
COURSE NOTES FOR MATH 540, HONORS LINEAR ALGEBRA

MELODY CHAN

Contents

Part 1. Sets, functions, and Rn. 4
1. Sets 4
2. New sets from old 6
3. Cartesian product 7
4. Rn as a vector space 8
5. Functions 9

Part 2. Fields and vector spaces 10
6. Fields 10
7. The definition of a vector space 13
8. Subspaces 15
9. Span 16

Part 3. Linear maps 17
10. The definition of a linear map 17
11. Null space and range 18

Part 4. Linear independence, bases, and dimension 20
12. Linear independence 20
13. Bases 21
14. Dimension 23
15. The rank-nullity theorem 23

Part 5. Telling your friend a linear map 25
16. Linear maps are freely and uniquely determined by what they do to a basis 25
17. The matrix associated to a linear map 26
18. L(V,W ) as a vector space. 26
19. Composition of linear maps and product of matrices 28
20. Invertible linear maps 31

Part 6. Sums and direct sums 33

Date: August 5, 2021.

1



2 M. CHAN

21. Sums 33
22. Direct sums 33

Part 7. Linear operators: eigenvalues, eigenvectors, and invariant
subspaces 35

23. Eigenvalues, eigenvectors, and eigenspaces 35
24. Polynomials applied to operators 37
25. Upper triangular matrix representations 38
26. Diagonalizability 38

Part 8. Determinants 40
27. Desiderata for the determinant 40
28. First properties of the determinant, assuming it exists 41
29. Construction of the determinant 41
30. The transpose of a matrix 43
31. Multiplicativity of the determinant 44
32. Cofactors 45
33. Cofactors and inverses of square matrices 45
34. Postscript: using determinants to compute eigenvalues 47

Part 9. Inner product spaces 48
35. Motivation; complex numbers review 48
36. Definition of an inner products 48
37. Norms 49
38. Orthogonality, orthogonal decomposition. 50
39. Cauchy-Schwarz 51
40. Orthonormal bases 53
41. Orthogonal complements 54
42. Riesz representation theorem 55

Part 10. Operators on inner product spaces 57
43. The adjoint of a linear operator 57
44. Self-adjoint operators 59
45. The Spectral theorem 59
46. Positive operators 62
47. Isometries 63
48. Polar decomposition 64

Part 11. Appendix: Proving things 67
49. Proof Clinic 67
50. How to prove it 69



COURSE NOTES FOR MATH 540, HONORS LINEAR ALGEBRA 3

References 70

These are evolving course notes for Math 540, Honors linear algebra, at Brown University.



4 M. CHAN

Part 1. Sets, functions, and Rn.

This course weaves the topic of sets, logic, and proof into the course, studying them
through the lens of linear algebra. One could teach a whole course on elements of proof,
and fortunately there is one: Math 1001, offered in 2021-2022 by Professor Jordan Kostiuk!
For now, a great reference is [Ham18, Chapter 1].

1. Sets

Mathematics as it is studied and communicated today is built on set theory.

Definition 1.1. A set is collection of things. The things in the set are called its elements
or members.

That’s the best description we can give at the moment.
Sets are sometimes written with curly brackets enclosing a list, or at least a partial list,

of elements, separated by commas. For example: the integers

Definition 1.2. We let

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} and Z≥0 = {0, 1, 2, 3, . . .},
called the integers, respectively nonnegative integers.

Here the Z is for the German Zahlen, numbers.

Remark 1.3. Discuss the grammar of the above notation-setting sentence.

Definition 1.4.

(1) Let Q =

(2) Let R =

(3) Let C =

Definition 1.5. Define the notation for sets and elements ∈,3, ⊆, ⊇, =: Let X,Y be sets.

(1) x ∈ X means:

(2) x 6∈ X means:

(3) X ⊆ Y means:
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(4) Y ⊇ X means:

(5) X = Y means:
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2. New sets from old

We follow [Ham18, p.5] closely. A common way to describe sets is what Hammack calls
set-builder notation. Basically, you specify a set by giving

X = {expression : rule}.

For example, the set of even integers E = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .} can be written
in set-builder notation in many ways:

E = {2n : n ∈ Z}
E = {n : n ∈ Z is even} = {n ∈ Z : n is even}
E = {n ∈ Z : there exists k ∈ Z such that 2k = n}

The curly brackets are pronounced “the set of all” and the colon is pronounced “such
that.” (Sometimes people write | instead of the colon. They are synonymous. I use them
indiscriminately, depending on my mood.)

It is important to practice translating, both ways, between set-builder notation and
natural language descriptions of sets. One of the more unfamiliar feelings you may need
to get used to is the need to name things, i.e., assign symbols to quantities.

Example 1.6.

(1) Set-builder notation to English: Describe in words, as naturally as possible, the set

{a ∈ Q : 2a ∈ Z}.
(2) English to set-builder notation: Describe in set-builder notation the set of real

numbers whose squares are rational numbers.

Definition 1.7. Let A and B be sets. We let

(1) the intersection of A and B to be

A ∩B =

(2) the union of A and B to be
A ∪B =

(3) the set-theoretic difference of A and B to be

A \B =
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3. Cartesian product

Definition 1.8. An ordered pair is a list of two things (x, y) separated by a comma,
inside parentheses.

An ordered n-tuple is a list of n things (x1, . . . , xn) separated by a comma, inside
parentheses.

Definition 1.9. Let A,B be sets. The product, or Cartesian product, of A and B,
denoted A×B, is the set

{(a, b) : a ∈ A and b ∈ B}.

Definition 1.10. Similarly, define the Cartesian product of n sets A1, . . . , An:

If A is a set and n is a positive integer, then An denotes the n-fold Cartesian product

A× · · · ×A.

Example 1.11. Let’s pause to draw R2, the familiar Cartesian plane, and R3.



8 M. CHAN

4. Rn as a vector space

We are going to carry R2 and R3 through this class as running examples of vector
spaces, so let’s get started! Source: [Axl15, §1, pp. 7-10]

Let n ≥ 0 be a positive integer; n = 2 or n = 3 are the best examples to keep in mind
to start with. (The case n = 0 is permitted, but is mind-bending the first time you think
it through!)

Definition 1.12.

(1) (Addition in Rn) We define an addition operation on Rn by adding in each coordi-
nate:

(x1, . . . , xn) + (y1, . . . , yn) =

(2) (Scalar multiplication in Rn) We define, for each λ ∈ R and (x1, . . . , xn) ∈ Rn,

λ · (x1, . . . , xn) =

Often we omit the · for short.

Remark 1.13. Discuss how to add and scale vectors in R2; draw pictures.
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5. Functions

Let A and B be sets. What is a function f : A → B? Informally it is a rule that
determininstically associates some b ∈ B to each a ∈ A. We write f(a) = b in that
situation, or a 7→ b. In this situation A is called the domain and B is called the codomain
or target.

Definition 1.14. Formally, a function f : A → B is a subset I’ll denote Gf
1 of A × B

with the property that for every a ∈ A, there is a unique b ∈ B with (a, b) ∈ Gf . In this
situation, for a ∈ A, we write

f(a) = b

or
a 7→ b

for this unique b ∈ B.

Definition 1.15. Let f : A→ B be a function.

(1) We say f is injective or is an injection if:

(2) We say f is surjective or is a surjection if:

(3) We say f is bijective if or is a bijection if:

1Visualize Gf as the “graph of f .”
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Part 2. Fields and vector spaces

Reference throughout: [Axl15].

6. Fields

Reference: [Axl15, page 3]. The real numbers R with their usual notions of addition and
multiplication are an example of a field.

Definition 2.1. A field is a set F containing elements named 0 and 1, together with binary
operations + and · on F, satisfying:

• commutativity:

• associativity:

• identities:

• additive inverse:

• multiplicative inverse of nonzero elements:

• distributive property:

A good second example of a field is the field of complex numbers C.

Definition 2.2. The field of complex numbers C:

Let’s verify that C is a field. Let’s do the most interesting (to me) of the verifications,
namely the existence of multiplicative inverses.

Proposition 2.3. For every α ∈ C with α 6= 0, there exists β ∈ C with αβ = 1.

Let’s do scratchwork before doing the proof: we have

(a+ bi)(a− bi) = a2 − b2, so (a+ bi)(a− bi)/(a2 − b2) = 1.

Proof.

�
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Example 2.4. A different kind of example, just so you know they’re out there: let p be a
prime number, say p = 2 or p = 5. Let’s define the field Fp of p elements, and write out
its addition and multiplication tables (think “clock arithmetic”.)

Finite fields—that is, fields with only finitely many elements—are a big deal in cryptog-
raphy/number theory these days.

Remark 2.5. A lovely digression. What goes wrong if you try the above definition for p
a composite number, say p = 4? Try it.

So that multiplication table doesn’t work, but remarkably it turns out that there is a
field with exactly four elements, it’s just not given by clock arithmetic on the numbers
0, 1, 2, 3. The version I have in mind has 4 elements, called 0, 1, x, x+ 1, with addition and
multiplication tables:

+ 0 1 x x+ 1

0 0 1 x x+ 1
1 1 0 x+ 1 x
x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

· 0 1 x x+ 1

0 0 0 0 0
1 0 1 x x+ 1
x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

I remember that as “polynomials in x with coefficients in the field F2, where 1 + 1 = 0,
subject to the rule x2 = x+ 1.”

How did I figure this out? Please take Math 1530/1540 to find out. Remarkably for an
integer n > 1, there is a field with n elements precisely when n is a power of a prime!

Now that you know how rich and different fields can be, it should feel more empowering
to prove innocent-sounding statements like “zero times anything is always zero” in any
field. Okay, that’s “obvious” in R, say, but why does it definitely hold for all fields?

Proposition 2.6. In any field F, 0 · x = 0 for any x ∈ F.
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Proof.

�
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7. The definition of a vector space

See [Axl15, pp. 12-13]. Fix a field F.

Definition 2.7. A vector space is a set V , together with an addition operation + on V
and a scalar multiplication on V such that:

• commutativity:

• associativity of addition and of scalar multiplication:

• additive identity:

• additive inverse:

• multiplicative identity:

• distributive properties:

Definition 2.8. Elements of a vector space are called vectors, or sometimes, when think-
ing geometrically, points.

Example 2.9. Examples of vector spaces over F.

(1) Fn, for some n ≥ 0. (We interpret F0 to be the vector space {0}, with a single
vector 0.2)

(2) F∞ = {(x1, x2, . . .) : xj ∈ F for j = 1, 2, . . .}. Addition and scalar multiplication
are defined as expected:

(3) More generally, let S be any set. Then FS denotes the set of functions from S to F.
Define addition and scalar multiplication on FS , and discuss why this is a vector
space.

2This actually makes sense per item (3) below—this takes some careful thought about the empty set.
But it’s fine just to remember this as a convention, or, frankly, not to remember it at all.
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Remark 2.10. Discuss why we said “more generally” above. For example, if S = {1, 2, 3}
then RS = R3. In other words, a function {1, 2, 3} → R is the same thing3 as an ordered
triple (x1, x2, x3) of real numbers.

Example 2.11. Other examples: continuous functions R→ R. Polynomials in x over R,
denoted R[x].

Let V be a vector space over F. Let’s establish some basic properties of vector spaces.
This is both mundane and kinda remarkable at the same time. After all, these properties
might seem obvious for examples of vector spaces, like Rn, that you already know. But
these follow from the definitions of vector spaces, so they apply to all vector spaces.

Proposition 2.12. V has a unique additive identity.

Proof. �

Proposition 2.13. Every vector v ∈ V has a unique additive inverse. We will denote this
additive inverse −v.

Proof. �

Proposition 2.14. For all v ∈ V ,

0 · v = 0.

