Three notions of tropical rank for symmetric matrices

Dustin Cartwright and Melody Chan
UC Berkeley

FPSAC 2010
August 5

The tropical semiring consists of the real numbers equipped with two operations

$$
a \oplus b=\min (a, b) \quad \text { and } \quad a \odot b=a+b .
$$

Example:

$$
3 \oplus 4=3 \quad \text { and } \quad 3 \odot 4=7 .
$$

"Motivation"

$$
\begin{aligned}
\left(x^{3}+\text { higher terms }\right)+\left(x^{4}+\text { higher terms }\right) & =\left(x^{3}+\text { higher terms }\right) \\
\left(x^{3}+\text { higher terms }\right) \cdot\left(x^{4}+\text { higher terms }\right) & =\left(x^{7}+\text { higher terms }\right)
\end{aligned}
$$

We can do tropical linear algebra, for example

$$
\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \odot\left[\begin{array}{ll}
3 & 1
\end{array}\right]=\left[\begin{array}{ll}
5 & 3 \\
2 & 0
\end{array}\right] \quad\left[\begin{array}{l}
1 \\
4
\end{array}\right] \odot\left[\begin{array}{ll}
1 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 & 5 \\
5 & 8
\end{array}\right]
$$

We can do tropical linear algebra, for example
rank 1
symmetric rank 1
$\left[\begin{array}{c}2 \\ -1\end{array}\right] \odot\left[\begin{array}{ll}3 & 1\end{array}\right]=\left[\begin{array}{ll}5 & 3 \\ 2 & 0\end{array}\right] \quad\left[\begin{array}{l}1 \\ 4\end{array}\right] \odot\left[\begin{array}{ll}1 & 4\end{array}\right]=\left[\begin{array}{ll}2 & 5 \\ 5 & 8\end{array}\right]$

We can do tropical linear algebra, for example

$$
\begin{gathered}
\text { rank 1 } \\
{\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \odot\left[\begin{array}{ll}
3 & 1
\end{array}\right]=\left[\begin{array}{ll}
5 & 3 \\
2 & 0
\end{array}\right]} \\
\left.\left(\begin{array}{ll}
2 & 5 \\
5 & 2
\end{array}\right)=\begin{array}{l}
1 \\
4 \\
4
\end{array}\right] \odot\left[\begin{array}{ll}
1 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 & 5 \\
5 & 8
\end{array}\right] \\
\begin{array}{l}
2 \\
5
\end{array}\binom{4}{5} \oplus_{1}^{4}\left(\begin{array}{ll}
8 & 5 \\
5 & 2
\end{array}\right) .
\end{gathered}
$$

A symmetric matrix has symmetric rank k if it is the tropical sum of k symmetric rank 1 matrices, but no fewer.

Can we always find such a sum? How many rank 1 matrices are required?

Classically,

$$
\text { Secant }^{k}(\text { Segre }) \cap L_{\text {sym }}=\text { Secant }^{k}\left(\text { Segre } \cap L_{\text {sym }}\right) .
$$

That is, a symmetric matrix of rank k can be written as a sum of k SYMMETRIC matrices of rank 1.

Classically,

$$
\text { Secant }^{k}(\text { Segre }) \cap L_{\text {sym }}=\operatorname{Secant}^{k}\left(\text { Segre } \cap L_{\text {sym }}\right) .
$$

That is, a symmetric matrix of rank k can be written as a sum of k SYMMETRIC matrices of rank 1.

For higher dimensional arrays, this is only conjecturally true:
Comon's Conjecture (2009): the rank of an order k, dimension n symmetric tensor over \mathbb{C} equals its symmetric rank.
some cases proven by Comon-Golub-Lim-Mourrain (2008):
Symmetric tensor decomposition is important in signal processing, independent component analysis, ...
"Tropical Comon's Conjecture:" rank equals symmetric rank, tropically?
In fact, symmetric rank may not even be finite

$$
\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
? & -1 \\
-1 & ?
\end{array}\right) \oplus \quad \cdots \quad \text { (infinite symmetric rank) }
$$

"Tropical Comon's Conjecture:" rank equals symmetric rank, tropically?
In fact, symmetric rank may not even be finite
$\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{cc}? & -1 \\ -1 & ?\end{array}\right) \oplus \cdots \quad$ (infinite symmetric rank)

What about when symmetric rank is finite? How large can it be? Surely it is bounded above by the dimension of the matrix?

