Three notions of tropical rank for symmetric matrices

Dustin Cartwright and Melody Chan UC Berkeley

> FPSAC 2010 August 5

> > ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The tropical semiring consists of the real numbers equipped with two operations

$$a \oplus b = \min(a, b)$$
 and $a \odot b = a + b$.

Example:

$$3 \oplus 4 = 3$$
 and $3 \odot 4 = 7$.

"Motivation"

 $(x^{3} + \text{higher terms}) + (x^{4} + \text{higher terms}) = (x^{3} + \text{higher terms})$ $(x^{3} + \text{higher terms}) \cdot (x^{4} + \text{higher terms}) = (x^{7} + \text{higher terms})$

We can do tropical linear algebra, for example

-

$$\begin{bmatrix} 2\\-1 \end{bmatrix} \odot \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 3\\2 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1\\4 \end{bmatrix} \odot \begin{bmatrix} 1 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 5\\5 & 8 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We can do tropical linear algebra, for example

rank 1symmetric
rank 1 $\begin{bmatrix} 2\\ -1 \end{bmatrix} \odot \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 3\\ 2 & 0 \end{bmatrix}$ $\begin{bmatrix} 1\\ 4 \end{bmatrix} \odot \begin{bmatrix} 1 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 5\\ 5 & 8 \end{bmatrix}$

We can do tropical linear algebra, for example

$$\begin{bmatrix} 2\\ -1 \end{bmatrix} \odot \begin{bmatrix} 3 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 3\\ 2 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1\\ 4 \end{bmatrix} \odot \begin{bmatrix} 1 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 5\\ 5 & 8 \end{bmatrix}$$
$$\begin{pmatrix} 1 & 4 & 4 & 1\\ 4 & 5 & 6 & 6 \\ 5 & 2 & 6 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 6 & 6 \\ 1 & 4 & 1 & 1 & 6 \\ 1 & 4 & 1 & 1 & 6 \\ 1 & 4 & 1 & 1 & 1 \\ 1 & 4 & 1 & 1 \\ 1 & 4 & 1 &$$

ou una pro otrei o

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

A symmetric matrix has symmetric rank k if it is the tropical sum of k symmetric rank 1 matrices, but no fewer.

Can we always find such a sum? How many rank 1 matrices are required?

Classically,

linear space of symmetric matrices

 $Secant^{k}(Segre) \cap L_{sym} = Secant^{k}(Segre \cap L_{sym}).$

That is, a symmetric matrix of rank k can be written as a sum of k SYMMETRIC matrices of rank 1.

Classically,

linear space of symmetric matrices

 $Secant^{k}(Segre) \cap L_{sym} = Secant^{k}(Segre \cap L_{sym}).$

That is, a symmetric matrix of rank k can be written as a sum of k SYMMETRIC matrices of rank 1.

For higher dimensional arrays, this is only conjecturally true:

Comon's Conjecture (2009): the rank of an order k, dimension n symmetric tensor over \mathbb{C} equals its symmetric rank.

some cases proven by Comon-Golub-Lim-Mourrain (2008):

Symmetric tensor decomposition is important in signal processing, independent component analysis, ...

"Tropical Comon's Conjecture:" rank equals symmetric rank, tropically?

In fact, symmetric rank may not even be finite

$$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} ? & -1 \\ -1 & ? \end{pmatrix} \oplus \cdots \text{ (infinite symmetric rank)}$$

(日) (日) (日) (日) (日) (日) (日) (日)

"Tropical Comon's Conjecture:" rank equals symmetric rank, tropically?