Proof. �

3OK, not quite the same thing. But given a function {1, 2, 3} → R, how would you extract an ordered
triple (x1, x2, x3) of real numbers? And conversely? So to be perfectly precise, we have constructed a
bijection between the elements of the vector space of functions {1, 2, 3} → R, and the elements of the
vector space R3 of ordered triples of reals. This bijection preserves the operations of addition and scalar
multiplication (make this precise).
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Proposition 2.15. For all a ∈ F,

a · 0 = 0.

(Here 0 denotes the zero vector. Above, 0 denoted the zero scalar in F.)

Proof. �

Proposition 2.16. (−1) · v = −v for all v ∈ V .

Parse this one slowly!

Proof. �

8. Subspaces

Let V be a vector space over F.

Definition 2.17. A subset U of V is a linear subspace or subspace of V if

(1) 0 ∈ U ;
(2) u,w ∈ U implies u+ w ∈ U ,
(3) a ∈ F and u ∈ U implies au ∈ U .

Proposition 2.18. A subspace of a vector space is itself a vector space, using the same
addition and scalar multiplication as on V .

Proof. Let U be a subspace of a vector space V . The point is that if U satisfies the above
conditions (2) and (3), then U is closed under addition and scalar multiplication. Still,
there are other things to check to check that U is a vector space:

• Commutativity of + and associativity of + and · hold because they hold in V .
• The existence of an additive identity holds by (1).
• The existence of additive inverses holds: given u ∈ U , we know (−1)u ∈ U by (3),

and u+ (−1)u = 0.
• The property that 1u = u for all u ∈ U holds because 1v = v holds for all v ∈ V .
• The distributive laws hold because they hold in V .

�

Example 2.19. Let V be the space of functions R→ R. Then the subset U of continuous
functions R→ R is a subspace.
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Example 2.20. The subset
{f ∈ R[x] : f(5) = 0}

forms a subspace of R[x]. But not

{f ∈ R[x] : f(5) = 1}

Example 2.21. What are all of the subspaces of R2?

9. Span

The following is conceptually very important. Suppose I have a subspace W of R2 in
mind but I’m keeping it a secret. But you figure out that the vectors (2, 1) and (1, 2) are
in my subspace. What else can you conclude is in my subspace?

Let V be a vector space over F.

Definition 2.22. A linear combination of a list v1, . . . , vm of vectors in V is a vector
of the form:

Example 2.23. Do an example.

Suppose v1, . . . , vm ∈ V .

Definition 2.24. The linear span or span of v1, . . . , vm, denoted span(v1, . . . , vm), is the
set of all linear combinations of v1, . . . , vm.

{a1v1 + · · ·+ amvm : a1, . . . , am ∈ F}.

The span of no vectors at all is defined to be {0}. What? That convention fits concep-
tually with the following proposition:

Proposition 2.25. The span of v1, . . . , vm is the smallest subspace of V containing
v1, . . . , vm.

We mean smallest in terms of containment. In other words, the proposition consists of
two statements:

(1) span(v1, . . . , vm) is a subspace of V .
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(2) If W is a subspace of V and v1, . . . , vm ∈W , then also span(v1, . . . , vm) ⊆W .

Proof. �

Definition 2.26.

(1) If span(v1, . . . , vm) = V then say that v1, . . . , vm spans V .
(2) We call V finite-dimensional if there is a list (by which we mean a finite list) of

vectors that span V .

Example 2.27. (An example of an infinite-dimensional vector space) If time permits:
discuss [Axl15, p.31] of the space of polynomials P(F) in one variable.

Part 3. Linear maps

10. The definition of a linear map

Let F denote a field, and let V,W be vector spaces over F. What should a linear map
be? Discuss this.

Definition 3.1. A function T : V →W is called a linear map if it satisfies:

The set of linear maps from V →W is denoted L(V,W ).
So it isn’t a requirement that a linear map V → W send 0 ∈ V to 0 ∈ W . Rather, it

follows from the definition, as we now show.

Proposition 3.2. Let T : V →W be a linear map. Then T (0) = 0.

Proof. We have T (0) = T (0+0) = T (0)+T (0), by linearity. Now add the additive inverse
of T (0) to both sides; we obtain 0 = T (0). �

Example 3.3. Let T : R → R be given by T (x) = 5x. Is T a linear map? What are all
linear maps from R→ R?
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Example 3.4. Important building block examples: the zero map 0 : V → W . Or, in the
case of domain=codomain, the identity map I : V → V .

Example 3.5. Differentiation is a linear map on polynomial functions:

The following is conceptually crucial:

Example 3.6. (Conceptually important!) Suppose I promise you that I have a linear
map T : R2 → R2 in mind, but I’m reluctant to tell it to you. But I do let on that

T (1, 0) = (2, 1), T (0, 1) = (1,−1).

What else can you figure out about T?

Remark 3.7. Also, it’s hard, but how you might draw the linear map T?

11. Null space and range

Let T : V →W be a linear map.

Definition 3.8. The nullspace or kernel of T , written nullT , is “the stuff that is sent
to 0”:

Definition 3.9. The range of T is, well, the range:

Proposition 3.10. nullT and rangeT are subspaces (of V and W respectively.)

Proof.

�
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The words injective, surjective, and bijective apply to linear maps too. Injectivity de-
serves more mention because it turns out there is a convenient way to check injectivity of
linear maps. Note that if a linear map T is injective, then in particular it doesn’t send two
distinct elements of V both to 0 ∈ W . In particular, since T (0) = 0, we conclude that
nullT = {0} for an injective linear map T .

Actually, the converse holds too:

Proposition 3.11. Let T : V →W be a linear map. If null(T ) = {0} then T is injective.

Proof. Suppose nullT = {0}; we wish to show that T is injective. Given v, v′ ∈ V such
that Tv = Tv′, we wish to deduce v = v′. Indeed,

0 = Tv′ + (−Tv) = Tv′ + T (−v) = T (v′ + (−v)),

so v′ + (−v) = 0 by the assumption on the nullspace. So v′ = v by adding v to both
sides. �
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Part 4. Linear independence, bases, and dimension

12. Linear independence

Let V be a vector space.

Definition 4.1. A list v1, . . . , vm of vectors in V is called linearly independent if for any
a1, . . . , am ∈ F,

a1v1 + · · ·+ amvm = 0 implies a1 = · · · = am = 0.

The empty list of vectors is also declared to be linearly independent.
The definition of linear independence above is the most useful for proving things. But

conceptually I find it easier (at first) to understand the negation, which is called linear
dependence:

Definition 4.2. A list v1, . . . , vm of vectors in V is called linearly dependent if they are
not linearly independent.

Exercise 4.3. Write this explicitly using quantifiers. At this point it’s good to nail down
how to negate a statement P implies Q.

Thus, observe that v1, . . . , vm are linearly dependent iff one of the vectors is in the span
of the others. (Do you agree?) This is the easiest criterion for me to use for my intuition,
because I have an easier time picturing spans.

In fact we can make the more precise claim below, which will be instrumental in the
next proofs.

Lemma 4.4. (Linear dependence lemma)4 If v1, . . . , vm ∈ V are linearly dependent, there
is some vj such that

(1) vj ∈ span(v1, . . . , vj−1), and
(2) the span of the remaining vectors v1, . . . , v̂j , . . . , vm equals span(v1, . . . , vm).5

Proof. Proved in class. See [Axl15, p. 34].

�

4A lemma is a little thing that you prove en route to a cooler thing.
5Discuss hat notation! It means “with vj removed.”
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Proposition 4.5. Let V be a finite-dimensional vector space. The length of every list of
linearly independent vectors is at most the length of every spanning set.

Proof. Proved in class. See [Axl15, p. 35]. �

Corollary 4.6. Every subspace of a finite-dimensional vector space is finite-dimensional.

Proof. Proved in class. See [Axl15, p. 36]. �

13. Bases

Proposition 4.7. Vectors v1, . . . , vm ∈ V are linearly independent iff for any vector v in
their span, there exists a unique choice of a1, . . . , am ∈ F such that

v = a1v1 + · · ·+ amvm.

Proof. Omitted.
The best situation is when you have a spanning set that is also linearly independent.

Definition 4.8. A basis of V is a list of linearly independent vectors that spans V .

Example 4.9. A good example is the standard basis of Rn:

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, . . . , 0, 1).
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But there are lots of other bases. What are all the bases of R2? What do they look like?
Work this out.

Bases are completely crucial to working with vector spaces! Why? If v1, . . . , vm is a
basis of V , then

(1) the fact that v1, . . . , vm span V means that each vector can be written in the form

v = a1v1 + · · ·+ amvm, for some a1, . . . , am ∈ F,
(2) and the fact that v1, . . . , vm are LI implies that those a1, . . . , am are determined

uniquely. Indeed, if

a1v1 + · · ·+ amvm = b1v1 + · · ·+ bmvm,

then
(a1 − b1)v1 + · · ·+ (am − bm)vm = 0,

so by linear independence, a1 − b1 = · · · = am − bm = 0.

The converse holds too. (Argue this.) Putting together the statement above and its
converse, we conclude:

Proposition 4.10. A list of vectors v1, . . . , vm is a basis of V iff for every v ∈ V , there
exist unique a1, . . . , am ∈ F such that

v = a1v1 + · · ·+ amvm.

Now we prove that every spanning list can be whittled down to a basis, and that every
linearly independent list can be beefed up into a basis.

Let V be a vector space.

Proposition 4.11. Every spanning list of V contains a basis of V .

Proof. See [Axl15, p.40].

�

Corollary 4.12. Every finite-dimensional vector space has a basis.

Proposition 4.13. Every linearly independent list of vectors in a finite-dimensional vector
space V can be extended to a basis of V .

Proof. See [Axl15, p.41].

�
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Both of these propositions are proven using a “greedy algorithm.” This is an umbrella
term for any kind of procedure to work towards a goal in which you can never paint
yourself into a corner. As long as you’re making progress towards your goal, you’re good.
The “greedy” nature of both of these procedures (whittling down spanning lists, beefing
up linearly independent lists) is conceptually quite deep.

14. Dimension

We have everything we need to define the dimension of a vector space. This is the most
important number you can associate to a finite-dimensional vector space: it is the length
of any basis. Indeed:

Proposition 4.14. Any two bases of a finite-dimensional vector space V have the same
length.

By “length” we just mean number of elements.

Proof.

�

Definition 4.15. The dimension of a finite-dimensional vector space V is the length of
any basis. It is denoted dimV .

Example 4.16. The dimension of Fn is n. What is the dimension of {0}?

Proposition 4.17. Let V be a vector space of dimension n.

(1) Every linearly independent list of vectors in V of length n is a basis.
(2) Every spanning list of vectors in V of length n is a basis.

15. The rank-nullity theorem

Axler calls this the fundamental theorem of linear maps [Axl15, p. 63]. Let V and W
be vector spaces over F.

Theorem 4.18. Suppose V is finite-dimensional and T ∈ L(V,W ) is a linear map to W .
Then rangeT is finite-dimensional and

dimV = dim nullT + dim rangeT.
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Proof.

�

This theorem is powerful. Here is an example:
Consider 5 homogeneous linear equations in 6 variables. For example

a1x1 + · · ·+ a6x6 = 0

is one such equation (for scalars a1, . . . , a6). Homogeneous means the right hand side of
the equation is 0.

Does this system of equations have a solution? Well yes, here’s one: x1 = · · · = x6 = 0.
Does it have any others? Discuss, and convince ourselves of:

Proposition 4.19. A homogeneous system of linear equations with more variables than
equations has a nonzero solution.

Amazing!
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Part 5. Telling your friend a linear map

How do you tell your friend a linear map? In a text message, as efficiently as possible?

16. Linear maps are freely and uniquely determined by what they do to a
basis

Axler slips this in without much fanfare, but this is for me the absolute most important
result in the book (in my opinion). See [Axl15, p. 54]. Let V and W be vector spaces over
F.