n	1	2	3	4
maximum (finite) symmetric rank	1	2	3	4

n	1	2	3	4	5	6	7	8	9	10	\ldots
maximum (finite) symmetric rank	1	2	3	4	6						

n	1	2	3	4	5	6	7	8	9	10	\ldots
maximum (finite) symmetric rank	1	2	3	4	6						

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccccc}
0 & \cdot & 0 & \cdot & 0 \\
. & . & . & . & . \\
0 & . & 0 & \cdot & 0 \\
. & . & . & . & . \\
0 & . & . & . & 0
\end{array}\right) \oplus \cdots \oplus \cdots
$$

n	1	2	3	4	5	6	7	8	9	10	\ldots
maximum (finite) symmetric rank	1	2	3	4	6						

$\mathbb{Z}_{2}^{3}\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right)=\left(\begin{array}{ccccc}0 & \cdot & 0 & . & 0 \\ . & \cdot & . & . & . \\ 0 & \cdot & 0 & . & 0 \\ . & . & . & . & . \\ 0 & \cdot & . & . & 0\end{array}\right) \oplus \cdots \oplus \cdots$

CLIQUE COVER problem: express a given graph as a union of cliques. In each rank 1 summand, the off-diagonal zeroes form a clique in the zero graph, and these must cover the zero graph of the original matrix.

A graph on n nodes can require up to $\left\lfloor\frac{n^{2}}{4}\right\rfloor$ cliques to cover it; this bound is attained by $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$

Theorem (Cartwright-C 2009) For $n \geq 4,\left\lfloor n^{2} / 4\right\rfloor$ is the maximum finite symmetric rank of an $n \times n$ matrix.

Similarly, the tropical Comon conjecture is false for higher dimensional symmetric tensors (graphs \rightarrow hypergraphs).

What about the set of matrices of symmetric rank $\leq k$? It is a polyhedral fan (Develin 2006). What is its dimension?

Why is this even a good question?

Definition

The $k^{\text {th }}$ tropical secant set of a subset $V \subseteq \mathbb{R}^{n}$ is the set

$$
\operatorname{Sec}^{k}(V):=\left\{v_{1} \oplus \cdots \oplus v_{k}: v_{i} \in V\right\} \subseteq \mathbb{R}^{n} .
$$

What about the set of matrices of symmetric rank $\leq k$? It is a polyhedral fan (Develin 2006). What is its dimension?

Why is this even a good question?

Definition

The $k^{\text {th }}$ tropical secant set of a subset $V \subseteq \mathbb{R}^{n}$ is the set

$$
\operatorname{Sec}^{k}(V):=\left\{v_{1} \oplus \cdots \oplus v_{k}: v_{i} \in V\right\} \subseteq \mathbb{R}^{n} .
$$

classical secant varieties

For nice varieties, $\operatorname{Sec}^{k}(\operatorname{Trop} V) \subsetneq \operatorname{Trop}\left(\operatorname{Sec}^{k} V\right)$; the sets are generally far from equal. But are their dimensions equal?

For nice varieties, $\operatorname{Sec}^{k}(\operatorname{Trop} V) \subsetneq \operatorname{Trop}\left(\operatorname{Sec}^{k} V\right)$; the sets are generally far from equal. But are their dimensions equal?

Examples:	(symmetric matrices)	(diagonal-deleted symmetric Drton, Sturmfels, Sullivant 2007)	(trapicalization studied by Sturmfels $\&$ Speyer 2004)
irreducible	Veronese	factor analysis model	Grassmannian $(2, n)$
variety			

For nice varieties, $\operatorname{Sec}^{k}(\operatorname{Trop} V) \subsetneq \operatorname{Trop}\left(\operatorname{Sec}^{k} V\right)$; the sets are generally far from equal. But are their dimensions equal?

Examples:	(symmetric matrices)	(diagonal-deleted symmetric Drton, Sturmfels, Sullivant 2007)	(tropicalization studied by Sturmfels \& Speyer 2004)
irreducible	Veronese	factor analysis model	Grassmannian $(2, n)$
variety			

Nonexamples:

For nice varieties, $\operatorname{Sec}^{k}(\operatorname{Trop} V) \subsetneq \operatorname{Trop}\left(\operatorname{Sec}^{k} V\right)$; the sets are generally far from equal. But are their dimensions equal?

Examples:	(symmetric matrices)	(diagonal-deleted symmetric Drton, Sturmfels, Sullivant 2007)	(tropicalization studied by Sturmfels \& Speyer 2004)
frreducible	Veronese	factor analysis model	Grassmannian $(2, n)$
variety			

Nonexamples: none known! (Draisma 2007 question/conjecture)
Moral: for irreducible varieties, tropical secant sets give lower bounds, and maybe even equalities, for the dimensions of classical secant varieties.

