GLOBAL BRILL-NOETHER THEORY OVER THE HURWITZ SPACE

ISABEL VOGT

The motivating question is: Given a genus g curve C, what is the geometry of the space of maps from C to \mathbb{P}^r of degree d? Since this data is equivalent to a pair (L, V), where $L \in \operatorname{Pic}^d C$ is a line bundle and $V \subset H^0(C, L)$ is a basepoint free subspace of dimension r + 1, we are naturally led to consider Brill–Noether varieties

$$W_d^r C := \{ L \in \operatorname{Pic}^d C : h^0(C, L) \ge r + 1 \}.$$

There are many natural geometric questions about $W_d^r C$:

- (1) When is $W_d^r C$ nonempty? If $W_d^r C$ is nonempty, what is its dimension?
- (2) What can be said about the singularities of $W_d^r C$?
- (3) When dim $W_d^r C = 0$, what is $\# W_d^r C$?
- (4) When dim $W_d^r C > 0$, is it irreducible?

The first two of these questions are local, but the last two require a global understanding of the Brill–Noether variety. The final question can be phrased in a different manner: what are the discrete invariants necessary in understanding maps from a curve to projective space?

While these are all subtle questions for an arbitrary curve, when the curve C is of general moduli, the work of many authors in the 1980s showed that the geometry of $W_d^r C$ is more uniform.

Theorem 1 (The Brill–Noether theorem). Let C be a general curve of genus g.

• (Griffiths-Harris [6]) $W_d^r C$ is nonempty if and only if the Brill-Noether number

$$\rho(g,r,d) = g - (r+1)(g - d + r)$$

is greater than or equal to 0. When $W_d^r C$ is nonempty, it has dimension $\min(g, \rho(g, r, d))$.

- (Gieseker [5]) $W_d^r C$ is normal, Cohen–Macaulay and smooth away from $W_d^{r+1}C$.
- (Kempf [7], Kleiman–Laksov [8]) When $\rho(g,r,d) = 0$, $W_d^r C$ consists of

$$g! \prod_{\alpha=1}^{r} \frac{\alpha!}{(g-d+r-\alpha)!}$$

(reduced) points.

• (Fulton-Lazarsfeld [4], Eisenbud-Harris [3]) When $\rho(g, r, d) > 0$, $W_d^r C$ is irreducible. Furthermore, when $\rho(g, r, d) \ge 0$, the universal W_d^r has a unique component dominating M_g .

When $\rho(g, r, d) \ge 0$, the Brill–Noether theorem picks out a distinguished component of the Hilbert scheme containing general curves, enabling results about general curves in projective space [10, 12].

However, in nature, curves are often already encountered via some explicit realization $C \to \mathbb{P}^{r_0}$. The very existence of this map may force the curve C to be too special in moduli for the Brill– Noether theorem to apply. The first natural case is genus g curves realized as degree k covers of \mathbb{P}^1 for $k < \lfloor (g+3)/2 \rfloor$. The parameter space $\mathcal{H}_{k,g}$ for such covers is called the Hurwitz space.

Main Question. Let $[f:C \to \mathbb{P}^1] \in \mathcal{H}_{k,g}$ be a general point of the Hurwitz space. What is the geometry (e.g., analogues of (1) - (4)) of $W_d^r C$ in the presence of this fixed degree k map to \mathbb{P}^1 ?

Example 2 (Trigonal genus 5 curve). Suppose that C is a general trigonal genus 5 curve (i.e., it is equipped with a degree 3 map $f: C \to \mathbb{P}^1$). Write $H \coloneqq f^* \mathcal{O}_{\mathbb{P}^1}(1)$ for the line bundle giving rise

to this map. By definition, we have $[H] \in W_3^1C$, so

$$\lim W_3^1 C = 0 \neq \rho(5, 1, 3) = -1.$$

Our main question asks how this one "unexpected" linear series affects the geometry of other $W_d^r C$. Increasing the degree to 4, we can introduce an arbitrary basepoint to obtain a component $\{[H(p)] : p \in C\} \subset W_4^1 C$ isomorphic to the curve C. By Riemann–Roch, taking the Serre dual of every line bundle in this component yields another component $\{K_C \otimes H^{-1}(-q) : q \in C\}$.