Theorem 5.1. Suppose v1, . . . , vn is a basis for V , and w1, . . . , wn ∈ W are any vectors.
Then there exists a unique linear map T : V →W such that

T (v1) = w1, . . . , T (vn) = wn.

My slogan for this theorem is: Linear maps are freely and uniquely determined by what
they do to a basis. This theorem was the challenging second problem during the Proof
Clinic.

By “freely” I mean that once you pick a basis v1, . . . , vn of V , a three-year-old could pick
vectors wi completely according to their whim and there would be a linear map taking v1
to w1, v2 to w2, etc. There are no constraints on the wi needed to ensure that such a linear
map exists. By “uniquely” I mean that there is a unique such linear map.

Proof.

�



26 M. CHAN

17. The matrix associated to a linear map

Textbook reference: [Axl15, p. 70]. First of all, an m× n matrix over a field F is just a
rectangular array, m rows and n columns, filled with elements of F. The entry of a matrix
A in row j, column k is denoted Aj,k.

Definition 5.2. Let T : V →W be a lienar map, v1, . . . , vn a basis for V , and w1, . . . , wm
a basis for W . The matrix of T with respect to these bases is the m× n matrix, denoted
A =M(T ), whose entries Aj,k are defined by

T (vk) = A1,kw1 + · · ·+Am,kwm.

Remark 5.3. Important remark: Note that since w1, . . . , wm is a basis, the scalars Aj,k
are determined uniquely. That is, there’s always a unique way to write each T (vk) as a
linear combinations of w1, . . . , wm. In this way, M(T ) is determined uniquely by T .

The indexing gets finnicky here, admittedly. The notational conventions are perhaps
best illustrated by example:

Example 5.4. Let T : R2 → R3 be the unique linear map such that

T (1, 0) = (1, 2, 7), T (0, 1) = (3, 5, 9).

Then with respect to the standard bases of R2 and R3,

M(T ) =

 1 3
2 5
7 9

 .

I remember the notation by: the kth column of the matrix records “where vk goes.”
The point is that, once bases of V and W respectively are agreed upon, a matrix M(T )
encodes T without losing information; it’s like shorthand for T .

18. L(V,W ) as a vector space.

Source: [Axl15, pp. 52-55] Let V and W be vector spaces over a field F.

Definition 5.5. The set of linear maps from V to W is denoted L(V,W ).

In fact L(V,W ) can be given the structure of a vector space! By this, I mean that we
can, and will, define addition and scalar multiplication on L(V,W ), in such a way that the
properties of a vector space are satisfied. As follows:

Definition 5.6. (Definition of addition and scalar multiplication on L(V,W )): Let S, T ∈
L(V,W ) and λ ∈ F.

• We define S + T to be the function from V to W given by

(S + T )(v) = S(v) + T (v) for all v ∈ V.
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• We define λT to be function from V to W given by

(λT )(v) = λ · T (v) for all v ∈ V.

In fact, the functions S + T and λT are again linear maps, as we next check.

Proposition 5.7. S + T and λT , defined above, are linear maps.

Proof.

�

With addition and scalar multiplication defined in this way on L(V,W ), we assert that
L(V,W ) is itself a vector space over F. There are various properties to check are satisfied,
like associativity, distributivity, etc. We won’t.

Remark 5.8. What is the additive identity of the vector space L(V,W )?

Let Fm,n denote the set of m× n matrices over F.

Definition 5.9. Define addition and scalar multiplication on Fm,n:

With these operations, Fm,n is a F-vector space. Now we come to the main proposition,
which states, intuitively, that “the vector space structure on Fm,n agrees with the vector
space structure on L(V,W ).”

Proposition 5.10. Let V and W be finite-dimensional vector spaces over F, and fix bases
v1, . . . , vn for V and w1, . . . , wm for W . Then for any S, T ∈ L(V,W ) and λ ∈ F,

M(S + T ) =M(S) +M(T ) and M(λT ) = λM(T ).

Proof. To ease notation, let A =M(S) and B =M(T ). By definition ofM(S) andM(T ),
for each i = 1, . . . , n, we have

S(vi) = A1,iw1 + · · ·+Am,iwm

T (vi) = B1,iw1 + · · ·+Bm,iwm.
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Now, (S + T ) is the unique linear map from V to W such that for each i = 1, . . . , n,

(S + T )(vi) = S(vi) + T (vi)

= (A1,iw1 + · · ·+Am,iwm) + (B1,iw1 + · · ·+Bm,iwm)

= (A1,i +B1,i)w1 + · · ·+ (Am,i +Bm,i)wm

So M(S + T ) = A+B =M(S) +M(T ) as desired.
The proof that M(λT ) = λM(T ) proceeds similarly; depending on how you felt about

the above proof that M(S + T ) =M(S) +M(T ), you can fill it in as an exercise. �

In other words: M(·) is itself a linear map from L(V,W ) to Fm,n. And actually it is
bijective.

Proposition 5.11. [Axl15, p.83] Let V and W be finite-dimensional vector spaces over F
and choose bases v1, . . . , vn and w1, . . . , wm respectively. Then the map

M(·) : L(V,W )→ Fm,n

sending T 7→ M(T ) is a bijective linear map.

Proof. The previous proposition proves that it is linear. Why is it bijective? Given A ∈
Fm,n, we must show that there exists a unique linear map T : V →W such thatM(T ) = A.

Indeed, by definition of the matrix of a linear map, we wish to show that there exists a
unique linear map T : V →W such that for each i = 1, . . . , n,

T (vi) = A1,iw1 + · · ·+Am,iwm.

But this is true by the theorem we proved that linear maps are freely and uniquely deter-
mined by what they do to a basis! �

Remark 5.12. We will return to the following important definition: a invertible linear
map or isomorphism is a linear map that is a bijection. Thus the proposition above can be
summarized by saying that we have an isomorphism between L(V,W ) and Fm,n.

Corollary 5.13. When V and W are finite-dimensional, dimL(V,W ) = (dimV )(dimW ).

19. Composition of linear maps and product of matrices

See [Axl15, p.55].

Definition 5.14. If T : U → V and S : V → W are linear maps, then their product or
composition is the linear map ST : U →W defined by

(ST )(u) = S(T (u))

for all u ∈ U.
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Definition 5.15. A linear map T : V → V from a vector space to itself is called a linear
operator.

If T ∈ L(V, V ) is a linear operator, then we write T 2 for TT , etc. Linear operators are
great because you can apply them repeatedly, and it’s often interesting to consider such
iterations.

The notation for composition of functions S ◦ T is sometimes used. The order is a
perennial source of confusion here. ST means “first apply T , then apply S.”

Let’s check the claim implicit in the definition that the composition of linear maps is
again linear: for all a1, a2 ∈ F, u1, u2 ∈ U ,

S(T ((a1u1 + a2u2)) = S(a1T (u1) + a2T (u2)) = a1S(T (u1)) + a2S(T (u2)).

Proposition 5.16. Associativity, identity, and distributive properties of composition of
linear maps:

Important caution: If S, T : V → V are linear operators on V , it is generally not the
case that ST = TS. Can you think of examples? Another important caution is that
ST = 0 generally does not imply that S = 0 or T = 0. Can you think of examples?

How about a product structure on matrices?

Definition 5.17. (See [Axl15, p.75]) Definition of matrix multiplication:

The definition is best explained in examples. For example, let T : R2 → R2 be the unique
linear map given by

T (1, 0) = (2, 1), T (0, 1) = (1, 1),

and let S : R2 → R3 be the unique linear map given by

S(1, 0) = (1, 2, 7), S(0, 1) = (3, 5, 9).

Example 5.18. Calculate M(S),M(T ),M(S)M(T ), and M(ST ).
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Proposition 5.19. [Axl15, p. 75] Suppose T : U → V and S : V → W are linear maps
between finite-dimensional vector spaces, and fix bases

u1, . . . , up, v1, . . . , vn, w1, . . . , wm

for U, V, and W respectively. Then with respect to these bases,

M(ST ) =M(S)M(T ).

Proof. �

Example 5.20. Let Rθ : R2 → R2 be rotation counterclockwise by angle θ about the
origin. Convince yourself that Rθ is linear; consider (Rθ)

2 to deduce the double angle
formulas.
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20. Invertible linear maps

Definition 5.21. An invertible linear map, also called an isomorphism, is a bijective linear
map.

Example 5.22. The rotation-by-θ map Rθ : R2 → R2 is a bijective linear map, so it is
invertible. Also, discuss an example in which the domain and codomain are not the same
vector space.

But the following equivalent formulation of invertibility is conceptually more important.6

Proposition 5.23. A linear map T ∈ L(V,W ) is invertible if and only if there exists
S ∈ L(W,V ) such that ST = IV and TS = IW .

If so, we write S = T−1 and say that T has an inverse, namely S. You will see shortly
in the proof below that if T is invertible, then its inverse S is unique. We say that V and
W are isomorphic, and write V ∼= W , if there exists an isomorphism from V to W .

Example 5.24. What is the inverse of Rθ?

Proof. We’ll sketch the proof of the proposition. Suppose T is a linear map.

First, we’ll convince ourselves that if T fails to be injective, then there cannot possibly
be an S ∈ L(W,V ) such that ST = IV . Do you agree?

Next, we’ll convince ourselves that if T fails to be surjective, then there cannot possibly
be an S ∈ L(W,V ) such that TS = IW . Do you agree?

These two statements together imply that if T has an inverse, then T is bijective. Now
it remains to prove the converse. Say T is a bijective linear map, and let S : W → V be
the functino that sends w ∈W to the unique v ∈ V such that T (v) = w. Then S ◦ T = IV
and T ◦ S = IW . (Convince ourselves that this is the only possibility for an inverse of T .)

Are we done? Not yet: it remains to prove that S is a linear map. We wish to show
that

S(a1w1 + a2w2) = a1S(w1) + a2S(w2)

for all a1, a2 ∈ F, w1, w2 ∈W . Since T is injective, we win if we can show that

T (right hand side) = T (left hand side).

Do this!

6In the textbook, in fact, invertibility is defined as below and then proved to be equivalent to being a
bijective linear map.



32 M. CHAN

�

Proposition 5.25. Let V and W be finite-dimensional vector spaces. Then V ∼= W iff
dimV = dimW .

Proof. We have already seen, from the rank-nullity theorem, that if T : V →W is a bijective
linear map between finite-dimensional vector spaces, then dimV = dimW. This proves ⇒.
Conversely, suppose dimV = dimW , and choose bases v1, . . . , vn and w1, . . . , wn for V and
W respectively. Let T be the unique linear map such that T (vi) = wi for i = 1, . . . , n.

We claim that T is bijective. There are many equally good ways to proceed at this point.
For example, first note range(T ) = W since w1, . . . , wn span range(T ), so T is surjective.
To prove injectivity of T , either prove it directly or invoke the rank-nullity theorem. �

Corollary 5.26. Every finite-dimensional vector space over a field F is isomorphic to Fn
for some n ≥ 0.

It’s worth discussing slowly why we don’t study the vector spaces Fn at this point, given
the corollary above.

We end with the following useful proposition:

Proposition 5.27. Suppose V and W are finite-dimensional vector spaces with dimV =
dimW , and let T ∈ L(V,W ). The following are equivalent (“TFAE”):7

(1) T is invertible.
(2) T is injective.
(3) T is surjective.

Proof. Recall that
dimV = dim nullT + dim rangeT.

So we have dim nullT = 0 iff dim rangeT = dimV iff dim nullT = 0 AND dim rangeT =
dimV . So T is injective iff T is surjective iff T is bijective. �

7Discuss what this means! I.e., each pair of statements is related by iff.
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Part 6. Sums and direct sums

21. Sums

Let’s motivate the concept of the sum of subspaces, before officially defining it. Consider
the following subspaces of R3:

U1 = {(x, 0, 0) : x ∈ R}, U2 = {(0, y, 0) : y ∈ R}.
Note that U1∪U2 is not a subspace. What’s the smallest subspace containing both U1 and
U2? Discuss.

