MATH 285y TROPICAL GEOMETRY SPRING 2013 PROBLEM SET 1, DUE THURSDAY FEBRUARY 14

1. Draw the tropical hypersurfaces for each of the following Laurent polynomials f over the field $\mathbb{C}\{\{t\}\}$.
(a) $f=t^{3} y^{3}+y^{2}+x y^{2}+y+t^{-1} x y+x^{2} y+t^{3}+x+x^{2}+t^{2} x^{3}$
(b) $f=x y+5 x y^{2}-x y^{3}+t x^{2} y-t^{2} x^{2} y^{2}-3 t^{2} x^{3} y$
(c) $f=t+x y+x^{-1} y+x y^{-1}+x^{-1} y^{-1}$
(d) $f=1+2 x+3 y+4 z$
(e) $f=t x+y+z$
2. Find a polynomial $f \in \mathbb{C}\{\{t\}\}[x, y]$ giving rise to the tropical plane curve below. Here, the edge multiplicities are 1 unless otherwise noted; the upper left ray has direction $(-1,2)$.

3. (Exercise 2.7.4 in book) Show that if K is an algebraically closed field with valuation val : $K^{*} \rightarrow \mathbb{R}$, then its residue field $k=R / m$ is also algebraically closed.
4. Prove the balancing condition for tropical plane curves: for any Laurent polynomial $f \in K\left[x^{ \pm}, y^{ \pm}\right]$, for each vertex $v \in \operatorname{Trop} V(f)$, we have the following zero-tension condition on the edges at each vertex:

$$
\sum_{e \ni v} \operatorname{mult}(e) \cdot e^{\prime}=0
$$

where the e^{\prime} is the vector of lattice length 1 in the direction of e. Check this condition for each of the examples (a)-(c) above.
5. Prove tropical Bézout's theorem for transverse intersections: two plane tropical curves C and D of degrees c and d with finite intersection meet in $c \cdot d$ points, where each point p is counted with multiplicity

$$
\operatorname{mult}(e) \operatorname{mult}(f)\left|\operatorname{det}\left(\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right)\right|
$$

Here e and f are the edges of C and D containing p, and $e^{\prime}=\left(u_{1}, v_{1}\right)$ and $f^{\prime}=\left(u_{2}, v_{2}\right)$ are vectors of lattice length 1 in the directions of e and f, respectively.
One possible hint: consider $C \cup D$ itself as a tropical plane curve.
6. (Exercise 2.7.3 in book) Pick two triangles P and Q that lie in non-parallel planes in \mathbb{R}^{3}. Draw their Minkowski sum $P+Q$ and its normal fan. How many faces of each dimension does $P+Q$ have? Verify that the normal fan of $P+Q$ is the common refinement (p.75) of the normal fans of P and Q.

