
Chapter 2

Pythagorean Triples

The Pythagorean Theorem, that “beloved” formula of all high school geometry
students, says that the sum of the squares of the sides of a right triangle equals the
square of the hypotenuse. In symbols,
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a2 + b2 = c2

Figure 2.1: A Pythagorean Triangle

Since we’re interested in number theory, that is, the theory of the natural num-
bers, we will ask whether there are any Pythagorean triangles all of whose sides are
natural numbers. There are many such triangles. The most famous has sides 3, 4,
and 5. Here are the first few examples:

32 + 42 = 52, 52 + 122 = 132, 82 + 152 = 172, 282 + 452 = 532.

The study of thesePythagorean triplesbegan long before the time of Pythago-
ras. There are Babylonian tablets that contain lists of such triples, including quite
large ones, indicating that the Babylonians probably had a systematic method for
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[Chap. 2] Pythagorean Triples 17

producing them. Pythagorean triples were also used in ancient Egypt. For exam-
ple, a rough-and-ready way to produce a right angle is to take a piece of string,
mark it into 12 equal segments, tie it into a loop, and hold it taut in the form of a
3-4-5 triangle, as illustrated in Figure 2.2. This provides an inexpensive right angle
tool for use on small construction projects (such as marking property boundaries
or building pyramids). Even more amazing is the fact that the Babylonians created
tables of quite large Pythagorean triples, which they may have used as primitive
trigonometric tables.
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Figure 2.2: Using a knotted string to create a right triangle

The Babylonians and Egyptians had practical reasons for studying Pythagor-
ean triples. Do such practical reasons still exist? For this particular problem, the
answer is “probably not.” However, there is at least one good reason to study
Pythagorean triples, and it’s the same reason why it is worthwhile studying the art
of Rembrandt and the music of Beethoven. There is a beauty to the ways in which
numbers interact with one another, just as there is a beauty in the composition of a
painting or a symphony. To appreciate this beauty, one has to be willing to expend
a certain amount of mental energy. But the end result is well worth the effort. Our
goal in this book is to understand and appreciate some truly beautiful mathematics,
to learn how this mathematics was discovered and proved, and maybe even to make
some original contributions of our own.

Enough blathering, you are undoubtedly thinking. Let’s get to the real stuff.
Our first naive question is whether there are infinitely manyPythagorean triples,
that is triples of natural numbers(a, b, c) satisfying the equationa2 + b2 = c2. The
answer is “YES” for a very silly reason. If we take a Pythagorean triple(a, b, c)
and multiply it by some other numberd, then we obtain a new Pythagorean triple
(da, db, dc). This is true because

(da)2 + (db)2 = d2(a2 + b2) = d2c2 = (dc)2.

Clearly these new Pythagorean triples are not very interesting. So we will concen-
trate our attention on triples with no common factors. We will even give them a
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name:

A primitive Pythagorean triple(or PPT for short) is a triple of num-
bers(a, b, c) so thata, b, andc have no common factors1 and satisfy

a2 + b2 = c2.

Recall our checklist from Chapter 1. The first step is to accumulate some data.
I used a computer to substitute in values fora andb and checked ifa2 + b2 is a
square. Here are some primitive Pythagorean triples that I found:

(3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25),
(20, 21, 29), (9, 40, 41), (12, 35, 37), (11, 60, 61),
(28, 45, 53), (33, 56, 65), (16, 63, 65).

A few conclusions can easily be drawn even from such a short list. For example, it
certainly looks like one ofa andb is odd and the other even. It also seems thatc is
always odd.

It’s not hard to prove that these conjectures are correct. First, ifa andb are both
even, thenc would also be even. This means thata, b, andc would have a common
factor of 2, so the triple would not be primitive. Next, suppose thata andb are
both odd, which means thatc would have to be even. This means that there are
numbersx, y, andz so that

a = 2x + 1, b = 2y + 1, and c = 2z.

We can substitute these into the equationa2 + b2 = c2 to get

(2x + 1)2 + (2y + 1)2 = (2z)2,

4x2 + 4x + 4y2 + 4y + 2 = 4z2.

Now divide by 2,

2x2 + 2x + 2y2 + 2y + 1 = 2z2.