Definition 6.1. Let U1, . . . , Um be subspaces of a vector space V . Their sum is defined
to be the subset of V

U1 + · · ·+ Um = {u1 + · · ·+ um : u1 ∈ U1, . . . , um ∈ Um}.

Proposition 6.2. U1+· · ·+Um is the smallest subspace of V containing each of U1, . . . , Um.

What do we mean by smallest subspace? It means two claims rolled into one:

(1) U1 + · · ·+ Um is, itself, a subspace of V .
(2) It is the smallest such in the sense that any subspace of V that contains each

U1, . . . , Um contains U1 + · · ·+ Um.

So to prove the proposition, we need to prove the two claims.

Proof. �

It’s good to meditate on the following: Let U be a subspace of V . Then U = U + U. In
fact

U = U + U = U + U + U = · · · .
This brings us to: how to prove two sets are equal? See 11.

22. Direct sums

Sometimes sums are “wasteful” in the sense that a given element v ∈ U1 + · · ·+Um can
be expressed more than one way in the form u1 + · · ·+ um with each uj ∈ Uj .

Example 6.3. Discuss an example.
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Definition 6.4. Let U1, . . . , Um be subspaces of V , and let W = U1 + · · · + Um denote
their sum. Then W is called a direct sum if each element v ∈W can be written uniquely
as

v = u1 + · · ·+ um, uj ∈ Uj for each j = 1, . . . ,m.

We emphasize that W is a direct sum by writing

W = U1 ⊕ · · · ⊕ Um.

Example 6.5. Discuss an example.

That definition seems clunky because it looks like to check that U1 + · · ·+Um is a direct
sum, you’d have to check that for each element v in the sum, it has a unique expression as
v = u1 + · · ·+ um, uj ∈ Uj for each j = 1, . . . ,m. But it turns out there’s that you only
have to check that condition for v = 0, as we now show.

Proposition 6.6. Suppose U1, . . . , Um are subspaces of V . Then U1 + · · ·+Um is a direct
sum if and only if the only way to write 0 as a sum u1 + · · ·+ um, with each uj ∈ Uj , is

0 = 0 + · · ·+ 0.

Proof.

�
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Part 7. Linear operators: eigenvalues, eigenvectors, and invariant subspaces

Here’s a rough account of what we’ve studied so far. We studied vector spaces and
structures associated to them (bases, subspaces). And we studied linear maps between
vector spaces, and structures associated to them (nullspace, range). Also, we studied
matrix representations of linear maps: i.e., how to communicate a linear map from
V →W , having fixed choices of bases of V and W .

Next, we begin a more in-depth study of linear operators on finite-dimensional vector
spaces. (Remember, linear operator is just a special term for a linear map from a vector
space V to itself.) You have seen many examples of operators that perhaps convince you
of their importance in the study of linear algebra, e.g.,:

• “physical” transformations of familiar vector spaces like R2, such as “dilating by a
factor of 2,” “projecting to the line x = y, “rotating by angle θ”;
• operators on polynomials (more generally, on infinitely-differentiable functions)

such as differentiation;
• operators that encode transition probabilities between states in a Markov chain,

such as in the hot potato problem on the problem set.

So, now it is time to study structures associated to operators. In particular, we’ll define
invariant subspaces, eigenvalues, eigenvectors, eigenspaces. We’ll see some structures that
all operators on finite-dimensional complex vector spaces (vector spaces over C) enjoy.

23. Eigenvalues, eigenvectors, and eigenspaces

Source: [Axl15, Ch. 5]. Notation: We write L(V ) for L(V, V ) for short; i.e., L(V )
denotes the set of linear operators on V . Given T ∈ L(V ), we may start to write Tv for
T (v), just for short.

Definition 7.1. Let V be any vector space over F and let T : V → V be a linear operator.
An element λ ∈ F is called an eigenvalue for T if Tv = λv for some nonzero vector v ∈ V .

Definition 7.2. Such a nonzero vector v ∈ V is called an eigenvector of T corresponding
to λ.. In other words, a vector v ∈ V is an eigenvector with eigenvalue λ if v 6= 0 and
Tv = λv.

Example 7.3. Do some familiar running examples of operators R2 → R2: horizontal
stretch by a factor of 2, projection to the x-axis.

The definition of an eigenvector associated to λ is a little annoying because the set of
eigenvectors associated to λ don’t actually form a subspace; we specifically said that 0
is never an eigenvector. Much more natural is to study the eigenvectors associated to λ
together with 0.
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Definition 7.4. (See [Axl15, p. 55].) Let T ∈ L(V ) and let λ ∈ F. The eigenspace of T
corresponding to λ, denoted E(λ, T ), is:

Rather than studying the eigenvectors associated to λ, it’s much better to throw 0 in
and study the eigenspace of T corresponding to λ, since eigenspaces are actually subspaces!

Proposition 7.5. ([Axl15, p. 134]) Let V be a finite-dimensional vector space, T ∈ L(V ),
and λ ∈ F. The following are equivalent:

(1) λ is an eigenvalue of T .
(2) T − λI is not injective.
(3) T − λI is not surjective.
(4) T − λI is not bijective.

Here I = 1V : V → V denotes the identity linear map on V .

Proposition 7.6. [Axl15, p. 136] Let T ∈ L(V ) and let v1, . . . , vm be eigenvectors cor-
responding to distinct eigenvalues λ1, . . . , λm respectively. Then v1, . . . , vm are linearly
independent.

Example 7.7. Make sure your answers to the review sheet questions were consistent with
this proposition. For example, this says that you can’t have three different 1-dimensional
eigenspaces in R2, although you can in R3.

Proof.

�

Corollary 7.8. Suppose V is finite-dimensional. Then each operator on V has at most
dimV distinct eigenvalues.
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24. Polynomials applied to operators

Let V be a vector space over F.

Definition 7.9. Let T ∈ L(V ), and let p ∈ P(F), say

p(z) = a0 + a1z + · · ·+ amz
m.

We define

p(T ) = a0I + a1T + · · ·+ amT
m.

What is p(T )? It is itself a linear operator on V .
Polynomials have some remarkable properties, many of which are beyond the scope of

the course. For this reason, it is useful to study polynomials applied to operators—so that
we can borrow some of the magic of polynomials.

For example, let’s state (without proof) the Fundamental Theorem of Algebra:

Theorem 7.10. Every nonconstant polynomial over C has a root. In fact, every polyno-
mial over C can be factored into linear factors

p(z) = c(z − λ1) · · · (z − λm).

Proof. See [Axl15, p. 124-125] �

Then, we are ready to prove an important and not at all obvious theorem:

Theorem 7.11. [Axl15, p. 145] Every operator on a finite-dimensional, nonzero, complex
vector space has an eigenvalue.

Proof. �
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25. Upper triangular matrix representations

Note: I ultimately decided not to cover Theorem 7.12 in this class.

A big theme here is finding good bases. Given a linear operator T ∈ L(V ), can we find a
basis v1, . . . , vn of V with respect to whichM(T ) is in some convenient form? The theorem
we just proved says that every linear operator T on a complex finite-dimensional vector
space has a basis with respect to which the first column of M(T ) is

λ
0
...
0

 .

The best kinds of matrices are diagonal matrices. Discuss the definition of diagonal
matrix, and why they are great when it comes to computations. For example, it’s hard to
compute An for some big n in general, but easy to do so if A is diagonal?

Unfortunately, it is not true that every operator T on a finite-dimensional complex vector
space V can be represented by a diagonal matrix with respect to some basis of V . But it’s
worth stopping to note that T can always be given a upper triangular matrix:

Theorem 7.12. Suppose V is a finite-dimensional complex vector space and T ∈ L(V ).
Then T has an upper-triangular matrix with respect to some basis of V .

Proof. Either do the proof as in [Axl15, p. 149], or omit it. After all, the conceptually
most enlightening proof would invoke linear operators on quotient spaces, which is done
in the book as “Proof 2” on p. 150. So this is a proof that is best done after learning
about quotient spaces, but that is a conceptual jump that is best done in a second course
in algebra or linear algebra. (But see Section 3.E if you want.) �

26. Diagonalizability

It’s also worth studying diagonalizability, in particular knowing equivalent conditions
under which T is diagonalizable.

Theorem 7.13. [Axl15, p. 157] Given a finite-dimensional vector space V and T ∈ L(V ),
the following are equivalent:8

(1) T is diagonalizable,
(2) V has a basis consisting of eigenvectors of T ;

8Axler’s version also throws in a couple other conditions that are equivalent to diagonalizability.
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(3) V = E(λ1, T )⊕ · · · ⊕ E(λm, T ).

Example 7.14. Before proving the theorem, let’s illustrate it in the example of T : R3 →
R3 given by (x, y, z) 7→ (x, 2y, 3z).

Proof. �

Optional, if time: the existence of Jordan canonical Forms for complex operators, with-
out proof.

Definition 7.15. A matrix is in Jordan canonical Form if:

Theorem 7.16. Every operator on a complex finite-dimensional vector space V can be
written in Jordan canonical form, with respect to some basis of V .

Final remark: how do you actually compute eigenvalues of operators? I.e., given a
finite-dimensional vector space V and T ∈ L(V ), how do you find its eigenvalues?

For example, how would you calculate the eigenvalues of T : R2 → R2 given by T (x, y) =
(x + y, x + y)? A number λ ∈ R is an eigenvalue of T iff T − λI is not invertible. Now,
with respect to the standard basis of R2, the matrix M(T − λI) is(

1 1
1 1

)
−
(
λ 0
0 λ

)
=

(
1− λ 1

1 1− λ

)
.

Say a matrix A ∈ Fn,n is invertible iff there is a matrix B ∈ Fn,n such that AB = BA = I
where I denotes the n× nidentity matrix.

Remark 7.17. Notice that M(IV ) = I, no matter what basis of V we choose. Do you
agree?

Then
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Proposition 7.18. Let V be a finite-dimensional vector space, S ∈ L(V ) a linear operator.
Fix a basis v1, . . . , vn of V . Then S is invertible iff M(S) is invertible.

Fill in the proof yourself; it follows directly from the fact that matrix product corresponds
to product of linear operators.

So the question becomes, for which real numbers λ is the matrix above invertible? It is
time to learn determinants, which help us answer this question, and more!

Part 8. Determinants

Following Treil’s LADW book.

27. Desiderata for the determinant

Motivation for deterimants: suppose you have a linear operator T : Rn → Rn. Then T
transforms the unit n-dimensional cube (easiest to picture for n = 1, 2, 3 to a parallelopiped
in Rn of some volume. The determinant is a measure of that volume. More precisely it is
a signed, or oriented, measure of volume, in a way that we shall see.

The parallelopiped in question is the one associated to the vectors Te1, . . . , T en. Recall
that these vectors are written as the columns of the matrix M(T ) of T (with respect to
the standard basis e1, . . . , en of Rn. So what we seek is a way to associate a number to
an n × n matrix,or equally well n vectors in Rn, in a way that captures our intuition for
oriented/signed volumes.

Wish list. Let F be a field. We wish for a function D : Fn× · · ·×Fn → F that satisfies:

(1) D is multilinear, i.e., linear in each copy of Fn separately. That is, for each k =
1, . . . , n,

D(v1, . . . , avk + a′v′k, . . . , vn) = aD(v1, . . . , vk, . . . , vn) + a′D(v1, . . . , v
′
k, . . . , vn)

(2) D is alternating. That is

D(v1, . . . , vj , . . . , vk, . . . , vn) = 0 if vj = vk.

(3) D is normalized:
D(e1, . . . , en) = 1.

Remark 8.1. Explain why we wish for these properties!

