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The motivating question is: Given a genus g curve C, what is the geometry of the space of maps
from C to Pr of degree d? Since this data is equivalent to a pair (L,V ), where L ∈ PicdC is a line
bundle and V ⊂ H0(C,L) is a basepoint free subspace of dimension r + 1, we are naturally led to
consider Brill–Noether varieties

W r
dC ∶= {L ∈ PicdC ∶ h0(C,L) ≥ r + 1}.

There are many natural geometric questions about W r
dC:

(1) When is W r
dC nonempty? If W r

dC is nonempty, what is its dimension?
(2) What can be said about the singularities of W r

dC?
(3) When dimW r

dC = 0, what is #W r
dC?

(4) When dimW r
dC > 0, is it irreducible?

The first two of these questions are local, but the last two require a global understanding of the
Brill–Noether variety. The final question can be phrased in a different manner: what are the
discrete invariants necessary in understanding maps from a curve to projective space?

While these are all subtle questions for an arbitrary curve, when the curve C is of general moduli,
the work of many authors in the 1980s showed that the geometry of W r

dC is more uniform.

Theorem 1 (The Brill–Noether theorem). Let C be a general curve of genus g.

● (Griffiths–Harris [6]) W r
dC is nonempty if and only if the Brill–Noether number

ρ(g, r, d) = g − (r + 1)(g − d + r)

is greater than or equal to 0. When W r
dC is nonempty, it has dimension min(g, ρ(g, r, d)).

● (Gieseker [5]) W r
dC is normal, Cohen–Macaulay and smooth away from W r+1

d C.
● (Kempf [7], Kleiman–Laksov [8]) When ρ(g, r, d) = 0, W r

dC consists of

g!
r

∏
α=1

α!

(g − d + r − α)!

(reduced) points.
● (Fulton–Lazarsfeld [4], Eisenbud–Harris [3]) When ρ(g, r, d) > 0, W r

dC is irreducible. Futher-
more, when ρ(g, r, d) ≥ 0, the universal Wr

d has a unique component dominating Mg.

When ρ(g, r, d) ≥ 0, the Brill–Noether theorem picks out a distinguished component of the Hilbert
scheme containing general curves, enabling results about general curves in projective space [10, 12].

However, in nature, curves are often already encountered via some explicit realization C → Pr0 .
The very existence of this map may force the curve C to be too special in moduli for the Brill–
Noether theorem to apply. The first natural case is genus g curves realized as degree k covers of
P1 for k < ⌊(g + 3)/2⌋. The parameter space Hk,g for such covers is called the Hurwitz space.

Main Question. Let [f ∶C → P1] ∈ Hk,g be a general point of the Hurwitz space. What is the

geometry (e.g., analogues of (1) – (4)) of W r
dC in the presence of this fixed degree k map to P1?

Example 2 (Trigonal genus 5 curve). Suppose that C is a general trigonal genus 5 curve (i.e., it
is equipped with a degree 3 map f ∶C → P1). Write H ∶= f∗OP1(1) for the line bundle giving rise
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to this map. By definition, we have [H] ∈W 1
3C, so

dimW 1
3C = 0 ≠ ρ(5,1,3) = −1.

Our main question asks how this one “unexpected” linear series affects the geometry of other
W r
dC. Increasing the degree to 4, we can introduce an arbitrary basepoint to obtain a component

{[H(p)] ∶ p ∈ C} ⊂ W 1
4C isomorphic to the curve C. By Riemann–Roch, taking the Serre dual of

every line bundle in this component yields another component {KC ⊗H
−1(−q) ∶ q ∈ C}.

{[H(p)] ∶ p ∈ C}

{KC ⊗H
−1(−q) ∶ q ∈ C}

These two components meet at the two points [H(p1)] and [H(p2)], where p1 + p2 is the unique
effective representative of KC ⊗H

−2. Notice that, while W 1
4C has the expected dimension, it is not

irreducible, and it is singular even though W 2
4C = ∅.

As illustrated in Example 2, when f ∶C → Pr, the conclusions of the Brill–Noether theorem can
fail. Notably, the pair (r, d) are not the only discrete invariants of maps to projective space.