In fact, symmetric rank may not even be finite

$$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} ? & -1 \\ -1 & ? \end{pmatrix} \oplus \cdots \text{ (infinite symmetric rank)}$$

$$\stackrel{\text{v}}{\stackrel{\text{rank 2}}{\stackrel{\text{rank 1}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{y}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{y}}{\stackrel{\text{z}}}\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}}\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}}\stackrel{\text{z}}{\stackrel{\text{z}}\\{\text{z}}\stackrel{\text{z}}{\stackrel{\text{z}}{\stackrel{\text{z}}}\stackrel{\text{z}}{\stackrel{\text{z}}}\stackrel{\text{z}}{\stackrel{\text{z}}}\stackrel{\text{z}}{\stackrel{\text{z}}}\stackrel{\text{z}}\\{\text{z}}\stackrel{\text{z}}\\{\text{z}}\stackrel{\text{z}}\\{\text{z}}\stackrel{\text{z}}\\{\stackrel{z}}\stackrel{\text{z}}\\{\text{z}}\stackrel{\text{z}}\\{\stackrel{z}}\stackrel{\text{z}}\stackrel{\text{z}}\\{\stackrel{z}}\stackrel{\text{z}}\stackrel{\text{z}}\stackrel{\text{z}}\stackrel{\text{z}}\stackrel{\text{z}}\stackrel{\text{z}}\stackrel{\text{z}}\\{\stackrel{z}}\stackrel{\text{z}\stackrel{\text{z}}\stackrel{\text{z}}\stackrel{\text{z}}\stackrel{\text{z}\stackrel{\text{z}}\stackrel{\text{z}}\stackrel{\text{z}}\stackrel{\text{$$

What about when symmetric rank is finite? How large can it be? Surely it is bounded above by the dimension of the matrix?

n	1	2	3	4
maximum (finite)				
symmetric rank	1	2	3	4

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

n	1	2	3	4	5	6	7	8	9	10	
maximum (finite)											
symmetric rank	1	2	3	4	6	9	12	16	20	25	

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

n	1	2	3	4	5	6	7	8	9	10	
maximum (finite)											
maximum (finite) symmetric rank	1	2	3	4	6	9	12	16	20	25	
$(0 \ 1 \ 0$	0 ((0	•	0	· 0			
1 0 0	0 (.	•	•				
0 0 0	1 1	L	=	=	0	•	0	· 0 · . · 0	\oplus	$\cdots \oplus$	
0 0 1	0 1	L			.		•				
$\left(\begin{array}{rrrrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array}\right)$	1 () /			(0	•	•	• 0)		

◆ロ > ◆母 > ◆臣 > ◆臣 > ─ 臣 = の Q @

_		п			$\parallel 1$	2	3	4	5	6	7	8	9	10	
-	maxi	mum	(fin	ite)											
	sym	metri	c ra	nk	$\parallel 1$	2	3	4	6	9	12	16	20	25	
		(0 1 0	1	0	0	0			(0		0	• 0			
	3		0	0	0	0				·	•	•••			
\gg	-4	0	0	0	1	1	=	=	0	·	0	• 0	\oplus	$\cdots \oplus$	• • •
	\$ 5	0	0	1	0	1				•	·	• •			
		\ <mark>0</mark>	0	1	1	0 /			$\setminus 0$	•	•	· 0	/		

CLIQUE COVER problem: express a given graph as a union of cliques. In each rank 1 summand, the off-diagonal zeroes form a clique in the *zero* graph, and these must cover the zero graph of the original matrix.

A graph on *n* nodes can require up to $\lfloor \frac{n^2}{4} \rfloor$ cliques to cover it; this bound is attained by $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$

Theorem (Cartwright-C 2009) For $n \ge 4$, $\lfloor n^2/4 \rfloor$ is the maximum finite symmetric rank of an $n \times n$ matrix.

Similarly, the tropical Comon conjecture is false for higher dimensional symmetric tensors (graphs \rightarrow hypergraphs).

What about the set of matrices of symmetric rank $\leq k$? It is a polyhedral fan (Develin 2006). What is its dimension?

Why is this even a good question?

Definition

The k^{th} tropical secant set of a subset $V \subseteq \mathbb{R}^n$ is the set

$$Sec^{k}(V) := \{v_{1} \oplus \cdots \oplus v_{k} : v_{i} \in V\} \subseteq \mathbb{R}^{n}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

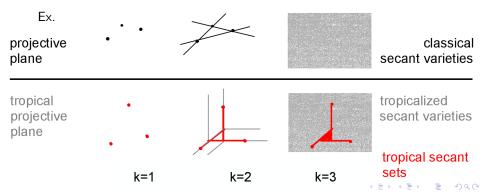
What about the set of matrices of symmetric rank $\leq k$? It is a polyhedral fan (Develin 2006). What is its dimension?