Remark 8.2. Explain why alternating is called alternating. Namely, show that if D
satisfies properties 1, 2, 3 above, then

D(v1, . . . , vj , . . . , vk, . . . , vn) = −D(v1, . . . , vk, . . . , vj , . . . , vn).
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Theorem 8.3. (Theorem-Definition) There exists a unique multilinear, alternating, nor-
malized function D : Fn × · · · × Fn → F. We’ll call it the determinant.

We are going to postpone the proof of this theorem. Instead, we are going to derive
some basic properties of it, assuming it does exist.

28. First properties of the determinant, assuming it exists

Proposition 8.4. Let A be a square matrix. If the column vectors v1, . . . , vn ∈ Fn are
linearly dependent then detA = 0.

Proof. �

Remark 8.5. The converse will be proved later: if detA = 0 then the column vectors
v1, . . . , vn ∈ Fn are linearly dependent.

Proposition 8.6.

(1) The determinant of a diagonal matrix is the product of its diagonal entries.
(2) The determinant of an upper triangular (resp. lower triangular) matrix is the prod-

uct of its diagonal entries.

Proof. �

29. Construction of the determinant

Let’s warm up with 2 × 2 matrices. Suppose there were a determinant function, i.e., a
function

D : F2 × F2 → F
that is multilinear, alternating, and normalized. Write e1 = (1, 0) and e2 = (0, 1) for the
standard basis of F2. Then for all a, b, c, d ∈ F,

det

∣∣∣∣ a b
c d

∣∣∣∣ = D(ae1 + ce2, be1 + de2)
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= D(ae1, be1)+D(ae1, de2)+D(ce2, be1)+D(ce2, de2) = adD(e1, e2)+bcD(e2, e1) = ad−bc.
Now we check that the function defined by D((a, b), (c, d)) = ad−bc actually is multilinear,
alternating, and normalized. That shows that the 2× 2 determinant exists and is unique!

Remark 8.7. Check that, and do the analogous calculation for determinants of 3 × 3
matrices.

Definition 8.8. A permutation is a bijection σ : {1, . . . , n} → {1, . . . , n}.

Remark 8.9. There are various ways to write down a permutation, e.g., in one-line or
two-line notation. Discuss these. (In real life it is often more useful to use cycle notation,
which we will not cover in this class.)

Definition 8.10. The product, of two permutations is their composition: στ = σ ◦ τ.
Write Sn for the set of permutations {1, . . . , n} → {1, . . . , n}. How many elements of Sn
are there?

Definition 8.11. A transposition is:

Remark 8.12. Every permutation is a product of transpositions.

Do you believe that? Do a “physical proof.”

Definition 8.13. (Important preliminary definition) The sign of a permutation σ, denoted
sgn(σ), is:

Proposition 8.14. Definition of determinant. If there exists an n× n determinant—that
is, if there exists a multilinear, alternating, and normalized function

D : Fn × · · · × Fn → F,
then it must be:
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Proof. Imitate the proof of the 2× 2 and 3× 3 cases. �

Proposition 8.15. The function

D : Fn × · · · × Fn → F

defined above really is multilinear, alternating, and normalized. Therefore, the determinant
D exists and is unique.

We’re done, other than justifying our preliminary definition of the sign of a transposition.
We have to prove that the sign is a well-defined function. In other words, we have to prove:

Proposition 8.16. Suppose σ is expressible as a product of k transpositions and is also
a product of ` transpositions. Then the numbers k and ` have the same parity (both even
or both odd.)

Proof. We’d win if we can show that σ “wears” its sign, in other words, we win if we can
show that just by looking at σ, you can tell the parity of the number of transpositions τi
in any sequence of transpositions whose product is σ.

Definition 8.17. A descent in a permutation is:

Proposition 8.18. If σ is a product of an odd number of transpositions, then the number
of descents in σ is odd. If σ is a product of an even number of transpositions, then the
number of descents in σ is even.

Proof. If σ = τ1 · · · τk where τi are transpositions, then the number of descents in σ is
a1 + · · ·+ ak, for odd numbers ai. This sum is odd if k is odd and even if k is even. �

Therefore the sign of σ is well-defined—and so is the determinant!
�

30. The transpose of a matrix

Now that we’ve constructed it, let’s derive some more important properties of the de-
terminant.

Definition 8.19. Let A ∈ Fm,n be a matrix. The transpose of A, written AT , is the matrix
in Fn,m whose entries are (AT )i,j = Aj,i.
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So the transpose of a square matrix is another square matrix of the same size. The
deeper conceptual significance of transposes is somewhat beyond the scope of this course.
Briefly, it is as follows: if A is the matrix associated to a linear map T : V →W , then AT

is the matrix associated to the dual of T . What is the dual of T? You can read this in
[Axl15, Ch. 3].

Proposition 8.20. Let A ∈ Fn,n be any square matrix. Then detAT = detA.

Proof.

�

This tells us that the entire story of determinants can equally well be told with rows
replacing columns everywhere. The determinant is the unique alternating, multilinear,
normalized function on the n rows of an n× n matrix. If there is a repeated row then the
determinant is 0. Etc.

31. Multiplicativity of the determinant

Here is an important proposition that we will use freely in the class. (I originally thought
we could prove in a slick way, but I had one missing link, unfortunately. So it’s one of the
few statements that we will accept henceforth without proving. Sorry about that!)

Proposition 8.21. Let A and B be n× n matrices. Then

det(AB) = det(A) det(B).

Proof. Several proofs are possible; the one presented in Treil’s book involves decompositng
arbitrary matrices into products of elementary matrices, which we don’t have time to cover..
You can see the textbook: Theorem 3.5 on page 82 in Treil’s book. �

Sanity check: this multiplicativity should agree with our notion of the determinant being
an oriented volume scaling factor.
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32. Cofactors

Definition 8.22. Given an n× n matrix A, let Aj,k denote the (n− 1)× (n− 1) matrix
obtained from A by deleting row j and column k.

Definition 8.23. The numbers Cj,k = (−1)j+k detAj,k are called cofactors of A.

Discuss the checkerboard sign pattern of (−1)j+k.

Theorem 8.24. (Cofactor expansion of the determinant) For each 1 ≤ j ≤ n,

detA = aj,1Cj,1 + · · ·+ aj,nCj,n.

An example will help clarify the theorem statement:

Example 8.25.

How would we prove the theorem? We will show that the right hand side is an alternat-
ing, multilinear, and normalized function Fn,n → F!

Proof. �

33. Cofactors and inverses of square matrices

How do you compute the inverse of a square matrix? First let’s say what we mean by
inverse: if A is an n×n matrix, then an inverse of A is a matrix B such that AB = BA = I.
Here I denotes the n×n identity matrix (the diagonal matrix with all 1s on the diagonal.)

Proposition 8.26. Let A be a square matrix. Let C be its matrix of cofactors: Cj,k =

(−1)j+k detAj,k. Then, ACT = (detA)I.

Do a 2× 2 example.
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Proof. The proof consists of calculations of the entries of ACT . Namely, we wish to show
that the diagonal entries of ACT are detA and the off-diagonal entries are 0.

We have

(ACT )j,j = aj,1Cj,1 + · · ·+ aj,nCj,n

by definition of matrix multiplication. But the right hand side is the cofactor expansion of
detA along the jth row, so it is detA.

Next, for j 6= k, we have

(ACT )k,j = ak,1Cj,1 + · · ·+ ak,nCj,n

Let A′ be the matrix obtained from A by replacing row j with row k. Then the right hand
side is the cofactor expansion of detA′. (Think about this). But detA′ = 0. Done. �

Remark 8.27. A similar calculation will show CTA = I. Actually, for arbitrary n × n
matrices A and B, it is a general fact that AB = I iff BA = I.

The proposition above gives a formula for the inverse of a matrix!

Corollary 8.28. A is invertible iff detA 6= 0. If A is invertible, then A−1 = 1
detAC

T .

Proof. First of all, if A is invertible then 1 = det(AA−1) = det(A) det(A−1) implies detA 6=
0. Conversely, if detA 6= 0 then A( 1

detAC
T ) = I. �

We now have a lot of equivalent ways to characterize invertibility.
Another way of saying the same thing: the columns of A are dependent iff detA = 0.

Proof. We already proved that if the columns of A are dependent, then detA = 0. Con-
versely, suppose detA = 0; we wish to show that the columns of A are dependent. Indeed,
if detA = 0, we showed ACT = 0 where C is the cofactor matrix. That implies that A
isn’t invertible, which (by the line of reasoning above) implies that the columns of A are
dependent. �

Summarizing,

Proposition 8.29. The following are equivalent for an n× n matrix A.

(1) A is invertible,
(2) detA 6= 0.
(3) The columns of A are linearly independent,
(4) The rows of A are linearly independent,
(5) T is invertible, where T : Fn → Fn is the linear operator whose matrix (with respect

to the standard basis, say) is A.
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Proof. (Sketch) We just showed (1)⇔(2), above.
Let T : Fn → Fn be the unique linear map whose matrix, with respect to the standard

basis, is A. Then A is invertible if and only if T is invertible. (Think about this.)
Next, T is invertible if and only if Te1, . . . T en are linearly independent. In other words,

T is invertible if and only if the columns are A are linearly independent. (Think about
this.)

If so, these arguments together show that (1), (3), and (5) are equivalent. Now applying
the same arguments to AT , and noting that detA = detAT , yields that (1), (4), and (5)
are equivalent. �

34. Postscript: using determinants to compute eigenvalues

Let’s return to the following situation. Say you have a linear operator T : V → V . You
want to calculate the eigenvalues and eigenvectors (if any) of T . How?

Let A be the matrix of T with respect to any basis of V . Then a scalar λ ∈ F is an
eigenvalue of T iff T − λI is not invertible. What is the matrix of T − λI? It is A− λI. In
other words:

Proposition 8.30. λ ∈ F is an eigenvalue of T iff det(A− λI) = 0.

This is how you solve for eigenvalues: you write out det(A − λI) = 0, which is a
polynomial equation in λ. Then you solve for values of λ. Then, once an eigenvalue λ is
obtained, you can solve a system of linear equations to obtain all eigenvectors associated
to λ.

Example 8.31. Do the example of reflection across the line y = x. What are the eigen-
values and eigenvectors of T?

Definition 8.32. Let T : V → V be any linear operator on a finite-dimensional vector
space V . Let A be any matrix representation of T (i.e., with respect to any basis of V ).
The polynomial

p(λ) = det(A− λI)

is called the characteristic polynomial of T .

It looks at first as if p(λ) depends on the choice of A, i.e., the choice of basis for V . But
it is a fact, not too hard to prove, that p(λ) is actually independent of choice of A.

Then, it is a remarkable fact that T satisfies its own characteristic polynomial. This is
the Cayley-Hamilton theorem, but is beyond the scope of this course.
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Part 9. Inner product spaces

35. Motivation; complex numbers review

So far the main objects of study have been vector spaces, and linear maps between them.
What we are missing so far is a notion of length and angle of vectors in a vector space.
(These shall be seen to be closely related). This is structure that we are used to seeing in
familiar vector spaces like Rn.

It will be possible to define the structure we want, an inner product structure, on vector
spaces over both R and C. For this reason, we first briefly recall some basic properties of
complex numbers. In this entire section, F = R or C.

Definition 9.1. (Reference: [Axl15, p. 119]) Let z = a + bi be a complex number; here
a, b ∈ R. Then the complex conjugate and absolute value of z are defined as

z = a− bi, |z| =
√
a2 + b2 =

√
zz.

Note that complex conjugation respects addition and multiplication. Absolute value
respects multiplication, but not addition; rather we have a triangle inequality

|w + z| ≤ |w|+ |z|
for w, z ∈ C.

36. Definition of an inner products

Before giving the general definition of an inner product, let’s start with an important
special case: the Euclidean inner product.

