GLOBAL BRILL-NOETHER THEORY OVER THE HURWITZ SPACE
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The motivating question is: Given a genus g curve C, what is the geometry of the space of maps
from C to P" of degree d? Since this data is equivalent to a pair (L,V'), where L € Pic?C is a line
bundle and V ¢ HY(C, L) is a basepoint free subspace of dimension 7 + 1, we are naturally led to
consider Brill-Noether varieties

WiC = {LePic?C:h°(C,L) >r+1}.
There are many natural geometric questions about W;C:
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) When is W;C nonempty? If W;C' is nonempty, what is its dimension?
) What can be said about the singularities of Wj;C?
) When dim WjC =0, what is #W;C?
) When dim WjC > 0, is it irreducible?
The first two of these questions are local, but the last two require a global understanding of the
Brill-Noether variety. The final question can be phrased in a different manner: what are the
discrete invariants necessary in understanding maps from a curve to projective space?

While these are all subtle questions for an arbitrary curve, when the curve C'is of general moduli,
the work of many authors in the 1980s showed that the geometry of W;C' is more uniform.

Theorem 1 (The Brill-Noether theorem). Let C' be a general curve of genus g.
o (Griffiths—Harris [6]) W;C' is nonempty if and only if the Brill-Noether number

p(g;r,d) =g—(r+1)(g-d+r)
is greater than or equal to 0. When WjC' is nonempty, it has dimension min(g, p(g,r,d)).
o (Gieseker [5]) WjC' is normal, Cohen—-Macaulay and smooth away from WitC.
o (Kempf [1], Kleiman—Laksov [8]) When p(g,r,d) =0, W;C consists of
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(reduced) points.
e (Fulton—Lazarsfeld [4], Fisenbud—Harris [3]) When p(g,r,d) >0, Wj;C is irreducible. Futher-
more, when p(g,r,d) >0, the universal WY has a unique component dominating M,.

When p(g,r,d) >0, the Brill-Noether theorem picks out a distinguished component of the Hilbert
scheme containing general curves, enabling results about general curves in projective space [10, 12].

However, in nature, curves are often already encountered via some explicit realization C' — P".
The very existence of this map may force the curve C' to be too special in moduli for the Brill-
Noether theorem to apply. The first natural case is genus g curves realized as degree k covers of
P! for k < |(g+3)/2]. The parameter space Hy, , for such covers is called the Hurwitz space.

Main Question. Let [f:C — P'] ¢ Hyi,g be a general point of the Hurwitz space. What is the
geometry (e.g., analogues of - ) of W;C' in the presence of this fixed degree k map to Pt?

Example 2 (Trigonal genus 5 curve). Suppose that C' is a general trigonal genus 5 curve (i.e., it
is equipped with a degree 3 map f:C — P'). Write H := f*Opi1(1) for the line bundle giving rise
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to this map. By definition, we have [H] e W1C, so
dimW4C = 0% p(5,1,3) = 1.

Our main question asks how this one “unexpected” linear series affects the geometry of other
W;C. Increasing the degree to 4, we can introduce an arbitrary basepoint to obtain a component
{[H(p)] : p e C} c W/C isomorphic to the curve C. By Riemann-Roch, taking the Serre dual of
every line bundle in this component yields another component {K¢c ® H (-¢):qe C}.

>©< {Kc®@H'(-q):qeC}
{[H(p)]:peC}

These two components meet at the two points [H(p;)] and [H(p2)], where p; + py is the unique
effective representative of K¢ ® H~2. Notice that, while WjC has the expected dimension, it is not
irreducible, and it is singular even though W2C = .

As illustrated in Example [2| when f:C — P", the conclusions of the Brill-Noether theorem can
fail. Notably, the pair (r,d) are not the only discrete invariants of maps to projective space.