These two components meet at the two points $[H(p_1)]$ and $[H(p_2)]$, where $p_1 + p_2$ is the unique effective representative of $K_C \otimes H^{-2}$. Notice that, while $W_4^1 C$ has the expected dimension, it is not irreducible, and it is singular even though $W_4^2 C = \emptyset$.

As illustrated in Example 2, when $f: C \to \mathbb{P}^r$, the conclusions of the Brill–Noether theorem can fail. Notably, the pair (r, d) are not the only discrete invariants of maps to projective space.

Independently, H. Larson [13] and Cook-Powell–Jensen [1] suggested that these other components may be explained by the additional discrete data of the isomorphism class of the rank k bundle f_*L on \mathbb{P}^1 for $L \in W_d^r C$. Recall that any rank k vector bundle on \mathbb{P}^1 is isomorphic to a unique direct sum of line bundles $\mathcal{O}_{\mathbb{P}^1}(e_1) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^1}(e_k)$, and the tuple $\vec{e} := (e_1, \ldots, e_k)$ is called the splitting type of the vector bundle. Since cohomology behaves well under finite base change, the splitting type of a line bundle L on C refines the pair (r, d):

(1)
$$r = h^{0}(C, L) - 1 = h^{0}(\mathbb{P}^{1}, f_{*}L) - 1 = \sum_{i=1}^{k} \max(e_{1} + 1, 0) - 1,$$
$$d = \chi(C, L) - 1 + g = \chi(\mathbb{P}^{1}, f_{*}L) - 1 + g = k + \sum_{i=1}^{k} e_{i} - 1 + g.$$

It therefore makes sense to define the Brill-Noether splitting loci

 $W^{\vec{e}}C := \{[L] \in \operatorname{Pic} C : f_*L \simeq \mathcal{O}(e_1) \oplus \cdots \oplus \mathcal{O}(e_k) \text{ or a specialization thereof} \}.$

Example 3 (Example 2 revisted). Let C be a general trigonal curve of genus 5. For any line bundle $L \in \operatorname{Pic}^4 C$, the conditions (1) imply that deg $f_*L = -3$. The component $\{[H(p)] : p \in C\} \subset W_4^1 C$ identified in Example 2 is characterized by the property that $L \otimes H^{-1}$ is effective. Pushing forward to \mathbb{P}^1 , and using the push-pull formula, this is equivalent to $H^0(\mathbb{P}^1, f_*L(-1)) \ge 0$. Hence this component is the splitting locus $W^{(-2,-2,1)}C$. The Serre dual component corresponds to the Serre dual splitting locus $W^{(-3,0,0)}C$. These loci intersect in their common refinement $W^{(-3,-1,1)}C$.

In Example 3, the extra data of the splitting type explains the failure of the classical Brill–Noether theorem. For general $f: C \to \mathbb{P}^1$, H. Larson [13] and Cook-Powell–Jensen [1, 2] independently showed that $W^{\vec{e}}C$ is nonempty if and only if

$$\rho'(g,\vec{e}) \coloneqq g - h^1(\mathbb{P}^1, \mathcal{O}(e_1) \oplus \cdots \oplus \mathcal{O}(e_k)) = g - \sum_{i < j} \max(e_j - e_i - 1, 0)$$

is greater than or equal to 0. Furthermore, when nonempty, dim $W^{\vec{e}}C = \min(g, \rho'(g, \vec{e}))$. H. Larson [13] also showed that $W^{\vec{e}}C$ is smooth away from any specializations $W^{\vec{e}'}C \not\subseteq W^{\vec{e}}C$.