Definition 9.2. Let F = R or C. The Euclidean inner product on Fn is the function
Fn × Fn → F defined by:

〈(w1, . . . , wn), (z1, . . . , zn)〉 = w1z1 + · · ·+ wnzn.

Definition 9.3. The Euclidean norm of v ∈ Fn is

||v|| =
√
〈v, v〉.

Discuss this example slowly; does it accord with our usual notion of norm or length?

Definition 9.4. (See [Axl15, p. 166] Let V be a vector space over F, where F = R or
C. An inner product on V is a function 〈·, ·〉 : Fn × Fn → F, taking ordered pairs (u, v) of
elements in V to a number 〈u, v〉 ∈ F, satisfying:

(1) conjugate symmetry:

(Note that when F = R, “conjugate symmetry” is just “symmetry.”) Note for
F = C, this implies 〈v, v〉 ∈ R for all v ∈ V .)
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(2) positive definiteness:

(3) linearity in the first slot:

Definition 9.5. An inner product space henceforth means a vector space V over R or C
together with an inner product on V . In particular, if we talk about an inner product
space, we always mean a vector space over R or C.

Remark 9.6. Note right away that

• If F = R, then the inner product is also linear in the second slot.
• If F = C, then the inner product is not in general linear in the second slot. In fact,

it is additive in the second slot, but we have

〈u, λv〉 = 〈λv, u〉 = λ · 〈v, u〉 = λ〈v, u〉.
Example 9.7.
(1) The Euclidean inner product deserves its name: it is an inner product. Check this.
(2) Let V be the real vector space of continuous functions [−1, 1]→ R. Then

〈f, g〉 =

∫ 1

−1
f(x)g(x)dx

defines an inner product on V .

37. Norms

The structure of an inner product allows us to recapture a notion of length, or norm:

Definition 9.8. The norm of a vector v in an inner product space V is defined to be

||v|| =
√
〈v, v〉.

Check some basic properties:

Proposition 9.9. Let v be a vector in an inner product space V over F = R or C.
(1) ||v| = 0 iff v = 0.
(2) For any λ ∈ F,

||λv|| = |λ|||v||.

Proof. (1) follows from the fact that 〈v, v〉 = 0 iff v = 0.
For (2), we calculate

||λv|| =
√
〈λv, λv〉 =

√
λλ〈v, v〉 =

√
λλ
√
〈v, v〉 = |λ|||v||.

�
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38. Orthogonality, orthogonal decomposition.

Let V be an inner product space over F = R or C.

Two vectors u, v ∈ V are called orthogonal if 〈u, v〉 = 0.

So “orthogonal” means perpendicular. Note that 〈u, v〉 = 0 iff 〈v, u〉 = 0 by conjugate
symmetry. Draw some pictures.

Proposition 9.10. (Pythagorean theorem in an inner product space)

||u+ v||2 = ||u||2 + ||v||2

for any orthogonal u, v in an inner product space V .

Proof.

||u+ v||2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉 = ||u||2 + ||v||2,

using that 〈u, v〉 = 〈v, u〉 = 0 by orthogonality of u and v. �

Orthogonality makes up about 5% of my mathematical intuition! See [Axl15, p. 174] for
a pretty great use of the word “orthogonal” in oral arguments at the U.S. Supreme Court.
It is a great way to be subtly dismissive of something (not that I encourage you to be
dismissive of anyone in any way. . .) Let’s say V is an inner product space, v is a (nonzero)
vector you single-mindedly care about—for any vector u ∈ V , you are single-mindedly
interested in isolating the “part of u in the direction of v,” as distinct from the “part of
u orthogonal to v.” (Draw a picture—the geometric intuition is the most important thing
here!) In other words, our goal is the following.

Proposition 9.11. Let V be an inner product space over F = R or C, and fix a nonzero
vector v ∈ V . Given a any vector u ∈ V , there exists a unique choice of number c ∈ F and
vector w ∈ V orthogonal to v such that u = cv + w.

Proof. Proof of uniqueness: well, if such a choice of a number c and a vector w existed,
then w = u− cv. So

0 = 〈u− cv, v〉 = 〈u, v〉 − c〈v, v〉

which implies c must be 〈u,v〉〈v,v〉 . Then w must be u− cv for that particular value of c.

Existence: now check that this value of c and w really do satisfy that cv + w = u and
〈w, v〉 = 0; this amounts to redoing the calculation in the line above. �
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39. Cauchy-Schwarz

Equipped with the previous result, we can prove probably a surprisingly useful inequality
that holds for a general inner product space. See [Axl15, p. 172]

Proposition 9.12. (Cauchy-Schwarz Inequality) Let V be an inner product space, and
let u, v ∈ V . Then

|〈u, v〉| ≤ ||u||||v||.
Moreover this inequality is an equality iff one of u, v is a scalar multiple of the other.

Note the inequality is an inequality of real numbers. Make sure you agree.

Proof. If v = 0 then both sides are 0 and we win. Otherwise, consider the orthogonal
decomposition of u with respect to v:

u = cv + w, where c =
〈u, v〉
〈v, v〉

.

and 〈w, v〉 = 0. The Pythagorean theorem then implies

‖u‖2 = ‖cv‖2 + ‖w‖2

=

∣∣∣∣〈u, v〉〈v, v〉

∣∣∣∣2 · ‖v‖2 + ‖w‖2

=
|〈u, v〉|2

‖v‖2
+ ‖w‖2

≤ |〈u, v〉|2

‖v‖2
.

Now clear denominators and take the square root of both sides. Moreover, equality holds
iff w = 0, i.e., u = cv is a scalar multiple of v. �

The Cauchy-Schwarz inequality is a favorite of college-level math puzzle writers, because
it often hides in problems that, at first glance, have nothing to do with inner products. For
example, prove:

Proposition 9.13. For any real numbers x1, . . . , xn, y1, . . . , yn,

(x1y1 + · · ·+ xnyn)2 ≤ (x21 + · · ·+ x2n)(y21 + · · ·+ y2n).

Proof. It is certainly possible to prove this directly, without knowing Cauchy-Schwarz. But
better to simply note that this is the Cauchy-Schwartz inequality applied to the vectors
(x1, . . . , xn), (y1, . . . , yn) in Rn with its Euclidean inner product. �

Finally, one deduces a triangle inequality from Cauchy-Schwarz:
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Proposition 9.14. (Triangle Inequality) Let u, v be vectors in an inner product space V .
Then

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Draw the picture! For the proof, see [Axl15, p. 173].
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40. Orthonormal bases

Definition 9.15. A list of vectors v1, . . . , vn in an inner product space V is called or-
thonormal if:

Orthonormal vectors are useful for so many reasons. For instance:

Proposition 9.16. Let e1, . . . , em be an orthonormal list of vectors in V . Then for any
numbers a1, . . . , am,

‖a1e1 + · · ·+ amem‖2 = |a1|2 + · · ·+ |am|2.

Proof.

�

We deduce that orthonormal lists are linearly independent. (Argue this). Orthogonal
lists are thus also linearly independent.

Orthonormal bases are so useful that we want a procedure for making them. Fortunately,
such a procedure exists: it is called the Gram-Schmidt Algorithm. First, we need a helpful
lemma:

Lemma 9.17. Say e1, . . . , en is an orthonormal basis of V , and v ∈ V is any vector. Then

v = 〈v, e1〉e1 + · · ·+ 〈v, en〉en.

Proposition 9.18. [Axl15, p. 183], Gram-Schmidt Algorithm. Suppose v1, . . . , vm is a
linearly independent list. Let e1 = v1/‖v1‖, and for j = 2, . . . ,m, define ej inductively by

ej =
vj − 〈vj , e1〉e1 − · · · − 〈vj , ej−1〉ej−1
‖vj − 〈vj , e1〉e1 − · · · − 〈vj , ej−1〉ej−1‖

.

Then e1, . . . , em is an orthonormal list of vectors and moreover

span(e1, . . . ej) = span(v1, . . . , vj).

In particular, if v1, . . . , vm was a basis, then e1, . . . , em is an orthonormal basis.

Thus every finite-dimensional inner product space has an orthonormal basis! Indeed,
pick any basis, and then use Gram-Schmidt to transform it into an orthonormal basis.
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41. Orthogonal complements

Let U be a subset of an inner product space V . Usually, we will be interested in the
case that U is a subspace of V .

Definition 9.19. The orthogonal complement of U is

U⊥ = {v ∈ V : 〈v, u〉 = 0 for every u ∈ U.}

In other words, the orthogonal complement is the set of vectors that are orthogonal to
everyone in U .

See [Axl15, p. 193] for basis properties of the orthogonal complement. The most impor-
tant one is:

Proposition 9.20. U⊥ is a subspace of V .

Proof.

�

Why are orthogonal complements important? Because they allow you to project away
the stuff you don’t care about. Namely:

Proposition 9.21. Let U be a finite-dimensional subspace of an inner product space.
Then

V = U ⊕ U⊥.

Proof. (See [Axl15, p. 194])

�

Now in complete generality, if V = U ⊕W , then there is a natural projection map to U
along W : it is the linear map PU,W : V → V sending

PU,W (u+ w) = u for all u ∈ U,w ∈W.

Check that this really is linear, and check that T 2 = T , so you really have a projection
operator, whose range is U . In the case that V is an inner product space and W = U⊥,
then this projection operator gets a special name: orthogonal projection.
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Definition 9.22. Let U be a finite-dimensional subspace of an inner product space V .
The orthogonal projection of V onto U is the operator

PU : V → V

defined as
PU (u+ w) = u

whenever u ∈ U , w ∈ U⊥.

Page 196 of [Axl15] lists many properties of orthogonal projections. Many of these you
know from your Problem Set problem on projections. Here are two properties that are
special to orthogonal projections in an inner product space:

Proposition 9.23.
(1) ‖PU (v)‖ ≤ ‖v‖ for v ∈ V ;
(2) PU (v) = 〈v, e1〉e1 + · · ·+ 〈v, em〉em for any orthonormal basis e1, . . . , em ∈ U .

Proof.

�

42. Riesz representation theorem

See [Axl15, p. 188]. First of all, there’s a special name for a linear map of vector spaces
over F in which the codomain is F:

Definition 9.24. Let V be a vector space over F. A linear map V → F is called a linear
functional.

Now suppose V is an inner product space, and u ∈ V Then “inner product with u” is
a function 〈·, v〉 : V → F. Namely, it sends v 7→ 〈v, u〉. In fact, 〈·, u〉 is a linear functional:
this amounts to the fact that the inner product is linear in the first coordinate.

Theorem 9.25. (Riesz representation theorem) Let V be a finite-dimensional inner prod-
uct space, and let φ : V → F be a linear functional on V . Then there exists a unique vector
u ∈ V such that

φ(v) = 〈v, u〉
for every v ∈ V .

In other words: there is a unique u ∈ V such that φ = 〈·, u〉.
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Example 9.26. Consider R2 with its Euclidean inner product. Let φ : R2 → R be the
linear functional given by

φ(x, y) = x+ y.

Then φ = 〈·, u〉 for a (unique) vector u ∈ R2. Which one?

Proof. (Proof of Riesz representation) Let e1, . . . , en be an orthonormal basis for V . Given
a linear functional φ on V , let

u = φ(e1)e1 + · · ·+ φ(en)en.

We claim that φ(v) = 〈v, u〉 for all v ∈ V . Indeed,

φ(v) = φ(〈v, e1〉e1 + · · ·+ 〈v, en〉en)

= 〈v, e1〉φ(e1) + · · ·+ 〈v, en〉φ(en) = 〈v, u〉.
Now prove uniqueness: say u1, u2 ∈ V are such that 〈v, u1〉 = 〈v, u2〉 for all v ∈ V . Then

〈v, u1−u2〉 = 0 for all v ∈ V . Then in particular 〈u1−u2, u1−u2〉 = 0, so u1−u2 = 0. �

Rephrasing the last part slightly: we found a vector, u1 − u2, which is orthogonal to all
vectors. Such a vector must be 0, because only 0 is orthogonal to itself.

