from Exercise (II.1.4).
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Classification of torsors under smooth algebraic groups over a field.

‚ For this section, let G be a smooth algebraic group over the perfect field k. Every such
group is quasiprojective.

‚ Recall that a morphism of algebraic groups is a morphism of the underlying varieties that
respects the structure morphisms (multiplication, inversion, and identity).

‚ The trivial G-torsor over k, denoted G, is the variety G together with the right action of G
on itself by translation.

‚ A G-torsor is a twist of G, i.e., a variety X over k with a right G-action such that Xk with
the right action of Gk is isomorphic to Gk.

II.1.6 Show that if X is a G-torsor over k, then Xpkq is a set with a simply transitive right
Gpkq-action.

II.1.7 Show that a G-torsor X over k is isomorphic to G if and only if Xpkq ‰ H.

Hint: Think about the identity section.

II.1.8 Show that the automorphism group scheme of G over k is isomorphic to G acting on G by
translation on the left. Conclude that AutpGq » Gpkq.

Hint: An automorphism of G is determined by where it sends the identity element.

II.1.9 (a) Show that the set of isomorphism classes of G-torsors over k are in bijection with the
pointed set

H1pk,Gq :“ H1pk,Gpkqq.

(In addition, can you explicitly write down a cocycle representing the cohomology class
of a given torsor? Exercise (II.1.6) might be helpful.)

(b) Show that a torsor is isomorphic to G if and only if its cohomology class is the neutral
element of H1pk,Gq.

Hint: For the first part, show that if x P Xpkq is a geometric point, then for each σ P
Galpk{kq, there exists a unique gσ P Gpkq such that

σx “ xgσ

and σ ÞÑ gσ is a 1-cocycle representing this torsor.

II.1.10 Show that every Gm- or Ga-torsor over k is trivial.

Hint: Use Hilbert Theorem 90.

II.1.11 Let L{k be a finite Galois extension with Galois group G. Show that SpecL is a G-torsor
over Spec k.

Hint: What is Lbk L?

II.1.12 Let C be a nice curve over k, and assume, to make technical issues with the Picard functor
disappear, that Cpkq ‰ H. Show that the degree e component PiceC{k is a Pic0

C{k-torsor.

II.1.13 (Twists arising from torsors) Let G be an algebraic group over k and let X be a nice variety
over k. Suppose that G acts on X on the left.

(a) First, describe “abstractly” a map H1pk,Gq Ñ H1pk,AutXkq.

(b) Given a G-torsor T , the contracted product T ˆG X is the quotient of T ˆk X by the
free G-action

pt, xq ÞÑ ptg´1, gxq.

Show that rT ˆG Xs is the image of rT s under the map you described above.
(c) G acts on G on the left by Exercise (II.1.8). Describe the map from the first part in

this case.
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Hint: For the second part, write everything out explicitly with cocycles using Exercises
(II.1.5) and (II.1.9).

II.1.14 (Inner twists) Let G be an algebraic group over k with the action on itself by conjugation.

(a) Using the action of inner automorphisms, describe a map of pointed sets

H1pk,Gq Ñ H1pk,AutGkq.

The twist Gτ corresponding to a class τ P H1pk,Gq is called an inner twist of G.
(b) In terms of a cocycle in Z1pk,Gq, write down a cocycle representing the corresponding

inner twist of G.
(c) Is Gτ a G-torsor?
(d) What happens if G is commutative?

II.1.15 (Left actions) If T is a (right) G-torsor with class rT s “ τ P H1pk,Gq, show that T is a left
Gτ -torsor. (So it is a Gτ , G-bitorsor.)

Hint: Write down everything in terms of cocycles: the trivial torsor has both a left and a
right action of G. How does the left action have to be twisted in order to descend to T over
k?

II.1.16 (Inverse torsors) Given a (right) G-torsor T with class τ , how can you produce a (right)
Gτ -torsor? This will be called T´1. (This will be a G,Gτ -bitorsor.) What happens if G is
commutative?

Hint: The torsor T is already a left Gτ -torsor. Remember that to have a right action, it’s
necessary that acting first by g and then by h is the same as acting at once by gh. How
can you arrange this?

II.1.17 (Contraction product) As you saw in Exercise (II.1.13), if T is a (right) G-torsor and X
has a left-action of G, we can define the contraction product T ˆG X as the quotient of
T ˆX by the G-action pt, xq ÞÑ ptg´1, gxq. Similarly, if T is a left G-torsor, and X has a
right action of G, we define X ˆG T as the quotient by px, tq ÞÑ pxg, g´1tq.

Show that if Z is a right G-torsor, and T is a G,H-bitorsor, then Z ˆG T is a right
H-torsor.