This last equation says that an odd number is equal to an even number, which is
impossible, soa and b cannot both be odd. Since we’ve just checked that they
cannot both be even and cannot both be odd, it must be true that one is even and

1A common factorof a, b, andc is a numberd so that each ofa, b andc is a multiple ofd . For
example, 3 is a common factor of 30, 42, and 105, since30 = 3 · 10, 42 = 3 · 14, and105 = 3 · 35,
and indeed it is their largest common factor. On the other hand, the numbers 10, 12, and 15 have
no common factor (other than 1). Since our goal in this chapter is to explore some interesting and
beautiful number theory without getting bogged down in formalities, we will use common factors
and divisibility informally and trust our intuition. In Chapter 5 we will return to these questions and
develop the theory of divisibility more carefully.
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the other is odd. It’s then obvious from the equationa2 + b2 = c2 that c is also
odd.

We can always switcha andb, so our problem now is to find all solutions in
natural numbers to the equation

a2 + b2 = c2 with





a odd,
b even,
a, b, c having no common factors.

The tools we will use arefactorizationanddivisibility.
Our first observation is that if(a, b, c) is a primitive Pythagorean triple, then

we can factor
a2 = c2 − b2 = (c− b)(c + b).

Here are a few examples from the list given earlier, where note that we always
takea to be odd andb to be even:

32 = 52 − 42 = (5− 4)(5 + 4) = 1 · 9,

152 = 172 − 82 = (17− 8)(17 + 8) = 9 · 25,

352 = 372 − 122 = (37− 12)(37 + 12) = 25 · 49,

332 = 652 − 562 = (65− 56)(65 + 56) = 9 · 121.

It looks like c − b andc + b are themselves always squares. We check this obser-
vation with a couple more examples:

212 = 292 − 202 = (29− 20)(29 + 20) = 9 · 49,

632 = 652 − 162 = (65− 16)(65 + 16) = 49 · 81.

How can we prove thatc− b andc + b are squares? Another observation ap-
parent from our list of examples is thatc− b andc + b seem to have no common
factors. We can prove this last assertion as follows. Suppose thatd is a common
factor ofc− b andc + b; that is,d divides bothc− b andc + b. Thend also divides

(c + b) + (c− b) = 2c and (c + b)− (c− b) = 2b.

Thus,d divides2b and2c. But b andc have no common factor because we are
assuming that(a, b, c) is a primitive Pythagorean triple. Sod must equal1 or 2.
But d also divides(c− b)(c + b) = a2, anda is odd, sod must be1. In other
words, the only number dividing bothc− b andc + b is 1, soc− b andc + b have
no common factor.
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We now know thatc− b andc + b have no common factor, and that their prod-
uct is a square since(c− b)(c + b) = a2. The only way that this can happen is if
c− b andc + b are themselves squares.2 So we can write

c + b = s2 and c− b = t2,

wheres > t ≥ 1 are odd integers with no common factors. Solving these two
equations forb andc yields

c =
s2 + t2

2
and b =

s2 − t2

2
,

and then
a =

√
(c− b)(c + b) = st.

We have finished our first proof! The following theorem records our accomplish-
ment.

Theorem 2.1 (Pythagorean Triples Theorem).You will get every primitive Py-
thagorean triple(a, b, c) with a odd andb even by using the formulas

a = st, b =
s2 − t2

2
, c =

s2 + t2

2
,

wheres > t ≥ 1 are chosen to be any odd integers with no common factors.

For example, if we taket = 1, then we get a triple
(
s, s2−1

2 , s2+1
2

)
whoseb

andc entries differ by 1. This explains many of the examples we listed above. The
following table gives all possible triples withs ≤ 9.

s t a = st b =
s2 − t2

2
c =

s2 + t2

2

3 1 3 4 5
5 1 5 12 13
7 1 7 24 25
9 1 9 40 41
5 3 15 8 17
7 3 21 20 29
7 5 35 12 37
9 5 45 28 53
9 7 63 16 65

2This is intuitively clear if you consider the factorization ofc− b andc + b into primes, since
the primes in the factorization ofc− b will be distinct from the primes in the factorization ofc + b.
However, the existence and uniqueness of the factorization into primes is by no means as obvious as
it appears. We will discuss this further in Chapter 7.
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A Notational Interlude

Mathematicians have created certain standard notations as a shorthand for various
quantities. We will keep our use of such notation to a minimum, but there are a
few symbols that are so commonly used and are so useful that it is worthwhile to
introduce them here. They are

N = the set of natural numbers= 1, 2, 3, 4, . . . ,

Z = the set of integers= . . .− 3,−2,−1, 0, 1, 2, 3, . . . ,

Q = the set of rational numbers (i.e., fractions).