These results answer the two *local* Brill–Noether questions (1) and (2). However, despite the fact that the splitting type seemed poised to explain the failure of irreducibility, [13] and [1, 2] were unable to attack the *global* aspects of the Brill–Noether theorem. Both [13] and [1, 2] argue by degeneration, and the fundamental difficultly both authors encountered was the inability to prove

that everything that behaved like a limit from a general curve was in fact a limit. In [11], we surmount this difficulty by proving a regeneration theorem for the types of limit linear series that

Theorem 4 (Global Brill–Noether theory over the Hurwitz Space [11]). Let $f: C \to \mathbb{P}^1$ be a general degree k genus g cover of \mathbb{P}^1 .

occur in the context of splitting loci. We therefore obtain:

- (3') When $\rho'(g, \vec{e}) = 0$, the number of points of $W^{\vec{e}}C$ is the number of k-regular fillings of a certain k-core $\Gamma(\vec{e})$ with symbols $\{1, \ldots, g\}$.
- (4') When $\rho'(g, \vec{e}) > 0$, $W^{\vec{e}}C$ is irreducible. Furthermore, when $\rho'(g, \vec{e}) \ge 0$, the universal $W^{\vec{e}}$ over the Hurwitz space $\mathcal{H}_{k,q}$ has a unique irreducible component dominating $\mathcal{H}_{k,q}$.

We prove this theorem by degeneration to a chain of elliptic curves whose nodes differ by ktorsion. Part (3') hints at the deep combinatorial structure underpinning our choice of specialization. Young diagrams satisfying a k-discrete convexity property are called k-cores. They are fundamental to the study of the affine symmetric group \tilde{S}_k , the infinite Coexeter group generated by transpositions s_0, \ldots, s_{k-1} with the braid relations

$$s_i s_j = s_j s_i$$
 for $|i - j| > 1$, and $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$.

There is a left action of \tilde{S}_k on the set of k-cores and an equivariant isomorphism $\{k\text{-cores}\} \leftrightarrow \tilde{S}_k/S_k$. Using this, a k-regular (efficient) filling of a k-core is equivalent to a reduced word in the generators s_0, \ldots, s_k , and (using our regeneration theorem) the enumeration problem in Brill–Noether theory of k-gonal curves is equivalent to the reduced word problem in \tilde{S}_k [9].

Example 5. The two 3-regular fillings of the 3-core $\Gamma((-3, -1, 1))$ with symbols $\{1, \ldots, 5\}$. In a k-regular filling, a symbol can be repeated in boxes that are lattice distance a multiple of k apart.

These two possible fillings correspond to the two points of $W^{(-3,-1,1)}C$ observed in Example 3.

References

- Kaelin Cook-Powell and David Jensen, Components of Brill-Noether loci for curves with fixed gonality, Michigan Math. J. 71 (2022), no. 1, 19–45. MR 4389812
- [2] _____, Tropical methods in Hurwitz-Brill-Noether theory, Adv. Math. 398 (2022), Paper No. 108199. MR 4372667
- [3] D. Eisenbud and J. Harris, Irreducibility and monodromy of some families of linear series, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 65–87. MR 892142
- W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981), no. 3-4, 271–283. MR 611386
- [5] D. Gieseker, Stable curves and special divisors: Petri's conjecture, Invent. Math. 66 (1982), no. 2, 251–275. MR 656623 (83i:14024)
- [6] P. Griffiths and J. Harris, On the variety of special linear systems on a general algebraic curve, Duke Math. J. 47 (1980), no. 1, 233–272. MR 563378 (81e:14033)
- [7] G. Kempf, Schubert methods with an application to algebraic curves, Pub. Math. Centrum, Amsterdam (1971).
- [8] S. Kleiman and D. Laksov, On the existence of special divisors, Amer. J. Math. 94 (1972), 431–436. MR 0323792
- [9] L. Lapointe and J. Morse, Tableaux on k+1-cores, reduced words for affine permutations, and k-Schur expansions, J. Combin. Theory Ser. A 112 (2005), no. 1, 44–81. MR 2167475
- [10] E. Larson, The maximal rank conjecture, 2017.
- [11] E. Larson, H. Larson, and I. Vogt, Global Brill-Noether theory over the Hurwitz space, 2020.
- [12] E. Larson and I. Vogt, Interpolation for Brill-Noether curves, 2022.
- [13] Hannah K. Larson, A refined Brill-Noether theory over Hurwitz spaces, Invent. Math. 224 (2021), no. 3, 767–790. MR 4258055