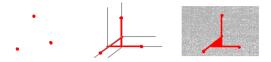
Why is this even a good question?

Definition

The k^{th} tropical secant set of a subset $V \subseteq \mathbb{R}^n$ is the set

$$Sec^{k}(V) := \{v_{1} \oplus \cdots \oplus v_{k} : v_{i} \in V\} \subseteq \mathbb{R}^{n}$$





For nice varieties, $Sec^{k}(Trop \ V) \subsetneq Trop(Sec^{k} \ V)$; the sets are generally far from equal. But are their dimensions equal?

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э

For nice varieties, $Sec^{k}(Trop \ V) \subsetneq Trop(Sec^{k} \ V)$; the sets are generally far from equal. But are their dimensions equal?

Examples:	(symmetric matrices)	(diagonal-deleted symmetric Drton, Sturmfels, Sullivant 2007)	(tropicalization studied by Sturmfels & Speyer 2004)
irreducible variety	Veronese	factor analysis model	Grassmannian (2, <i>n</i>)
dim of <i>kth</i> secant vari- ety	$\binom{n+1}{2} - \binom{n-k+1}{2}$	$\min\{\binom{n}{2} - \binom{n-k}{2} + k, \binom{n}{2}\}.$	$\min\{k(2n-2k-1),\binom{n}{2}\}.$
dim of <i>kth</i> tropical se-	$\binom{n+1}{2} - \binom{n-k+1}{2}$	$\min\{\binom{n}{2} - \binom{n-k}{2} + k, \binom{n}{2}\}.$	$\min\{k(2n-2k-1),\binom{n}{2}\}.$
cant set			(Cartwright-C 2009)

For nice varieties, $Sec^{k}(Trop \ V) \subsetneq Trop(Sec^{k} \ V)$; the sets are generally far from equal. But are their dimensions equal?

Examples:	(symmetric matrices)	(diagonal-deleted symmetric Drton, Sturmfels, Sullivant 2007)	(tropicalization studied by Sturmfels & Speyer 2004)
irreducible variety	Veronese	factor analysis model	Grassmannian (2, <i>n</i>)
dim of <i>kth</i> secant vari- ety	$\binom{n+1}{2} - \binom{n-k+1}{2}$	$\min\{\binom{n}{2} - \binom{n-k}{2} + k, \binom{n}{2}\}.$	$\min\{k(2n-2k-1),\binom{n}{2}\}.$
dim of <i>kth</i> tropical se-	$\binom{n+1}{2} - \binom{n-k+1}{2}$	$\min\{\binom{n}{2} - \binom{n-k}{2} + k, \binom{n}{2}\}.$	$\min\{k(2n-2k-1), \binom{n}{2}\}.$
cant set			(Cartwright-C 2009)

Nonexamples:



For nice varieties, $Sec^{k}(Trop \ V) \subsetneq Trop(Sec^{k} \ V)$; the sets are generally far from equal. But are their dimensions equal?

Examples:	(symmetric matrices)	(diagonal-deleted symmetric Drton, Sturmfels, Sullivant 2007)	(tropicalization studied by Sturmfels & Speyer 2004)
irreducible variety	Veronese	factor analysis model	Grassmannian (2, <i>n</i>)
dim of <i>kth</i> secant vari- ety	$\binom{n+1}{2} - \binom{n-k+1}{2}$	$\min\{\binom{n}{2} - \binom{n-k}{2} + k, \binom{n}{2}\}.$	$\min\{k(2n-2k-1),\binom{n}{2}\}.$
dim of <i>kth</i> tropical se- cant set	$\binom{n+1}{2} - \binom{n-k+1}{2}$	$\min\{\binom{n}{2} - \binom{n-k}{2} + k, \binom{n}{2}\}.$	$\min\{k(2n-2k-1), \binom{n}{2}\}.$ (Cartwright-C 2009)