II.1.18 (a) Show that T´1 ˆG
τ

k T is the trivial right G-torsor. (And similarly, T ˆGk T
´1 is the

trivial Gτ -torsor.)
(b) Show that the contraction product map

H1pk,Gq Ñ H1pk,Gτ q

rZs ÞÑ rZ ˆGk T s

is a bijection of pointed sets. What is the inverse?

Torsors over more general bases.

‚ More generally, we can consider families of torsors under a smooth algebraic group G over
a field; i.e., a torsor over a base scheme S.

‚ For the problems in this problem set, it will suffice to consider group schemes over S that
are of the form GS :“ Gˆk S for G a (smooth) algebraic group over k. We will also assume
that G is affine or an abelian variety (and S is sufficiently nice) to do away with technical
representability problems.
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‚ A (right) G-torsor over S (also called by some authors an S-torsor under GS) is an S-scheme
X with a right action of G

X ˆGÑ X

px, gq ÞÑ xg

(as S-schemes!) such that there exists an étale cover tSiu Ñ S and an isomorphism

X ˆS Si » Gˆk Si

of Si-schemes.
‚ Under our assumptions the first Cech étale cohomology

H1pS,Gq :“ Ȟ1
étpS,Gq

parameterizes G-torsor over S up to isomorphisms. (If you aren’t familiar with this, use
your intuition from the case k a field and take this as a working definition of this pointed
set.)

II.1.19 How does the definition of a G-torsor over S square with the definition of a torsor over a
field?

II.1.20 (Étale Galois covers, compare with Exercise (II.1.11))

(a) Let G be a finite group and suppose that Y Ñ X is an étale G-cover of curves (c.f.
Exercise (I.3.2)). Show that Y is a G-torsor over X for the constant algebraic group
G.

(b) * Why is the étale assumption necessary?
(c) What if Y Ñ X is defined over k, but is only geometrically a G-cover, for some constant

group G?

II.1.21 (Homogeneous spaces) Let G be a (smooth) algebraic group over k and let H be a closed
(smooth) algebraic subgroup. Suppose that the quotient X “ G{H exists. (This is guar-
anteed if G is affine or H is finite.) Show that G is an H-torsor over X.

Hint: Show that étale locally, the map GÑ X has a section.

II.1.22 (Twisted torsor) Let G be an algebraic group over k and let Z Ñ S be a (right) G-torsor
over S. Suppose that T is a right G-torsor over k with class τ . Define

Zτ :“ Z ˆGk T
´1,

where Z ˆGk T
´1 is the quotient of Z ˆk T

´1 by the free action of G acting on the right on
Z by g and acting on the left on T´1 by g´1.

(a) Using the way that G acts on the left on T´1, show that, explicitly, Zτ is quotient of
Z ˆk T by pz, tq ÞÑ pzg, tgq.

(b) Show that Zτ is a right Gτ -torsor over S.
(c) Let s : Spec k Ñ S be a point. Show that the fiber Zτs is the trivial Gτ -torsor if and

only rZss “ τ P H1pk,Gq.

Hint: Use exercise (II.1.18).

II.1.23 (n-coverings of abelian varieties) Let A be an abelian variety, and assume that the charac-
teristic of k is coprime to n. A n-covering of A is a pair pX,ψq, where X is an A-torsor over
k, and ψ : X Ñ A is a map such that ψpxaq “ ψpxq ` na.

(a) Show that by the map ψ : X Ñ A, the variety X is an Arns-torsor over A.
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(b) Let τ be the class of ψ´1peq in H1pk,Arnsq, for the identity point e P A. Show that
the twisted torsor Xτ is isomorphic to A.
Comment: This shows that every n-covering pX,ψq is a twist of the “standard”

Arns-torsor A
n
ÝÑ A.

(c) The group A acts on itself by translations (we don’t need to be careful about left/right
because it is abelian!) In this way, under the multiplication-by-n map AÑ A, the first
copy of A acts on the second copy of A (an element g acts as translation by ng). As in
Exercise (II.1.17), show that the resulting contraction product X ˆAk A, i.e., defined
as the quotient of X ˆk A by the g P A action

px, aq ÞÑ pxg´1, a` ngq

is an A-torsor over k. In fact, show that

X ˆAk AÑ A

px, aq ÞÑ ψpxq ` a,
(7)

is an isomorphism of A-torsors (and hence it is the trivial torsor). Let e be the identity
element of A. Show that the following is a map of A-torsors

X Ñ X ˆAk A

x ÞÑ px, eq,

and that composition with the isomorphism (7) is the n-covering map ψ.