In addition, mathematicians often useR to denote the real numbers andC for the
complex numbers, but we will not need these. Why were these letters chosen?
The choice ofN, R, andC needs no explanation. The letterZ for the set of inte-
gers comes from the German word “Zahlen,” which means numbers. Similarly,Q
comes from the German “Quotient” (which is the same as the English word). We
will also use the standard mathematical symbol∈ to mean “is an element of the
set.” So, for example,a ∈ N means thata is a natural number, andx ∈ Q means
thatx is a rational number.

Exercises

2.1. (a) We showed that in any primitive Pythagorean triple(a, b, c), eithera or b is even.
Use the same sort of argument to show that eithera or b must be a multiple of3.

(b) By examining the above list of primitive Pythagorean triples, make a guess about
whena, b, or c is a multiple of5. Try to show that your guess is correct.

2.2. A nonzero integerd is said todivide an integerm if m = dk for some numberk.
Show that ifd divides bothm andn, thend also dividesm− n andm + n.

2.3. For each of the following questions, begin by compiling some data; next examine the
data and formulate a conjecture; and finally try to prove that your conjecture is correct. (But
don’t worry if you can’t solve every part of this problem; some parts are quite difficult.)
(a) Which odd numbersa can appear in a primitive Pythagorean triple(a, b, c)?
(b) Which even numbersb can appear in a primitive Pythagorean triple(a, b, c)?
(c) Which numbersc can appear in a primitive Pythagorean triple(a, b, c)?

2.4. In our list of examples are the two primitive Pythagorean triples

332 + 562 = 652 and 162 + 632 = 652.

Find at least one more example of two primitive Pythagorean triples with the same value
of c. Can you find three primitive Pythagorean triples with the samec? Can you find more
than three?
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2.5. In Chapter 1 we saw that thenth triangular numberTn is given by the formula

Tn = 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
.

The first few triangular numbers are1, 3, 6, and10. In the list of the first few Pythagorean
triples(a, b, c), we find(3, 4, 5), (5, 12, 13), (7, 24, 25), and(9, 40, 41). Notice that in each
case, the value ofb is four times a triangular number.
(a) Find a primitive Pythagorean triples(a, b, c) with b = T5. Do the same forb = T6

and withb = T7.
(b) Do you think that for every triangular numberTn, there is a primitive Pythagorean

triple (a, b, c) with b = 4Tn? If you believe that this is true, then prove it. Otherwise,
find some triangular number for which it is not true.

2.6. If you look at the table of primitive Pythagorean triples in this chapter, you will see
many triples in whichc is 2 greater thana. For example, the triples(3, 4, 5), (15, 8, 17),
(35, 12, 37), and(63, 16, 65) all have this property.
(a) Find two more primitive Pythagorean triples(a, b, c) havingc = a + 2.
(b) Find a primitive Pythagorean triple(a, b, c) havingc = a + 2 andc > 1000.
(c) Try to find a formula that describes all primitive Pythagorean triples(a, b, c) having

c = a + 2.

2.7. For each primitive Pythagorean triple(a, b, c) in the table in this chapter, compute the
quantity2c− 2a. Do these values seem to have some special form? Try to prove that your
observation is true for all primitive Pythagorean triples.

2.8. (a) Read about the Babylonian number system and write a short description, including
the symbols for the numbers1 to 10 and the multiples of10 from 20 to 50.

(b) Read about the Babylonian tablet calledPlimpton 322 and write a brief description,
including its approximate date of origin and some of the large Pythagorean triples
that it contains.



Chapter 3

Pythagorean Triples and the Unit
Circle

In the previous chapter we described all solutions to

a2 + b2 = c2

in whole numbersa, b, c. If we divide this equation byc2, we obtain

(a

c

)2
+

(
b

c

)2

= 1.

So the pair of rational numbers(a/c, b/c) is a solution to the equation

x2 + y2 = 1.

Everyone knows what the equationx2 + y2 = 1 looks like: It is a circleC of
radius 1 with center at(0, 0). We are going to use the geometry of the circleC to
find all the points onC whosexy-coordinates are rational numbers. Notice that
the circle has four obvious points with rational coordinates,(±1, 0) and(0,±1).
Suppose that we take any (rational) numberm and look at the lineL going through
the point(−1, 0) and having slopem. (See Figure 3.1.) The lineL is given by the
equation

L : y = m(x + 1) (point–slope formula).