The tropical Grassmannian $\operatorname{Gr}(2, n)$ is the set of $n \times n$ dissimilarity matrices satisfying the 3-term tropical Plücker relations: for all $i<j<k<I$,

$$
\min \left\{p_{i j}+p_{k l}, p_{i k}+p_{j l}, p_{i l}+p_{j k}\right\}
$$

is attained twice.

The tropical Grassmannian $\operatorname{Gr}(2, n)$ is the set of $n \times n$ dissimilarity matrices satisfying the 3 -term tropical Plücker relations: for all $i<j<k<I$,

$$
\min \left\{p_{i j}+p_{k l}, p_{i k}+p_{j l}, p_{i l}+p_{j k}\right\}
$$

is attained twice.
diagonal-deleted symmetric matrix

Equivalently, it comes from pairwise cost-of-travel along a weighted tree on n nodes.

Tree mixtures studied in phylogenetics by Matsen-Mossel-Steel, Cueto

Question: Can you find a 5×5 dissimilarity matrix with tree rank 3 ? (How can we prove lower bounds on rank in general?)

Question: Can you find a 5×5 dissimilarity matrix with tree rank 3 ? (How can we prove lower bounds on rank in general?)

Theorem (Cartwright-C 2009) The set of dissimilarity matrices of tree rank 3 consists of those points such that the minimum below is achieved uniquely, and at a blue term.

[^0]Question: Can you find a 5×5 dissimilarity matrix with tree rank 3 ? (How can we prove lower bounds on rank in general?)

Theorem (Cartwright-C 2009) The set of dissimilarity matrices of tree rank 3 consists of those points such that the minimum below is achieved uniquely, and at a blue term.

[^1]\[

\left($$
\begin{array}{ccccc}
* & 0 & 1 & 1 & 0 \\
0 & * & 0 & 1 & 1 \\
1 & 0 & * & 0 & 1 \\
1 & 1 & 0 & * & 0 \\
0 & 1 & 1 & 0 & *
\end{array}
$$\right)=\left($$
\begin{array}{ccccc}
* & 0 & \geq 1 & \geq 1 & \\
& * & \geq 0 & \geq 1 & \\
& & * & 0 \\
& & & * & \\
& & & & *
\end{array}
$$\right) \oplus \cdots \oplus \cdots
\]

Question: Can you find a 5×5 dissimilarity matrix with tree rank 3 ? (How can we prove lower bounds on rank in general?)

Theorem (Cartwright-C 2009) The set of dissimilarity matrices of tree rank 3 consists of those points such that the minimum below is achieved uniquely, and at a blue term.

[^2]\[

\left($$
\begin{array}{ccccc}
* & 0 & 1 & 1 & 0 \\
0 & * & 0 & 1 & 1 \\
1 & 0 & * & 0 & 1 \\
1 & 1 & 0 & * & 0 \\
0 & 1 & 1 & 0 & *
\end{array}
$$\right)=\left($$
\begin{array}{ccccc}
* & 0 & \geq 1 & \geq 1 \\
& * & \geq 0 & \geq 1 \\
& & * & 0 \\
& & & * & \\
& & & & *
\end{array}
$$\right) \oplus \cdots \oplus \cdots
\]

Theorem The chromatic number of the "conflict" hypergraph is a lower bound for rank.

Does this bound tell the truth?

- yes for tree rank on $n \leq 5$ taxa,
- no in general, but

Theorem In the case of a toric ideal and a universal Gröbner basis, the bound above is an equality.

Theorem The chromatic number of the "conflict" hypergraph is a lower bound for rank.

Does this bound tell the truth?

- yes for tree rank on $n \leq 5$ taxa,
- no in general, but

Theorem In the case of a toric ideal and a universal Gröbner basis, the bound above is an equality.

Thank you!
arxiv:0912.1411v1
mtchan@math.berkeley.edu

[^0]: $x_{12} x_{13} x_{24} x_{35} x_{45} \oplus x_{12} x_{13} x_{25} x_{34} \times_{45} \oplus x_{12} x_{14} x_{23} x_{35} x_{45} \oplus x_{12} x_{14} x_{25} \times 34 \times 35 \oplus x_{12} x_{15} x_{23} x_{34} x_{45} \oplus x_{12} x_{15} x_{24} \times 34 x_{35}$
 $\oplus x_{13} x_{14} x_{23} x_{25} x_{45} \oplus x_{13} x_{14} x_{24} x_{25} x_{35} \oplus x_{13} x_{15} x_{23} x_{24} x_{45} \oplus x_{13} x_{15} x_{24} x_{25} x_{34} \oplus x_{14} x_{15} x_{23} x_{25} x_{34} \oplus x_{14} x_{15} x_{23} x_{24} x_{35}$
 $\oplus x_{12} x_{13} x_{23} x_{45}^{2} \oplus x_{12} x_{14} x_{24} x_{35}^{2} \oplus x_{12} x_{15} x_{25} x_{34}^{2} \oplus x_{13} x_{14} x_{34} x_{25}^{2} \oplus x_{13} x_{15} x_{35} x_{24}^{2} \oplus x_{14} x_{15} x_{45} x_{23}^{2} \oplus x_{23} x_{24} x_{34} x_{15}^{2}$
 $\oplus x_{23} x_{25} x_{35} x_{14}^{2} \oplus x_{24} x_{25} x_{45} x_{13}^{2} \oplus x_{34} x_{35} x_{45} x_{12}^{2}$