Comment: This shows that nrXs “ 0 in the Weil-Chatelet group H1pk,Aq. This
should make sense if you know the exact sequence

0 Ñ
Apkq

nApkq
Ñ H1pk,Arnsq Ñ H1pk,Aqrns Ñ 0.

Unramified torsors. In this section, we make the following simplifying/necessary assumptions.

‚ Let k be a number field and let v P Ωk be a place. Write Ov for the valuation ring of kv.
‚ Let G be a finite étale algebraic group over k. Assume that S Ă Ωk is a finite subset of

places such that G spreads out to a finite étale group scheme G over Ok,S .
‚ For a prime v R S, we say that τ P H1pk,Gq is unramified at v if the restriction resv pτq to
kv is in the image of the map

H1pOv,G q Ñ H1pkv, Gq

restricting to the generic point.
‚ Using descent, one can show that if τ is unramified at all v R S (i.e., unramified outside S),

then τ is in the image of

H1pOk,S ,G q Ñ H1pk,Gq.

‚ Write H1
Spk,Gq Ă H1pk,Gq for the set of τ that are unramified outside S.

II.1.24 Show that if a τ P H1pk,Gq is unramified at v, then

resv pτq P ker
`

H1pkv, Gq Ñ H1pknr
v , Gq

˘

,

where knr
v is the maximal unramified extension of kv.

Hint: A class is trivial in H1pknr
v , Gq if and only if the corresponding torsor over kv has a

point over an unramified extension of kv.

II.1.25 Let S be a finite subset of Ωk. Show that H1
Spk,Gq is finite:
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(a) As a k-scheme, what is a class τ P H1pk,Gq? (c.f. Exercise (II.1.11))
(b) For v R S, as an Ov-scheme what is a class in H1pOv,G q? What does it tell you about

part (a) to know that resvpτq is in the image of H1pOv,G q?
(c) Show that the fibers of the map

H1
Spk,Gq Ñ

ź

vPS

H1pkv, Gq

are finite.
Hint: Use Hermite’s Theorem: there are finitely many extensions of a number field of
bounded degree and bounded discriminant.

(d) Show that H1pkv, Gq is finite.
Hint: Again, using Exercise (II.1.11), what do these parameterize?

II.1.26 Let S “ t8, 2, p1, . . . , pnu be a finite set of rational primes. Describe the set H1pQ, µ2q and
the (finite!) subset H1

SpQ, µ2q.

2. Descent

Evaluation.
Given a morphism, ϕ : T Ñ S, we have by functoriality a map

H1pS,Gq
ϕ˚
ÝÝÑ H1pT,Gq

defined by sending the class rXs of a G-torsor over S to the class rXT s is called evaluation along T .

II.2.1 (Soft question) Describe the evaluation map along rational points s : Spec k Ñ S:
(a) First, in words, for any G-torsor over S.
(b) If G is a constant finite group scheme over S (c.f., Exercise (II.1.20)).
(c) When G is an algebraic group, H is a finite subgroup, and X “ G, considered as an

H-torsor over S “ G{H. (It might also be helpful to first think through the case that
S is a (finite) group and G is a finite subgroup.)

II.2.2 Suppose that H is a finite étale subgroup of the algebraic group G.

(a) Since

1 Ñ Hpkq Ñ Gpkq Ñ G{Hpkq Ñ 1

is an exact sequence of Galpk{kq-sets, show that we have an exact sequence in Galois
cohomology

1 Ñ Hpkq Ñ Gpkq Ñ G{Hpkq
δ
ÝÑ H1pk,Hpkqq Ñ H1pk,Gpkqq

(b) Show that the boundary map δ agrees with the evaluation map at k-points you de-
scribed in Exercise (II.2.1).

Hint: In the last part, use the explicit description for the cocycle representing a torsor
from Exercise (II.1.9) in combination with the explicit description of the coboundary map
on Galois cohomology (see Serre Chapter I.5, in particular [Ser97, Section I, Proposition
36], for details).

II.2.3 (Descent partition of rational points) Let G be a (smooth) algebraic group over k and
suppose that Z is a G-torsor over a base scheme X. Then evaluation gives a partition of
the rational points Xpkq: write Xτ pkq for the subset of points

Xτ pkq :
 

x P Xpkq : rZxs “ τ P H1pk,Gq
(

.
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(a) Show that equivalently Xτ pkq “ f τ pZτ pkqq, for f τ : Zτ Ñ X the twisted torsor Z ˆGk
T´1 (c.f. Exercise (II.1.22)). Therefore

Xpkq “
ď

τPH1pk,Gq

f τ pZτ pkqq.

(b) Show that if X is proper over a number field k, then every rational point on X is the
image of a rational point on one of a finite number of twists of Z.