Independently, H. Larson [13] and Cook-Powell–Jensen [1] suggested that these other components
may be explained by the additional discrete data of the isomorphism class of the rank k bundle f∗L
on P1 for L ∈ W r

dC. Recall that any rank k vector bundle on P1 is isomorphic to a unique direct
sum of line bundles OP1(e1)⊕⋯⊕OP1(ek), and the tuple e⃗ ∶= (e1, . . . , ek) is called the splitting type
of the vector bundle. Since cohomology behaves well under finite base change, the splitting type of
a line bundle L on C refines the pair (r, d):

r = h0(C,L) − 1 = h0(P1, f∗L) − 1 =
k

∑
i=1

max(e1 + 1,0) − 1,(1)

d = χ(C,L) − 1 + g = χ(P1, f∗L) − 1 + g = k +
k

∑
i=1
ei − 1 + g.

It therefore makes sense to define the Brill–Noether splitting loci

W e⃗C ∶= {[L] ∈ PicC ∶ f∗L ≃ O(e1)⊕⋯⊕O(ek) or a specialization thereof}.

Example 3 (Example 2 revisted). Let C be a general trigonal curve of genus 5. For any line bundle
L ∈ Pic4C, the conditions (1) imply that deg f∗L = −3. The component {[H(p)] ∶ p ∈ C} ⊂ W 1

4C
identified in Example 2 is characterized by the property that L⊗H−1 is effective. Pushing forward
to P1, and using the push-pull formula, this is equivalent to H0(P1, f∗L(−1)) ≥ 0. Hence this

component is the splitting locus W (−2,−2,1)C. The Serre dual component corresponds to the Serre
dual splitting locus W (−3,0,0)C. These loci intersect in their common refinement W (−3,−1,1)C.

In Example 3, the extra data of the splitting type explains the failure of the classical Brill–Noether
theorem. For general f ∶C → P1, H. Larson [13] and Cook-Powell–Jensen [1, 2] independently showed
that W e⃗C is nonempty if and only if

ρ′(g, e⃗) ∶= g − h1(P1,O(e1)⊕⋯⊕O(ek)) = g −∑
i<j

max(ej − ei − 1,0)

is greater than or equal to 0. Furthermore, when nonempty, dimW e⃗C = min(g, ρ′(g, e⃗)). H. Larson

[13] also showed that W e⃗C is smooth away from any specializations W e⃗′C ⊊W e⃗C.
These results answer the two local Brill–Noether questions (1) and (2). However, despite the

fact that the splitting type seemed poised to explain the failure of irreducibility, [13] and [1, 2] were
unable to attack the global aspects of the Brill–Noether theorem. Both [13] and [1, 2] argue by
degeneration, and the fundamental difficultly both authors encountered was the inability to prove
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that everything that behaved like a limit from a general curve was in fact a limit. In [11], we
surmount this difficulty by proving a regeneration theorem for the types of limit linear series that
occur in the context of splitting loci. We therefore obtain:

Theorem 4 (Global Brill–Noether thoery over the Hurwitz Space [11]). Let f ∶C → P1 be a general
degree k genus g cover of P1.

(3’) When ρ′(g, e⃗) = 0, the number of points of W e⃗C is the number of k-regular fillings of a
certain k-core Γ(e⃗) with symbols {1, . . . , g}.

(4’) When ρ′(g, e⃗) > 0, W e⃗C is irreducible. Furthermore, when ρ′(g, e⃗) ≥ 0, the universal W e⃗

over the Hurwitz space Hk,g has a unique irreducible component dominating Hk,g.

We prove this theorem by degeneration to a chain of elliptic curves whose nodes differ by k-
torsion. Part (3’) hints at the deep combinatorial structure underpinning our choice of special-
ization. Young diagrams satisfying a k-discrete convexity property are called k-cores. They are
fundamental to the study of the affine symmetric group S̃k, the infinite Coexeter group generated
by transpositions s0, . . . , sk−1 with the braid relations

sisj = sjsi for ∣i − j∣ > 1, and sisi+1si = si+1sisi+1.

There is a left action of S̃k on the set of k-cores and an equivariant isomorphism {k-cores}↔ S̃k/Sk.
Using this, a k-regular (efficient) filling of a k-core is equivalent to a reduced word in the generators
s0, . . . , sk, and (using our regeneration theorem) the enumeration problem in Brill–Noether theory

of k-gonal curves is equivalent to the reduced word problem in S̃k [9].

Example 5. The two 3-regular fillings of the 3-core Γ((−3,−1,1)) with symbols {1, . . . ,5}. In a
k-regular filling, a symbol can be repeated in boxes that are lattice distance a multiple of k apart.

1 2

3

3

4

5

5

5

↔ s0s1s2s1s0

1 3

2

4

3

5

5

5

↔ s0s2s1s2s0

These two possible fillings correspond to the two points of W (−3,−1,1)C observed in Example 3.
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