Nonexamples: none known! (Draisma 2007 question/conjecture)

Moral: for irreducible varieties, tropical secant sets give lower bounds, and maybe even equalities, for the dimensions of classical secant varieties. The tropical Grassmannian Gr(2, n) is the set of $n \times n$ dissimilarity matrices satisfying the 3-term tropical Plücker relations: for all i < j < k < l,

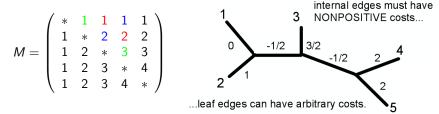
$$\min\{p_{ij}+p_{kl},p_{ik}+p_{jl},p_{il}+p_{jk}\}$$

is attained twice.

The tropical Grassmannian Gr(2, n) is the set of $n \times n$ dissimilarity matrices satisfying the 3-term tropical Plücker relations: for all i < j < k < l,

$$\min\{p_{ij} + p_{kl}, p_{ik} + p_{jl}, p_{il} + p_{jk}\}$$

is attained twice.



Equivalently, it comes from pairwise cost-of-travel along a weighted tree on n nodes.

Tree mixtures studied in phylogenetics by Matsen-Mossel-Steel, Cueto

Theorem (Cartwright-C 2009) The set of dissimilarity matrices of tree rank 3 consists of those points such that the minimum below is achieved uniquely, and at a blue term.

 $\begin{array}{l} \mathsf{x}_{12}\mathsf{x}_{13}\mathsf{x}_{24}\mathsf{x}_{35}\mathsf{x}_{45} \oplus \mathsf{x}_{12}\mathsf{x}_{13}\mathsf{x}_{25}\mathsf{x}_{34}\mathsf{x}_{45} \oplus \mathsf{x}_{12}\mathsf{x}_{14}\mathsf{x}_{23}\mathsf{x}_{35}\mathsf{x}_{45} \oplus \mathsf{x}_{12}\mathsf{x}_{14}\mathsf{x}_{25}\mathsf{x}_{34}\mathsf{x}_{35} \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{23}\mathsf{x}_{44}\mathsf{x}_{5} \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{23}\mathsf{x}_{44}\mathsf{x}_{5} \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{45} \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{34}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{23}\mathsf{x}_{25}\mathsf{x}_{34}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{35} \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{24}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{23}\oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{24}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{23}\oplus \mathsf{x}_{24}\mathsf{x}_{34}\mathsf{x}_{15}^2 \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{25}}\oplus \mathsf{x}_{13}\mathsf{x}_{15}\mathsf{x}_{35}\mathsf{x}_{24}^2\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{45}\mathsf{x}_{23}^2\oplus \mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{34}\mathsf{x}_{15}^2 \oplus \mathsf{x}_{23}\mathsf{x}_{25}\mathsf{x}_{24}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{45}\mathsf{x}_{23}^2\oplus \mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{34}\mathsf{x}_{15}^2 \oplus \mathsf{x}_{23}\mathsf{x}_{25}\mathsf{x}_{24}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{45}\mathsf{x}_{23}^2\oplus \mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{34}\mathsf{x}_{15}^2 \oplus \mathsf{x}_{23}\mathsf{x}_{25}\mathsf{x}_{24}\mathsf{x}_{25}^2 \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{24}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{45}\mathsf{x}_{23}^2\oplus \mathsf{x}_{24}\mathsf{x}_{34}\mathsf{x}_{15}^2 \oplus \mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{45}\mathsf{x}_{23}^2\oplus \mathsf{x}_{24}\mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \oplus \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}\mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{25}} \mathsf{x}_{25}} \mathsf{x}_{25}\mathsf{x}_{25}} \mathsf{x}_{25}} \mathsf{x}_{25}\mathsf{x}_{25}}\mathsf{x}_{25}} \mathsf{x}_{25}} \mathsf{x}_{25}}\mathsf{x}_{25}} \mathsf{x}$