Independently, H. Larson [13] and Cook-Powell-Jensen [I] suggested that these other components
may be explained by the additional discrete data of the isomorphism class of the rank & bundle f,L
on P! for L e W;C. Recall that any rank k& vector bundle on P! is isomorphic to a unique direct
sum of line bundles Opi(e1) ®---® Op1 (e ), and the tuple € := (e, ...,ex) is called the splitting type
of the vector bundle. Since cohomology behaves well under finite base change, the splitting type of
a line bundle L on C refines the pair (r,d):

k
(1) r=hC,L)-1=h"P", f.L) - 1= max(e; +1,0) - 1,
i=1

k
d=X(C’,L)—1+g:X(Pl,f*L)—lJrg:k:JrZei—lJrg.
i=1
It therefore makes sense to define the Brill-Noether splitting loci
WeC = {[L] e PicC: f.L ~ O(e1) ® - ® O(e;) or a specialization thereof}.

Example 3 (Example revisted). Let C be a general trigonal curve of genus 5. For any line bundle
L € Pic*C, the conditions imply that deg f+L = -3. The component {[H(p)]:pe C} c W}C
identified in Example [2|is characterized by the property that L ® H~! is effective. Pushing forward
to P!, and using the push-pull formula, this is equivalent to HO(P!, f,L(-1)) > 0. Hence this
component is the splitting locus W22, The Serre dual component corresponds to the Serre
dual splitting locus W(=309C. These loci intersect in their common refinement W(=3-11¢

In Example[3] the extra data of the splitting type explains the failure of the classical Brill-Noether
theorem. For general f:C' — P!, H. Larson [13] and Cook-Powell-Jensen [I1, 2] independently showed
that W€C is nonempty if and only if

P (g,€)=g-h' (P,O(e1) @ ®O(ep)) =g - > max(e; —e;—1,0)
i<j
is greater than or equal to 0. Furthermore, when nonempty, dim W¢C = min(g, p’(g,€)). H. Larson
[13] also showed that WeC is smooth away from any specializations we e ¢ WeC.

These results answer the two local Brill-Noether questions and . However, despite the
fact that the splitting type seemed poised to explain the failure of irreducibility, [13] and [I], 2] were
unable to attack the global aspects of the Brill-Noether theorem. Both [13] and [Il, 2] argue by
degeneration, and the fundamental difficultly both authors encountered was the inability to prove
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that everything that behaved like a limit from a general curve was in fact a limit. In [II], we
surmount this difficulty by proving a regeneration theorem for the types of limit linear series that
occur in the context of splitting loci. We therefore obtain:

Theorem 4 (Global Brill-Noether thoery over the Hurwitz Space [I1]). Let f:C — P! be a general
degree k genus g cover of P.
(3") When p'(g,€) = 0, the number of points of WEC is the number of k-regular fillings of a
certain k-core T'(€) with symbols {1,...,g}.
(4) When p'(g,€) >0, WeC is irreducible. Furthermore, when p'(g,€) > 0, the universal W¢
over the Hurwitz space Hy 4 has a unique irreducible component dominating Hy, 4.

We prove this theorem by degeneration to a chain of elliptic curves whose nodes differ by k-
torsion. Part (3’) hints at the deep combinatorial structure underpinning our choice of special-
ization. Young diagrams satisfying a k-discrete convexity property are called k-cores. They are
fundamental to the study of the affine symmetric group Sy, the infinite Coexeter group generated
by transpositions sg, ..., Sk_1 with the braid relations

sisj = sj8; for |t — j| > 1, and $S;115; = Si+15iSi+1-

There is a left action of S on the set of k-cores and an equivariant isomorphism {k-cores} <> Si./Sy.
Using this, a k-regular (efficient) filling of a k-core is equivalent to a reduced word in the generators
50, --,Sk, and (using our regeneration theorem) the enumeration problem in Brill-Noether theory
of k-gonal curves is equivalent to the reduced word problem in Sy [9].

Example 5. The two 3-regular fillings of the 3-core I'((-3,-1,1)) with symbols {1,...,5}. In a
k-regular filling, a symbol can be repeated in boxes that are lattice distance a multiple of k£ apart.

1[2]3]5] 1]3]4]5]

315 <> 5051525150 2|5 <~ 5052815250
4] 3]

) )

These two—possible fillings correspond to the two points of W(3-LD( observed in Example
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