Hint: For the second part, if Zτ has a k-point, then it must have a kv-point for all v. Spread
out X and Z over SpecOk,S for some finite subset S. How can you use the properness of
X in combination with this observation about kv-points on Zτ?

II.2.4 (Chevalley-Weil Theorem) Suppose that

f : Z Ñ X

is a finite étale cover of proper varieties over a field k. Show that there exists a finite
extension k1{k such that

Xpkq Ď fpZpk1qq.

Hint: Reduce to the case of Galois covers and use Exercise (II.2.3). Or can you use the
ideas of Exercise (II.2.3) to prove this directly?

II.2.5 Using descent, prove that Faltings’ Theorem (if X is a nice curve of genus at least 2 over a
number field k, then the rational points Xpkq are finite) implies Seigel’s Theorem (if Z is a
finite subscheme of a nice curve Y over k, and U :“ Y r Z satisfies χpUq ď 0, and U is a
model of U over the ring of S-integers Ok,S , then U pOk,Sq is finite).

Hint: Show that a finite étale cover of U embeds in a nice curve X of genus at least 2.

Classical descent by n-isogeny.
Let A be an abelian variety over a number field k. Write

Arns :“ ker
´

A
n
ÝÑ A

¯

for the finite group scheme of n-torsion points on A. We will write Arnspk1q for the points of Arns
over k1 (i.e., the n-torsion points defined over k1).

II.2.6 (You may have already done this exercise in various parts in previous problems!)
(a) Show that there is an exact sequence of Gk-modules

0 Ñ Arnspkq Ñ Apkq
n
ÝÑ Apkq

δ
ÝÑ H1pk,Arnspkqq

(b) Show that A
n
ÝÑ A is an Arns-torsor over A.

(c) Show that δ is the “evaluation map” of the previous section (c.f., (II.2.2)).

II.2.7 (The weak Mordell–Weil Theorem) Show that ApKq{nApKq is finite for every n.

Hint: Use the ideas in Exercise (II.2.3) (in combination with the result of (II.1.25)).

II.2.8 (The descent lemma) Let Γ be a Z-module and let V be a Q-vector space containing
Γ{Γtors. Let x ÞÑ Qpxq2 P R be a positive quadratic form on V . For some n ě 2, let γi P Γ
be representatives of Γ{nΓ. Suppose that Qpγiq is at most a positive constant C for all i.

(a) Given an element y and suppose that Qpyq ď mC. If we write y “ nx ` γi, give a
bound on Qpxq.

(b) Show that Γ is generated by elements x with Qpxq ď 2C.
(c) (If you know about heights...) Let A be an abelian variety over a number field K.

Show that an appropriate height function on Γ “ ApKq gives the quadratic form Q.
(Or assume this.) Show that ApKq is finitely generated.
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Hint: You’ll want to use the weak Mordell-Weil theorem in the last step!

Explicit 2-descent on hyperelliptic Jacobians.
By Exercise (II.2.8)(c), if A is an abelian variety over a number field k, then

Apkq » Apkqtors ‘ Zr,
where r is called the rank of A over k.

The questions in this section will lead you through a proof that a bound for the rank of the
Jacobian of a hyperelliptic curve over a number field k of odd degree is computable. For this
reason, the questions are intended to be done in order.

‚ For this section J denotes the Jacobian of an odd degree hyperelliptic curve C over k with
affine equation

y2 “ fpxq, degpfq “ 2g ` 1,

and f square-free. Since Cpkq ‰ H, we have that Jpkq “ Pic0pCq is the set of line bundles
over k on the curve C.

‚ Write 8 for the unique place of C over 8 in P1 under the hyperelliptic x-coordinate map.
‚ Recall that for a finite set of places S Ď Ωk, the set H1

Spk, Jr2sq denotes the isomorphism
classes of torsors for Jr2s unramified outside S.

II.2.9 (Warmup: 2-descent on an elliptic curve with rational 2-torsion) For this problem, let E be
an elliptic curve over Q with full rational 2-torsion, i.e., with Weierstrass equation

E : y2 “ px´ e1qpx´ e2qpx´ e3q, e1, e2, e3 P Q.
(a) Describe the group scheme Er2s. Show that

H1pQ, Er2sq » Qˆ{Qˆ2
ˆQˆ{Qˆ2

.

For some prime p, explicitly, what classes are unramified at p?
(b) What is the Galois cohomology H1pQp, Er2sq for each prime p ď 8? (The prime 8 is

to be interpreted as the Archimedean place, so that Q8 “ R.)