$$\begin{pmatrix} * & 0 & 1 & 1 & 0 \\ 0 & * & 0 & 1 & 1 \\ 1 & 0 & * & 0 & 1 \\ 1 & 1 & 0 & * & 0 \\ 0 & 1 & 1 & 0 & * \end{pmatrix} = \begin{pmatrix} * & 0 & \geq 1 \\ & * & \geq 0 & \geq 1 \\ & & * & 0 \\ & & & * & * \\ & & & & * \end{pmatrix} \oplus \cdots \oplus \cdots$$

Theorem (Cartwright-C 2009) The set of dissimilarity matrices of tree rank 3 consists of those points such that the minimum below is achieved uniquely, and at a blue term.

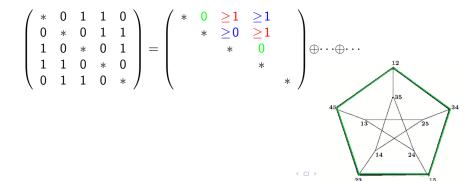
 $\begin{array}{l} \mathsf{x}_{12}\mathsf{x}_{13}\mathsf{x}_{24}\mathsf{x}_{35}\mathsf{x}_{45} \oplus \mathsf{x}_{12}\mathsf{x}_{13}\mathsf{x}_{25}\mathsf{x}_{34}\mathsf{x}_{45} \oplus \mathsf{x}_{12}\mathsf{x}_{14}\mathsf{x}_{23}\mathsf{x}_{35}\mathsf{x}_{45} \oplus \mathsf{x}_{12}\mathsf{x}_{14}\mathsf{x}_{25}\mathsf{x}_{34}\mathsf{x}_{35} \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{23}\mathsf{x}_{44}\mathsf{x}_{5} \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{23}\mathsf{x}_{44}\mathsf{x}_{5} \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{45} \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{34}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{23}\mathsf{x}_{25}\mathsf{x}_{34}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{35} \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{24}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{23}\oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{24}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{23}\oplus \mathsf{x}_{24}\mathsf{x}_{34}\mathsf{x}_{15}^2 \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{25}}\oplus \mathsf{x}_{13}\mathsf{x}_{15}\mathsf{x}_{35}\mathsf{x}_{24}^2\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{45}\mathsf{x}_{23}^2\oplus \mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{34}\mathsf{x}_{15}^2 \oplus \mathsf{x}_{23}\mathsf{x}_{25}\mathsf{x}_{24}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{45}\mathsf{x}_{23}^2\oplus \mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{34}\mathsf{x}_{15}^2 \oplus \mathsf{x}_{23}\mathsf{x}_{25}\mathsf{x}_{24}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{45}\mathsf{x}_{23}^2\oplus \mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{34}\mathsf{x}_{15}^2 \oplus \mathsf{x}_{23}\mathsf{x}_{25}\mathsf{x}_{24}\mathsf{x}_{25}^2 \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{24}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{45}\mathsf{x}_{23}^2\oplus \mathsf{x}_{24}\mathsf{x}_{34}\mathsf{x}_{15}^2 \oplus \mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{45}\mathsf{x}_{23}^2\oplus \mathsf{x}_{24}\mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \oplus \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}\mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{25}} \mathsf{x}_{25}} \mathsf{x}_{25}\mathsf{x}_{25}} \mathsf{x}_{25}} \mathsf{x}_{25}\mathsf{x}_{25}}\mathsf{x}_{25}} \mathsf{x}_{25}} \mathsf{x}_{25}}\mathsf{x}_{25}} \mathsf{x}$

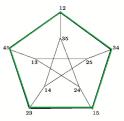
$$\begin{pmatrix} * & 0 & 1 & 1 & 0 \\ 0 & * & 0 & 1 & 1 \\ 1 & 0 & * & 0 & 1 \\ 1 & 1 & 0 & * & 0 \\ 0 & 1 & 1 & 0 & * \end{pmatrix} = \begin{pmatrix} * & 0 & \ge 1 & \ge 1 \\ & * & \ge 0 & \ge 1 \\ & & * & 0 \\ & & & * & * \\ & & & & * \end{pmatrix} \oplus \cdots \oplus \cdots$$

5 4 3 2

Theorem (Cartwright-C 2009) The set of dissimilarity matrices of tree rank 3 consists of those points such that the minimum below is achieved uniquely, and at a blue term.