Notice that the uniqueness statement in Riesz Representation implies in particular that
the choice of u is actually independent of choice of orthonormal basis e1, . . . , en.

Let’s take the broad view. The Riesz representation theorem gives us a function

R : L(V,F)→ V.

(I’m temporarily calling it R for “Riesz”; this is not standard notation.) Now R is a linear
map if F = R. If F = C, it not linear, but rather conjugate linear. Do you see why?
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Part 10. Operators on inner product spaces

43. The adjoint of a linear operator

Reference: Chapter 7 of [Axl15].
Throughout, let V and W be finite-dimensional inner product spaces over the same

field F.

Definition 10.1. Let T : V → W be a linear map. The adjoint of T is the function
T ∗ : W → V such that

〈Tv,w〉 = 〈v, T ∗w〉
for every v ∈ V,w ∈W .

Note that the inner product on the left is the one on W ; the one on the right is the one on
V .

What is going on with this definition, First, why would such a function exist? Well, fix
w ∈W , and consider the linear map V → F sending v 7→ 〈Tv,w〉. This is a linear map: it
is the composition of T and 〈·, w〉.

Then Riesz Representation implies that there is a unique vector in V—let’s henceforth
call it T ∗w—that represents the linear functional by taking inner product with it. In other
words, there is a unique vector T ∗w such that 〈Tv,w〉 = 〈v, T ∗w〉 for every v ∈ V,w ∈W.

Pretty soon we will see that T ∗ : W → V is a linear map. For now it is just a function.

The book’s example (page 204) is very instructive.

Example 10.2. Let T : R3 → R2 be given by

T (x1, x2, x3) = (x2 + 3x3, 2x1).

Find a formula for T ∗.
Solution: For each (y1, y2) ∈ R2, we wish to calculate the vector T ∗(y1, y2). Whatever this
vector is, it satisfies, for all (x1, x2, x3) ∈ R3,

〈(x1, x2, x3), T ∗(y1, y2)〉 = 〈(x2 + 3x3, 2x1), (y1, y2)〉

= x2y1 + 3x3y1 + 2x1y2 = 〈((x1, x2, x3), (2y2, y1, 3y1)〉.
So it must be that T ∗(y1, y2) = (2y2, y1, 3y1).

Let’s notice two things in the example. The first thing is that in this example, the
function T ∗ is actually linear. The second thing is about matrices: with respect to the
standard bases for R2 and R3—which, by the way, are orthonormal bases—the matrices
M(T ) and M(T ∗) are transposes. Neither of these observations is a coincidence:

Proposition 10.3. Let T : V →W be a linear map of inner product spaces. The adjoint
T ∗ : W → V is a linear map.
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Proof. Let λ1, λ2 ∈ F, w1, w2 ∈W . We claim that for every v ∈ V ,

〈v, T ∗(λ1w1 + λ2w2)〉 = 〈v, λ1T ∗w1 + λ2T
∗w2〉.

If so, then T ∗(λ1w1 + λ2w2) = λ1T
∗w1 + λ2T

∗w2. (Why?) Now prove the claim.

�

Remark 10.4. Here’s a high-brow explanation of what the adjoint really is, including
for free the fact that it really is linear, in case you are interested. (You may find this
enlightening, or you may find this maddening. If the latter, just forget about it.) Remember
that the Riesz representation theorem gives conjugate-linear bijections W → L(W,F) and
V → L(V,F). (These are bijections which are conjugate-linear; their inverses are also
conjugate-linear). Now given a linear map T : V → W , I claim (or define) the adjoint
T ∗ : W → V to be the composition

W
∼=−→ L(W,F)→ L(V,F)

∼=−→ V.

What is the middle map W ∗ → V ∗? It is the dual of T , namely, composing by T on the
left. This composition maps w ∈W to

w 7→ 〈·, w〉 7→ 〈T ·, w〉 7→ 〈·, T ∗w〉.

In other words, the vector T ∗w is the unique vector (whose existence, and uniqueness, is
guaranteed by Riesz) such that we have an equality of linear functionals 〈T ·, w〉 = 〈·, T ∗w〉.

Proposition 10.5. [Axl15, p. 208] Let T : L(V,W ), let e1, . . . , en and f1, . . . , fm be any
orthonormal bases of V and W respectively. With respect to these orthonormal bases,

M(T ∗) is the conjugate transpose of M(T ).

Proof. Let’s calculate M(T )j,k and M(T ∗)k,j and show that these two numbers are con-
jugates. If so, we are done.

Writing

Tek = 〈Tek, f1〉f1 + · · ·+ 〈Tek, fm〉fm
shows that M(T )j,k = 〈Tek, fj〉 = 〈ek, T ∗fj〉. Similarly, writing

T ∗fj = 〈T ∗fj , e1〉e1 + · · ·+ 〈T ∗fj , en〉en

shows that M(T )k,j = 〈T ∗fj , ek〉 = 〈ek, T ∗fj〉. We are done. �
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44. Self-adjoint operators

Definition 10.6. Let T : V → V be a linear operator. Then say that T is self-adjoint if,
well, it is the adjoint of itself. That is, T is called self-adjoint if T = T ∗.

How can you tell if an operator T is self-adjoint? Well, write down its matrixM(T ) with
respect to any orthonormal basis. Then T is self-adjoint iffM(T ) is equal to its conjugate
transpose. That is, T is self-adjoint if

M(T )t =M(T ).

Definition 10.7. Given an n× n matrix A, define its adjoint A∗ = A
t
. So the matrix of

the adjoint is the adjoint of the matrix (with respect to an orthonormal basis.)

It’s a bit hard to build intuition from scratch. My own intuition works best in the real
case F = R. In this case, a real operator T is self-adjoint if it has a symmetric matrix
with respect to an orthonormal basis. In the complex case, you can get some intuition
from the case that V is 1-dimensional. In this case, the space of operators L(V ) may be
identified with 1× 1 complex matrices—in other words, the complex numbers C. Then an
operator is self-adjoint iff its matrix is real. In general, a rough intuition for self-adjoint
operators, among all operators, is that they are an analogue of real numbers among all
complex numbers.

45. The Spectral theorem

One of the cornerstones of linear algebra is the Spectral theorem.

Theorem 10.8. (Spectral Theorem for self-adjoint operators on a finite-dimensional
inner product space) Let F = R or C, and let V be a finite-dimensional inner product
space. Let T : V → V be a self-adjoint linear operator. Then V has an orthonormal basis
consisting of eigenvectors of T . Equivalently, T has a diagonal matrix with respect to some
orthonormal basis of V .

We now build up to a proof of the Spectral theorem.

Proposition 10.9. Let p(x) = a0 + a1x + · · · + anx
n with a0, . . . , an ∈ R. Then p(x)

factors, uniquely up to rearranging the order of the factors, into a product of the form

c(x2 + b1x+ c1) · · · (x2 + bMx+ cm)(x− λ1) · · · (x− λm),

where all the numbers c, bi, ci, λj are real, and b2i − 4ci < 0. Thus, the real roots of p(x) are
exactly λ1, . . . , λm.9

9We aren’t actually claiming that p(x) necessarily has any real roots. For example, consider p(x) = x2+1.
The case that p(x) has no real roots should be interpreted as the case m = 0, when there are no factors of
the form (x− λi).
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Proof. Prove this; see [Axl15, p. 128].

�

Remember the heuristic that self-adjoint operators play the role of real numbers? The
heuristic makes the next proposition plausible:

Proposition 10.10. Let b, c ∈ R with b2 − 4c < 0. Say T is a self-adjoint operator on a
finite-dimensional real inner product space. Then T 2 + bT + cI is invertible.

Proof. We claim that for all v ∈ V \ {0}, that

〈(T 2 + bT + cI)v, v〉 6= 0.

If so, then (T 2 + bT + cI)v 6= 0 for all nonzero v, so T 2 + bT + cI is injective and hence
invertible.

To prove the claim, first recall that the polynomial p(x) = x2 + bx+ c can be written

p(x) = (x+
b

2
)2 + (c− b2

4
)

by “completing the square.” The same reasoning shows that

T 2 + bT + cI = (T +
b

2
I)2 + (c− b2

4
)I.

Moreover, note that T + b
2I is self-adjoint since T is (think about its matrix with respect

to an orthonormal basis.)
Now, we calculate

〈(T 2 + bT + cI)v, v〉 = 〈(T +
b

2
I)2v, v〉+ 〈(c− b2

4
)v, v〉

= 〈(T +
b

2
I)v, (T +

b

2
I)v〉+ (c− b2

4
)〈v, v〉 > 0,

and we are done. �

Proposition 10.11. Let T be a self-adjoint operator on a (nonzero) finite-dimensional
real inner product space. Then T has an eigenvector.

Remember the context for this lemma: every operator on a finite-dimensional complex
vector space has an eigenvector. In general, an operator on a finite-dimensional real vector
space may fail to have an eigenvector. (For example, 60 degree rotation of R2 about the
origin.) So the lemma says something special about self-adjoint operators on real inner
product spaces amongst all operators on real inner product spaces.
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Proof. Let n = dimV . Let v ∈ V be any nonzero vector and consider the n+ 1 vectors

v, Tv, . . . , Tnv.

These must be linearly independent (why?) so there exist real numbers a0, . . . , an, not all
zero, such that

a0v + a1Tv + · · ·+ anT
nv = 0.

Rewriting: let p(z) = a0 + a1z + · · ·+ anz
n. Then p(T )(v) = 0.

Factoring,

0 = c(T 2 + b1T + c1I) · · · (T 2 + bMT + cMI)(T − λ1I) · · · (T − λmI)v,

for real numbers c, bi, ci, λj , with b2i − 4ci < 0 for each i = 1, . . . ,M.
But all the operators T 2 + biT + ciI are invertible. So it must be that some T − λjI is

not invertible. So λj is an eigenvalue of T . �

Now we prove Theorem 10.8, the spectral theorem for self-adjoint operators.

Proof. We’ll prove it by induction on dimV . (Discuss induction!) If dimV = 0, then V
vacuously has a basis consisting of eigenvectors of T . (Every single element in a basis of V
is an eigenvector of T !)

Now suppose the theorem holds for all self-adjoint operators on a inner product spaces
of dimension n − 1. We will show that the theorem holds for all self-adjoint operators on
inner product spaces of dimension n. Let V be an n-dimensional inner product space, for
n ≥ 1, and T ∈ L(V ) a self-adjoint operator.

The only thing we need is that T has an eigenvector v, say with eigenvalue λ. (This is
true over R by Proposition 10.11. And it is true over C for every single operator, as we
showed earlier in the course. By rescaling, we may pick v to have norm 1. Let U = span(v).

Claim. We claim that T restricts to an operator on U⊥. By this we mean that T (w) ∈ U⊥
for all w ∈ U⊥, so that we may regard T as giving rise to a linear operator on the vector
space U⊥. We write T |U⊥ : U⊥ → U⊥ for this restriction.

To prove the claim, suppose w ∈ U⊥; we wish to show that Tw ∈ U⊥. Given any u ∈ U ,
we have 〈Tw, u〉 = 〈w, Tu〉 = λ〈w, u〉 = 0 by self-adjointness and the fact that Tu = λu.
This proves the claim.

Finally, notice that dimU⊥ = n − 1 (why?) So U⊥ has an orthonormal basis of eigen-
vectors of T |U⊥ . (These vectors are thus eigenvectors of T .) Adjoining this orthonormal
basis of U⊥ with the basis vector v for U , we obtain an orthonormal basis of V consisting
of eigenvectors of T . �

Corollary 10.12. The eigenvalues of a self-adjoint operator on a finite-dimensional inner
product space are always real.
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Proof. This can be proved directly (see [Axl15, p. 210]), but it also follows for free from
the Spectral theorem. Just think: how can a diagonal matrix be equal to its conjugate
transpose? Only if the diagonal entries are all real. �

Remark 10.13. Discuss that the reverse implication in the Spectral Theorem holds if
F = R. If F = C, then there is a more general class of operators for which the conclusion
of the Spectral Theorem holds, namely normal operators.