(c) Show that the multiplication-by-2 map E
2
ÝÑ E corresponds to the function field ex-

tension

Qpx, y, z, wq{y2 ´ px´ e1qpx´ e2qpx´ e3q, z
2 ´ px´ e1q, w

2 ´ px´ e2q

Qpx, yq{y2 ´ px´ e1qpx´ e2qpx´ e3q

(Warning: this is easier to prove over an algebraically closed field. Over Q, how do

you know that the field extension is not z2 ´ λpx ´ e1q for some λ P Qˆ r Qˆ2
, for

example?)
(d) Can you explicitly give equations for all 2-covers of E? (These correspond to classes in

H1pQ, Er2sq by Exercise (II.1.23), so the answer should depend on how you answered
part (a).)

Hint: It might be helpful to think of H1pQ, Er2sq as the elements of
´

Qˆ
Qˆ2

¯3
whose

product is a square.

(e) Show that the descent map δ from the previous section is explicitly given by

EpQq Ñ H1pQ, EpQqq » Qˆ{Qˆ2
ˆQˆ{Qˆ2

px0, y0q ÞÑ px0 ´ e1, x0 ´ e2q
(8)

for all affine points with y0 ‰ 0. What happens for the remaining points on E?
(f) Describe the descent partition of rational points on E.
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(g) Let S be the set consisting of the infinite place 8 and all finite p which divide ei ´ ej
for some i ‰ j P t1, 2.3u. (Since at least two ei have the same parity, the prime 2 is
always in S!) Show that the image of δ lies in H1

SpQ, Er2sq.
(h) Using part (e), give a bound on the rank of any elliptic curve with full 2-torsion in

terms of the number of primes in S.

II.2.10 (Explicit 2-descent on an elliptic curve) For this question, let E be the elliptic curve with
Weierstrass equation

E : y2 “ xpx´ 1qpx` 1q.

(This curve is one of first examples of congruent number elliptic curves. The calculation
you are about to do shows that 1 is not a congruent number.)

(a) Look for some points on E by testing x and y values in a box.
(b) Show that S “ t8, 2u. Describe H1

SpQ, Er2sq as explicitly as you can.

(c) Now consider the real place. Show that Rˆ{Rˆ2
» t˘1u. Show that EpRq{2EpRq has

cardinality two. Identify its image under δ8:

EpRq{2EpRq δ8
ÝÝÑ H1pR, Er2sq » t˘1u ‘ t˘1u.

Hint: How many components does EpRq have? Show that the double of any point is
in the identity component.

(d) Using the diagram,

EpQq{2EpQq H1
SpQ, Er2sq

EpRq{2EpRq t˘1u ‘ t˘1u

δ

δ8

what are the local conditions coming from 8?

(e) Now consider the place 2. Find representatives for Qˆ2 {Q
ˆ
2

2
. EpQ2q{2EpQ2q has car-

dinality 8. Identify its image under δ2:

EpQ2q{2EpQ2q
δ2
ÝÑ H1pQ2, Er2sq

in terms of your generators. What are the analogous local conditions coming from 2?
(f) Show using your local conditions that E has rank 0. (Can you compute the torsion

points also to determine EpQq?)

II.2.11 As you can see, in the previous problem two problems, it was very helpful to know the size
of EpQpq{2EpQpq to determine the image of δp.

(a) Show that the dimension of EpRq{2EpRq as an F2-vector space is given by dimF2 EpRqr2s´
1. What happens in general for a Jacobian J at a real place?

(b) If p ‰ 2, show that the dimension of EpQpq{2EpQpq as an F2-vector space is dimF2 EpQpqr2s.
What happens in general for a Jacobian J at a finite place not dividing 2?

(c) Show that the dimension of EpQ2q{2EpQ2q as an F2-vector space is dimF2 EpQ2qr2s`1.
What happens in general for a Jacobian J at a place above 2?

Hint: For finite primes, JpQpq contains a finite index subgroup isomorphic to Zgp.

II.2.12 (Another 2-descent) Let E be the elliptic curve with Weierstrass equation

E : y2 “ xpx´ 5qpx` 5q.

(E is another congruent number curve.) Repeat Exercise (II.2.10) with this curve. What
can you say about its rank?

We’re now ready to start doing this is general, for Jacobians of odd degree hyperelliptic curves!
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II.2.13 (Jr2spkq as a Gk-module) Let w1, . . . , w2g`1 denote the zeros of fpxq and let Wi “ pwi, 0q
be the corresponding Weierstrass point on C. Write W “ tW1, . . . ,W2g`1u for the set of
all such points. Let L “ krT s{fpT q denote the étale algebra determined by the polynomial
f .

(a) Describe the étale algebra L. What happens if f splits completely? What happens if
f is irreducible over k? Describe the norm map NL{k. What does L “ L bk k look
like?