 $$
 \left(\begin{array}{ccccc}
 * & 0 & 1 & 1 & 0 \\
 0 & * & 0 & 1 & 1 \\
 1 & 0 & * & 0 & 1 \\
 1 & 1 & 0 & * & 0 \\
 0 & 1 & 1 & 0 & *
 \end{array}\right)=\left(\begin{array}{ccccc}
 * & 0 & \geq 1 & \geq 1 & \\
 & * & \geq 0 & \geq 1 & \\
 & & * & 0 \\
 & & & * & \\
 & & & & *
 \end{array}\right) \oplus \cdots \oplus \cdots
 $$

[^1]: $x_{12} x_{13} x_{24} x_{35} x_{45} \oplus x_{12} x_{13} x_{25} x_{34} x_{45} \oplus x_{12} x_{14} x_{23} x_{35} x_{45} \oplus x_{12} x_{14} x_{25} x_{34} x_{35} \oplus x_{12} x_{15} x_{23} x_{34} x_{45} \oplus x_{12} x_{15} x_{24} x_{34} x_{35}$ $\oplus x_{13} x_{14} x_{23} x_{25} x_{45} \oplus x_{13} x_{14} x_{24} x_{25} x_{35} \oplus x_{13} x_{15} x_{23} x_{24} x_{45} \oplus x_{13} x_{15} x_{24} x_{25} x_{34} \oplus x_{14} x_{15} x_{23} x_{25} x_{34} \oplus x_{14} x_{15} x_{23} x_{24} x_{35}$ $\oplus x_{12} x_{13} x_{23} x_{45}^{2} \oplus x_{12} x_{14} x_{24} x_{35}^{2} \oplus x_{12} x_{15} x_{25} x_{34}^{2} \oplus x_{13} x_{14} x_{34} x_{25}^{2} \oplus x_{13} x_{15} x_{35} x_{24}^{2} \oplus x_{14} x_{15} x_{45} x_{23}^{2} \oplus x_{23} x_{24} x_{34} x_{15}^{2}$ $\oplus x_{23} x_{25} x_{35} x_{14}^{2} \oplus x_{24} x_{25} x_{45} x_{13}^{2} \oplus x_{34} x_{35} x_{45} x_{12}^{2}$

[^2]: $x_{12} x_{13} x_{24} x_{35} x_{45} \oplus x_{12} x_{13} x_{25} x_{34} x_{45} \oplus x_{12} x_{14} x_{23} x_{35} x_{45} \oplus x_{12} x_{14} x_{25} x_{34} x_{35} \oplus x_{12} x_{15} x_{23} x_{34} x_{45} \oplus x_{12} x_{15} x_{24} x_{34} x_{35}$ $\oplus x_{13} x_{14} x_{23} x_{25} x_{45} \oplus x_{13} x_{14} x_{24} x_{25} x_{35} \oplus x_{13} x_{15} x_{23} x_{24} x_{45} \oplus x_{13} x_{15} x_{24} x_{25} x_{34} \oplus x_{14} x_{15} x_{23} x_{25} x_{34} \oplus x_{14} x_{15} x_{23} x_{24} x_{35}$ $\oplus x_{12} x_{13} x_{23} x_{45}^{2} \oplus x_{12} x_{14} x_{24} x_{35}^{2} \oplus x_{12} x_{15} x_{25} x_{34}^{2} \oplus x_{13} x_{14} x_{34} x_{25}^{2} \oplus x_{13} x_{15} x_{35} x_{24}^{2} \oplus x_{14} x_{15} x_{45} x_{23}^{2} \oplus x_{23} x_{24} x_{34} x_{15}^{2}$ $\oplus x_{23} x_{25} x_{35} x_{14}^{2} \oplus x_{24} x_{25} x_{45} x_{13}^{2} \oplus x_{34} x_{35} x_{45} x_{12}^{2}$