 $\begin{array}{l} \mathsf{x}_{12}\mathsf{x}_{13}\mathsf{x}_{24}\mathsf{x}_{35}\mathsf{x}_{45} \oplus \mathsf{x}_{12}\mathsf{x}_{13}\mathsf{x}_{25}\mathsf{x}_{34}\mathsf{x}_{45} \oplus \mathsf{x}_{12}\mathsf{x}_{14}\mathsf{x}_{23}\mathsf{x}_{35}\mathsf{x}_{45} \oplus \mathsf{x}_{12}\mathsf{x}_{14}\mathsf{x}_{25}\mathsf{x}_{34}\mathsf{x}_{35} \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{23}\mathsf{x}_{44}\mathsf{x}_{5} \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{23}\mathsf{x}_{44}\mathsf{x}_{5} \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{45} \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{34}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{23}\mathsf{x}_{25}\mathsf{x}_{34}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{35} \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{24}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{23}\oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{24}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{23}\oplus \mathsf{x}_{24}\mathsf{x}_{34}\mathsf{x}_{15}^2 \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{25}}\oplus \mathsf{x}_{13}\mathsf{x}_{15}\mathsf{x}_{35}\mathsf{x}_{24}^2\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{45}\mathsf{x}_{23}^2\oplus \mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{34}\mathsf{x}_{15}^2 \oplus \mathsf{x}_{23}\mathsf{x}_{25}\mathsf{x}_{24}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{45}\mathsf{x}_{23}^2\oplus \mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{34}\mathsf{x}_{15}^2 \oplus \mathsf{x}_{23}\mathsf{x}_{25}\mathsf{x}_{24}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{45}\mathsf{x}_{23}^2\oplus \mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{34}\mathsf{x}_{15}^2 \oplus \mathsf{x}_{23}\mathsf{x}_{25}\mathsf{x}_{24}\mathsf{x}_{25}^2 \oplus \mathsf{x}_{12}\mathsf{x}_{15}\mathsf{x}_{25}\mathsf{x}_{24}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{45}\mathsf{x}_{23}^2\oplus \mathsf{x}_{24}\mathsf{x}_{34}\mathsf{x}_{15}^2 \oplus \mathsf{x}_{23}\mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}}\oplus \mathsf{x}_{14}\mathsf{x}_{15}\mathsf{x}_{45}\mathsf{x}_{23}^2\oplus \mathsf{x}_{24}\mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \oplus \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}\mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{24}\mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{24}} \mathsf{x}_{25}\mathsf{x}_{25}} \mathsf{x}_{25}} \mathsf{x}_{25}\mathsf{x}_{25}} \mathsf{x}_{25}} \mathsf{x}_{25}\mathsf{x}_{25}}\mathsf{x}_{25}} \mathsf{x}_{25}} \mathsf{x}_{25}}\mathsf{x}_{25}} \mathsf{x}$





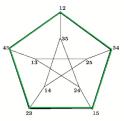
Theorem The chromatic number of the "conflict" hypergraph is a lower bound for rank.

Does this bound tell the truth?

- yes for tree rank on $n \leq 5$ taxa,
- no in general, but

Theorem In the case of a toric ideal and a universal Gröbner basis, the bound above is an equality.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ



Theorem The chromatic number of the "conflict" hypergraph is a lower bound for rank.

Does this bound tell the truth?

- yes for tree rank on $n \leq 5$ taxa,
- no in general, but

Theorem In the case of a toric ideal and a universal Gröbner basis, the bound above is an equality.

Thank you!

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

```
arxiv:0912.1411v1
mtchan@math.berkeley.edu
```