(b) Write
` Z

2Z
˘W

for the trivial Galois-module Z{2Z induced from L to k. (As an F2-vector
space, what is the dimension of this module?) Show that there is a surjective map of
Gk-modules

ˆ

Z
2Z

˙W

Ñ Jr2s

sending Wi to the line bundle OCpWi ´8q.
(c) Identify the kernel to give an exact sequence of Gk-modules

0 Ñ
Z
2Z
Ñ

ˆ

Z
2Z

˙W

Ñ Jr2s Ñ 0

Show that this sequence splits.
(d) Give a formula for the F2-dimension of Jpkqr2s.
(e) Show that

H1pk,Z{2Zq » kˆ{kˆ
2
, and H1

˜

k,

ˆ

Z
2Z

˙W
¸

»
Lˆ

Lˆ2 .

Hint: Use Shapiro’s Lemma to calculate the cohomology of an induced module.

(f) Show that

H1pk, Jr2sq » ker

ˆ

Lˆ

Lˆ2

NL{k
ÝÝÝÑ

kˆ

kˆ2

˙

,

where NL{k is the norm map from L to k.
(g) Think through how the computations in this problem specialize when J “ E is an

elliptic curve with full 2-torsion over Q.

II.2.14 (The x´ T map) Write T for the image of T from krT s in L.

(a) Write DivKC for the group of divisors on C whose support is disjoint from W Y t8u.
Show that the map

Cpkqr pW Y t8uq Ñ L
ˆ

P ÞÑ xpP q ´ T
(9)

gives rise to a homomorphism

DivKC Ñ Lˆ.

We call this map the x´ T map (for obvious reasons!)

(b) Show that if D P DivKC is principal, then px´ T qpDq P Lˆ
2
.

(c) Show that the x´ T map extends to a well-defined map on all of Pic0pXq

Jpkq “ Pic0pXq Ñ
Lˆ

Lˆ2 .

(d) Suppose that f is reducible with factors f1 and f2. Write D1 “W1 ` ¨ ¨ ¨ `Wr for the
sum of Weierstrass points with x coordinate a root of f1. Can you say where the line
bundle OpD1 ´ r8q is sent under this map?
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(e) In fact, show that the image of x´ T is contained in

ker

ˆ

Lˆ

Lˆ2

NL{k
ÝÝÝÑ

kˆ

kˆ2

˙

.

Hint: You can check this last part after base-changing to k.

(f) (If you did the problem earlier about Mumford coordinates) Explicitly, what is the
image of point in Jpkq under the x´ T map whose Mumford coordinates are pa, bq.

(g) * Show that the x´T map agrees with the descent map δ (c.f. Equation (8) for elliptic
curves with full 2-torsion).

II.2.15 (The 2-Selmer group) Let Ωk denote the set of places of k (including Archimedean places).
By restriction to the decomposition group for a place, we have a commutative diagram

0 Jpkq
2Jpkq H1pk, Jr2sq

0
ź

vPΩk

Jpkvq

2Jpkvq

ź

vPΩk

H1pkv, Jr2sq

δ

ś

v resv

ś

v δv

Define the 2-Selmer set

SelJpk, Jr2sq :“
 

τ P H1pk, Jr2sq : resvpτq P im
`

δv : Jpkvq Ñ H1pkv, Jr2sq
˘

for all v P Ωk

(

(a) If v is a finite place of good reduction of J that is not above 2, show that

resvpτq P im
`

δv : Jpkvq Ñ H1pkv, Jr2sq
˘

if and only if τ is unramified at v.
Hint: Use the ideas in Exercise (II.2.3).

(b) Let S Ă Ωk denote the set of all Archimedean places, all places above 2, and all places
of bad reduction for J . Show that we have the following containments

im

ˆ

Jpkq

2Jpkq
δ
ÝÑ H1pk, Jr2sq

˙

Ď SelJpk, Jr2sq Ď H1
Spk, Jr2sq,

and the simpler definition

SelJpk, Jr2sq “
 

τ P H1
Spk, Jr2sq : resvpτq P im pδvq for all v P S

(

.

(c) Rephrase the definition of the 2-Selmer group using the concrete explicit descriptions
of H1pk, Jr2sq and the descent maps δ and δv. (Along the way, explicitly describe in
words the set H1

Spk, Jr2sq and why it is finite in terms of L above.)
(d) * Give an algorithm to compute the F2-dimension of SelJpk, Jr2sq.

II.2.16 (Rank calculation for the Jacobian of a genus 3 hyperelliptic curve) This problem leads you
through the computation in [Sch95] of the rank of the Jacobian of a genus 3 curve over Q.
Let C be the odd degree hyperelliptic curve with affine equation

y2 “ xpx´ 2qpx´ 3qpx´ 4qpx´ 5qpx´ 7qpx´ 10q.

