MATH 285y TROPICAL GEOMETRY SPRING 2013 PROBLEM SET 3, DUE THURSDAY APRIL 11

1. (a) (Textbook 1.9) Compute and draw the tropical quadric in \mathbb{R}^{2} passing through the points

$$
(0,5),(1,0),(4,2),(7,3),(9,4)
$$

(b) (Textbook 1.4) Show that there is a unique tropical quadric

$$
A \odot X^{\odot 2} \oplus B \odot X \odot Y \oplus C \odot Y^{\odot 2} \oplus D \odot X \oplus E \odot Y \oplus F
$$

passing stably through any five points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{5}, y_{5}\right) \in \mathbb{R}^{2}$, even if they are in special position. What should stable containment mean here? Can you give a formula for the coefficients A, B, C, D, E, F in terms of the points?
2. Let $X \subset \mathbb{C}\left[x_{11}, \ldots, x_{33}\right]$ be the variety of 3×3 matrices of rank at most 2 . Use gfan to compute $\operatorname{Trop}(X)$. Give the dimension, lineality space, and f-vector of this tropical variety. How much of this data can you interpret combinatorially?
3. (Textbook 1.14) Consider the plane curve given by the parametrization

$$
x=(t-1)^{13} t^{19}(t+1)^{29} \text { and } y=(t-1)^{31} t^{23}(t+1)^{17} .
$$

Find the Newton polygon of the implicit equation $f(x, y)=0$ of this curve. How many terms do you expect the polynomial $f(x, y)$ to have?
4. (Textbook 1.12) The amoeba of a curve of degree four in the plane \mathbb{C}^{2} can have either $0,1,2$ or 3 bounded convex regions in its complement. Construct explicit examples for all four cases.
5. Let C be the metric graph with two vertices and four parallel edges between them of lengths $a, b, c, d>0$. Compute the Jacobian of C. Draw the image of C in $\operatorname{Jac}(C)$ under the Abel-Jacobi map, and draw the theta divisor $[\Theta]$.