It is clear from the picture that the intersectionC∩L consists of exactly two points,
and one of those points is(−1, 0). We want to find the other one.

To find the intersection ofC andL, we need to solve the equations

x2 + y2 = 1 and y = m(x + 1)

23
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C

L = line with
slope m

(–1,0 )

Figure 3.1: The Intersection of a Circle and a Line

for x andy. Substituting the second equation into the first and simplifying, we
need to solve

x2 +
(
m(x + 1)

)2 = 1

x2 + m2(x2 + 2x + 1) = 1

(m2 + 1)x2 + 2m2x + (m2 − 1) = 0.

This is just a quadratic equation, so we could use the quadratic formula to solve
for x. But there is a much easier way to find the solution. We know thatx = −1
must be a solution, since the point(−1, 0) is on bothC andL. This means that we
can divide the quadratic polynomial byx + 1 to find the other root:

(m2 + 1)x + (m2 − 1)
x + 1

)
(m2 + 1)x2 + 2m2x + (m2 − 1) .

So the other root is the solution of(m2 + 1)x + (m2 − 1) = 0, which means
that

x =
1−m2

1 + m2
.

Then we substitute this value ofx into the equationy = m(x + 1) of the lineL to
find they-coordinate,

y = m(x + 1) = m

(
1−m2

1 + m2
+ 1

)
=

2m

1 + m2
.

Thus, for every rational numberm we get a solution in rational numbers
(

1−m2

1 + m2
,

2m

1 + m2

)
to the equation x2 + y2 = 1.
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On the other hand, if we have a solution(x1, y1) in rational numbers, then the
slope of the line through(x1, y1) and (−1, 0) will be a rational number. So by
taking all possible values form, the process we have described will yield every so-
lution to x2 + y2 = 1 in rational numbers [except for(−1, 0), which corresponds
to a vertical line having slope “m = ∞”]. We summarize our results in the follow-
ing theorem.

Theorem 3.1. Every point on the circle

x2 + y2 = 1

whose coordinates are rational numbers can be obtained from the formula

(x, y) =
(

1−m2

1 + m2
,

2m

1 + m2

)

by substituting in rational numbers form. [Except for the point(−1, 0), which is
the limiting value asm →∞.]

How is this formula for rational points on a circle related to our formula for
Pythagorean triples? If we write the rational numberm as a fractionv/u, then our
formula becomes

(x, y) =
(

u2 − v2

u2 + v2
,

2uv

u2 + v2

)
,

and clearing denominators gives the Pythagorean triple

(a, b, c) = (u2 − v2, 2uv, u2 + v2).

This is another way of describing all Pythagorean triples, although to describe only
the primitive ones would require some restrictions onu andv. You can relate this
description to the formula in Chapter 2 by setting

u =
s + t

2
and v =

s− t

2
.

Exercises

3.1. As we have just seen, we get every Pythagorean triple(a, b, c) with b even from the
formula

(a, b, c) = (u2 − v2, 2uv, u2 + v2)

by substituting in different integers foru andv. For example,(u, v) = (2, 1) gives the
smallest triple(3, 4, 5).
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(a) If u andv have a common factor, explain why(a, b, c) will not be a primitive Pytha-
gorean triple.

(b) Find an example of integersu > v > 0 that do not have a common factor, yet the
Pythagorean triple(u2 − v2, 2uv, u2 + v2) is not primitive.

(c) Make a table of the Pythagorean triples that arise when you substitute in all values
of u andv with 1 ≤ v < u ≤ 10.

(d) Using your table from (c), find some simple conditions onu andv that ensure that
the Pythagorean triple(u2 − v2, 2uv, u2 + v2) is primitive.

(e) Prove that your conditions in (d) really work.

3.2. (a) Use the lines through the point(1, 1) to describe all the points on the circle

x2 + y2 = 2

whose coordinates are rational numbers.
(b) What goes wrong if you try to apply the same procedure to find all the points on the

circlex2 + y2 = 3 with rational coordinates?

3.3. Find a formula for all the points on the hyperbola

x2 − y2 = 1

whose coordinates are rational numbers. [Hint. Take the line through the point(−1, 0)
having rational slopem and find a formula in terms ofm for the second point where the
line intersects the hyperbola.]

3.4. The curve
y2 = x3 + 8

contains the points(1,−3) and(−7/4, 13/8). The line through these two points intersects
the curve in exactly one other point. Find this third point. Can you explain why the
coordinates of this third point are rational numbers?