(a) Verify that p1,˘36q and p6,˘24q are rational points on C. We will verify that these
two points together with the 8 rational 2-torsion points generate the 2-Selmer group
SelJpQ, Jr2sq.

(b) Show that the set S from the previous problem is t8, 2, 3, 5, 7u. Describe H1
SpQ, Jr2sq

explicitly.
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(c) Show/recall that the descent map is explicitly

JpQq
2JpQq

px´0,x´2,x´3,x´4,x´5,x´7,x´10q
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ ker

˜

ˆ

Qˆ

Qˆ2

˙7
N
ÝÑ

Qˆ

Qˆ2

¸

.

Recall how to evaluate on a Weierstrass point.
(d) From your answers to Exercise (II.2.11), you should know that dimF2 JpRq{2JpRq “ 3.

Show that the known rational points generate the image

δ8

ˆ

JpRq
2JpRq

˙

Ď H1pR, Jr2sq.

Write down these “real constraints” explicitly.

(e) Find generators for Qˆ2 {Q
ˆ
2

2
. From your answers to Exercise (II.2.11), you should

know that dimF2 JpQ2q{2JpQ2q “ 9. In terms of your generators, find the images of
the known rational points under

δ8

ˆ

JpQ2q

2JpQ2q

˙

Ď H1pQ2, Jr2sq.

Do these generate the image? If not, can you find another independent 2-adic point
on J?

(f) For each of the primes p “ 2, 5, 7, from your answers to Exercise (II.2.11), you should
know that dimF2 JpQpq{2JpQpq “ 3. Show that the images of the known rational
points generate the image of δp.

(g) Combine the local information to conclude that the image of δ is generated by the
known rational points on J .

II.2.17 (Rank calculation for the Jacobian of a genus 2 curve without full 2-torsion) Let C be the
odd degree hyperelliptic curve over Q with affine equation

y2 “ x5 ` 1

(a) Compute Jr2spQq.
(b) Show that the set S can be taken to be S “ t8, 2, 5u.
(c) Let ζ be a primitive 5th root of unity. Show that

H1pQ, Jr2sq »
Qpζqˆ

Qpζqˆ2 .

Show that in terms of this δ is the map of x` ζ.

(d) Show that t´1, 1` ζ, 2, 1´ ζu are representatives for the elements of Qpζqˆ

Qpζqˆ2 that give

rise to extensions unramified away from S.
Hint: The ring of integers of Qpζq is the PID Zrζs. What is the unit group? How do
the primes 2 and 5 factor in Qpζq?

(e) Does δ8 give any information?
(f) (Local information at 5)

(a) What is dimF2 JpQ5qr2s?

(b) Find representatives for Q5pζqˆ

Q5pζqˆ
2 .

(c) In terms of your representatives, what is the map fromH1
SpQ, Jr2sq toH1pQ5, Jr2sq?

(d) Can you determine the image of δ5?
(e) What does this tell you about SelJpQ, Jr2sq Ă H1

SpQ, Jr2sq?
(g) (Local information at 2)

(a) What is dimF2 JpQ2qr2s? What is dimF2 JpQ2q{2JpQ2q?
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(b) Find representatives for Q2pζqˆ

Q2pζqˆ
2 .

Hint: Show that you have a decomposition Q2pζq
ˆ » Zˆµ15ˆp1`p2qq. Every

square in p1 ` p2qq is in p1 ` p2q2q. Conversely, Hensel’s Lemma tells you that
every element of p1 ` p2qmq for m sufficiently large is a square. Can you make
this precise and extract representatives from this?

(c) In terms of your representatives, what is the map fromH1
SpQ, Jr2sq toH1pQ2, Jr2sq?

(d) By generating 2-adic points on J , can you determine the image of δ2?
(e) What does this tell you about SelJpQ, Jr2sq Ă H1

SpQ, Jr2sq?
(h) Show that SelJpQ, Jr2sq is spanned by the image of the 2-torsion point p´1, 0q under

δ. Conclude that J has rank 0.

II.2.18 * Repeat your calculation of the previous example with the curve

y2 “ x5 ´ 1.

What happens in this case?

II.2.19 (Genus 1 curves and pencils of quadrics) In this problem, we’ll combine some of the arith-
metic and geometric theory to “see” the 2-covers of an elliptic curve E as genus 1, degree
4 space curves. Assume for simplicity that E has full 2-torsion over Q, and hence has
Weierstrass equation

y2 “ px´ e1qpx´ e2qpx´ e3q.

(a) If C is a 2-cover of E (c.f. Exercise (II.1.23)), show that there exists a line bundle
L P Pic4pCq giving ϕL : C ãÑ P3. Show that under this embedding C is the base locus
of a pencil of quadric hypersurfaces.

(b) On the other hand, 2-covers of E correspond to twists of E
2
ÝÑ E by classes in

H1pQ, Er2sq. Using your understanding of this group, give another proof that C is
an intersection of two quadrics in P3 by writing down two quadrics generating the
pencil.
Hint: You wrote down equations already in Exercise (II.2.9) when E has full 2-torsion.

(c) Show with your explicit equations that E is also the discriminant curve of your pencil
of quadrics. Namely, if quadrics Q1 and Q2 generate your pencil, and A1 and A2 are
symmetric 3ˆ 3 matrices representing Q1 and Q2, show that the curve with equation

y2 “ detpxA1 ´A2q

is isomorphic to E over Q.
(d) More geometrically, the discriminant curve parameterizes the rulings on the pencil of

quadrics. (Make this precise). Assume that Q1 and Q2 generate a pencil of quadrics
over k whose discriminant scheme (vanishing of detpxA1 ´ A2q in P1

k) is smooth, and
write X for the discriminant curve (which may not be an elliptic curve!) Write B “

V pQ1, Q2q for the base locus curve. Show that X is canonically isomorphic to Pic2
B{k

and that if X has a k-point, then the map B Ñ X is a 2-covering.

Descent with étale Galois covers.
In this section, we work directly with étale G-covers of curves and the descent partition of rational

points, c.f., Exercise (II.2.3). This can be a powerful technique, since the twists Zτ may map to
lower-genus curves whose rational points are easier to understand.

II.2.20 (Translating previous exercises into this setup) Suppose that f : Y Ñ X is a G-Galois cover
of nice curves over k (c.f. Exercise (I.3.2)).
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(a) Explain why it suffices to find the rational points on finitely many curves Y τ corre-
sponding to twists f τ : Y τ Ñ X in order to determine Xpkq.

(b) What do these finite set of twists correspond to?

Hint: It suffices for the cover f : Y Ñ X to spread out to Ok,S and G to spread out to a
finite étale group scheme over Ok,S .

II.2.21 (Example with G “ Z{2Z) Suppose that C is a hyperelliptic curve of genus at least 2 over
Q with affine equation

y2 “ f1pxqf2pxq,

with deg f1 ě deg f2, and f1 and f2 square-free with no common factors over Q.
(a) Show that the curve D with (affine) equations

y2 “ f1pxqf2pxq

w2 “ f1pxq

is an étale Z{2Z-cover of C. Compute the genus of D.
Comment: This is a specific case of Abhyankar’s Lemma.

(b) Show that D maps to the curve X with affine equation

w2 “ f1pxq.

Compute the genus of X.
(c) Describe a finite set S such that the images of the rational points on twists Dτ cor-

responding to elements τ P H1
SpQ,Z{2Zq cover the rational points on C. Describe the

equations for the covers f τ : Dτ Ñ C.
(d) Show that Dτ covers an analogous twisted curve Xτ as in part (b). If Xτ pQq is finite

for every τ P H1
SpQ,Z{2Zq, how can you compute CpQq?

(e) Carry out this strategy when, as in [RZB15], one wants to find the rational points on
the hyperelliptic curve

y2 “ x6 ´ 5x4 ´ 5x2 ` 1,

whose Jacobian has rank 2 (and therefore classical Chabauty does not suffice.)
(f) Show that every hyperelliptic curve whose Jacobian has a nontrivial rational 2-torsion

point is of this form.

II.2.22 (Chabauty in Magma) Chabauty’s method (combined with a Mordell-Weil seive to combine
information at different primes) is implemented in Magma; you can read about it here:
https://magma.maths.usyd.edu.au/magma/handbook/text/1534.

(a) Let C be the hyperelliptic curve with affine model

y2 “ x5 ` 1

that we encountered in Exercise (II.2.17). In that exercise, you showed explicitly by
hand that the Jacobian has rank 0. Find all of the rational points on C using the
magma function Chabauty0.

(b) Let C be the hyperelliptic curve with affine model

y2 “ x5 ´ 1

that we encountered in Exercise (II.2.18). In that exercise, you showed explicitly by
hand that the Jacobian has rank 1. Find all of the rational points on C using the
magma function Chabauty.

https://magma.maths.usyd.edu.au/magma/handbook/text/1534
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(c) Here is a list of all genus 2 curves over Q in the LMFBD that have good reduction away
from 2: https://www.lmfdb.org/Genus2Curve/Q/?hst=List&bad_quantifier=exactly&
bad_primes=2&search_type=List

You can download this list in a format readable by magma with a link at the bottom of
the page. For which of these curves can you use magma’s built in Chabauty methods
to compute the rational points?
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