46. Positive operators

To end the class, we’re going to do the following. We’ll first study two classes of opera-
tors: positive operators and isometries. Each of these classes of operators may seem quite
special, so the next step may seem a surprise: we’ll prove a polar decomposition theorem
that says that all operators are a product of an isometry and a positive operator. Finally,
consequence of polar decomposition theorem is Singular Value Decomposition, which is
quite useful in applications.

Reference: [Axl15, p. 225] Throughout, V denotes a finite-dimensional inner product
space over F. First, a preliminary definition:

Definition 10.14. Let T ∈ L(V ). By a square root of T we just mean any linear operator
R such that R2 = T .

Remark 10.15. Beware that an operator T can have infinitely many square roots, in
general. For example, can you think of some square roots of I : R2 → R2?

Definition 10.16. An operator T on V is called positive if it is self-adjoint and all eigen-
values are nonnegative.

Since we know all about self-adjoint operators now, we can give the following rephrasing
of positivity:

T is positive iff it has a diagonal matrix with nonnegative numbers on the diagonal,
with respect to some orthonormal basis.

Positive operators are also called positive semidefinite in the literature. (T is called
positive definite if it is self-adjoint and all eigenvalues are strictly positive.) In retrospect,
it would probably make more sense to call positive operators “nonnegative operators,” but
we are unfortunately stuck with the terminology.

Draw some pictures. The book uses a different definition which is equivalent to this one:

Proposition 10.17. The following are equivalent, for T ∈ L(V ):
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(1) T is self-adjoint and 〈Tv, v〉 ≥ 0 for all v ∈ V . (This is how the book defines positive
operator.)

(2) T is self-adjoint and all the eigenvalues of T are nonnegative;
(3) T has a square root that is positive.
(4) T has a square root that is self-adjoint;
(5) There exists an operator R ∈ L(V ) such that T = R∗R.

Proof. Let’s prove most but not all of the proposition: we’ll prove (2) implies (3) implies
(4) implies (5) implies (2). (See [Axl15, p. 226] for the full proof.)

Suppose (2) holds. Then with respect to some orthonormal basis, it has a diagonal
matrix with nonnegative diagonal entries. Take the square root down the diagonal: this
new matrix is the matrix of an operator R with R2 = T , and R is again positive. So (2)
implies (3).

(3) implies (4) for the simple reason that positive operators are self-adjoint, by definition.
(4) implies (5): Let R be a self-adjoint square root of T . In other words, R2 = T and

R = R∗. In other words, T = R∗R.
Finally, (5) implies (2) was achieved on the homework. �

Proposition 10.18. Every positive operator T on V has a unique positive square root,
henceeforth written

√
T .

Proof. I’m omitting this proof. See [Axl15, p. 227]. �

Example 10.19. For example, what’s the unique positive square root of I : R2 → R2?

47. Isometries

The idea of an isometry is simple: it is a distance-preserving, equivalently norm-preserving,
linear map.

Definition 10.20. An operator S ∈ L(V ) is called an isometry if

‖Sv‖ = ‖v‖
for all v ∈ V .

For your reference in the future, the following terminology is more commonly used:

In the literature, isometries are called orthogonal operators if they are over R, and
unitary operators if they are over C.

Example 10.21. What are some isometries of R2? R3?
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It may not be apparent at first, but isometries actually preserve angles as well as lengths:

Proposition 10.22. If S is an isometry, then 〈Su, Sv〉 = 〈u, v〉 for all u, v ∈ V .

Proof. This follows from two calculations presented in the book as Exercises 6.A.19 and
6.A.20. The calculations show that over either R or C, “inner products can be rederived
from norms.” Therefore, if S preserves norms, then it also preserves inner products.

The calculations are as follows:
(1) In a real inner product space,

〈u, v〉 =
‖u+ v‖2 − ‖u− v‖2

4
.

(2) In a complex inner product space,

〈u, v〉 =
‖u+ v‖2 − ‖u− v‖2 + ‖u+ iv‖2i− ‖u− iv‖2i

4
.

�

Proposition 10.23. (Shortened version of [Axl15, p. 229]) The following are equivalent,
for S ∈ L(V ):
(1) S is an isometry;
(2) 〈Su, Sv〉 = 〈u, v〉 for all u, v ∈ V ;
(3) S sends any given orthonormal basis to another orthonormal basis;
(4) S∗S = I.

Proof. We just proved (1) implies (2).
Suppose (2) holds, so S preserves inner products. Then S preserves norms and the

relationship of orthogonality, so (3) holds.
For (3) implies (4), suppose S sends an orthonormal basis e1, . . . , en to f1, . . . , fn re-

spectively. We claim that S∗Sej = ej for all j; if so, we win. Indeed, for all k = 1, . . . , n,
〈S∗Sej , ek〉 = 〈Sej , Sek〉 = 〈ej , ek〉. The only way this can happen is if S∗Sej = ej . For (4)
implies (1), we have, for all v ∈ V , 〈Sv, Sv〉 = 〈S∗Sv, v〉 = 〈v, v〉, so ‖Sv‖ = ‖v‖.

�

48. Polar decomposition and singular value decomposition

Here are some analogies:

L(V ) C
complex conjugation adjoint
self-adjoint operators R

positive operators R≥0
isometries {z ∈ C : |z| = 1}.
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These are analogies for the sake of intuition. But they aren’t all fiction: they are also
the literal truth in the case that V is a 1-dimensional complex inner product space. The
point of this section is to add one more analogy to this table, namely an analogue of polar
decomposition.

First, notice that any complex number z ∈ C can be written as the product of a complex
number of norm 1 and a nonnegative real number. Precisely:

z =

(
z

|z|

)
|z| =

(
z

|z|

)√
zz.

(Draw a picture).

Theorem 10.24. (Polar decomposition) Let T ∈ L(V ). Then there exists an isometry
S ∈ L(V ) such that

T = S
√
T ∗T .

This is remarkable: any linear operator is the product of an isometry and a positive
operator.

Definition 10.25. The singular values of T are the eigenvalues of
√
T ∗T , with each eigen-

value λ repeated dimE(λ,
√
T ∗T ) times.

In other words, if you express
√
T ∗T using a diagonal matrix with respect to an or-

thonormal basis, then the singular values are the numbers you see down the diagonal.
Draw some pictures. The singular values give a useful way to understand a completely

general linear operator T .

Lemma 10.26. We have ‖Tv‖ = ‖
√
T ∗Tv‖ for all v ∈ V .

Proof.

‖Tv‖2 = 〈Tv, Tv〉 = 〈v, T ∗Tv〉 = 〈v,
√
T ∗T
√
T ∗Tv〉 = 〈

√
T ∗Tv,

√
T ∗Tv〉 = ‖

√
T ∗T‖2.

�

Now we outline the proof of the Polar Decomposition theorem. First, some scratchwork:
if such an isometry S existed, it would have the property that, for all v ∈ V , S(

√
T ∗Tv) =

Tv.

Proof.
(1) Let us first define a linear map

S1 : range
√
T ∗T → rangeT

by sending S1(
√
T ∗Tv) = Tv. We have to prove first that S1 is a well-defined function:

given v1, v2 ∈ V such that
√
T ∗Tv1 =

√
T ∗Tv2, we need to show that Tv1 = Tv2.

Indeed, using the Lemma above,

‖Tv1 − Tv2‖ = ‖
√
T ∗Tv1 −

√
T ∗Tv2‖ = 0,
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so Tv1 − Tv2 = 0.
(2) Next, check that S1 is indeed linear. Notice also that the Lemma says that S1 is an

isometry.
(3) Finally, simply extend S1 arbitrarily to an isometry S on all of V by sending an

orthonormal basis of (range
√
T ∗T )⊥ to an orthonormal basis of (rangeT )⊥.

�

Corollary 10.27. (Singular value decomposition) Suppose T ∈ L(V ) has singular values
s1, . . . , sn. Then there exist orthonormal bases e1, . . . , en, f1, . . . , fn for V such that

Te1 = s1f1, . . . , T en = snfn.

In other words, any operator has a diagonal matrix with its singular values along the
diagonal. . . as long as you permit two different orthonormal bases!

Remark 10.28. The general formula for T can be read off as follows: given an arbitrary
v ∈ V , we obtain

Tv = T (〈v, e1〉e1 + · · · 〈v, en〉en)

= 〈v, e1〉s1f1 + · · ·+ 〈v, en〉snfn.

Proof. We have T = S
√
T ∗T for some isometry S, by Polar decomposition. Let e1, . . . , en

e an orthonormal basis of eigenvectors of
√
T ∗T , with eigenvalues s1, . . . , sn. Let

f1 = Se1, . . . , fn = Sen,

so f1, . . . , fn is also an orthonormal basis for V since S is an isometry. Then for each
i = 1, . . . , n,

Tei = S(
√
T ∗Tei) = S(λiei) = λifi,

as desired. �
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Part 11. Appendix: Proving things

49. Proof Clinic

Here’s one way to get started writing a proof, in five steps.

Step 1: Rephrase if needed. (This is a “training wheels step.” Can skip later.) Write

We wish to prove that. . .
Then rephrase the statement, if needed using the quantifiers

For all . . . and There exists. . . such that. . .

and by breaking down the statement into a “to-do list” if needed.

Step 2: Unpack the quantifiers one at a time from left to right, as follows.
(1) To respond to a universal quantifier

For every X satisfying [blah], statement P is true, write
Given X satisfying [blah], we wish to show that P is true.

(2) To respond to an existential quantifier
“There exists an X satisfying [blah] such that P is true,” write

Let X be. . .. We claim that P is true.
Can’t find the right X? Try a proof by contradiction instead; see below.

Step 3: Keep unpacking definitions/givens. For example, if you wrote in step 2 that

“Given linearly independent vectors v1, . . . , vm,” you could write
Since v1, . . . , vm are linearly independent, we know that for all a1, . . . , am ∈ F,

a1v1 + · · ·+ amvm = 0 implies a1 = 0, . . . , am = 0.

Step 4: Prove it! This is the truly mathematical part. If you’re trying to prove P , try
to logically deduce a sequence of statements one by one, ending at P .

Stuck? Try a proof by contradiction: assume P is false and try to logically deduce a
statement that is patently false or that contradicts something that is given in the problem
as true.

Step 5: Summarize and conclude. Summarize the last thing you showed, and (if
needed) how it implies what you were trying to prove.

In-class exercises for the proof clinic.

Example 11.1. Prove that for any linear map T : V → W , if nullT = {0} then T is
injective.

Proof.

�
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For the next example, we should first agree on when two linear maps are equal:

Definition 11.2. Let S, T : V →W be linear maps. Then S = T if and only if:

Example 11.3. Let V and W be vector spaces, let v1, . . . , vm be vectors in V , and let
w1, . . . wm be vectors in W .

Suppose v1, . . . , vm span V . Prove that there is at most one linear map T : V →W such
that

T (v1) = w1, . . . , T (vm) = wm.

Proof.

�
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50. How to prove it

(1) Set containment:

For sets A and B, prove that A ⊆ B.

Almost always, you should immediately write “Given a ∈ A . . .” Then prove that a is
in fact in B. In other words, A ⊆ B means for all a ∈ A, we have that a ∈ B.
The contrapositive can sometimes be used instead: show that any element not in B is
in fact not in A either.

(2) Set equality:

For sets A and B, prove that A = B.

What does A = B mean? It means that A ⊆ B and, simultaneously, B ⊆ A. So
usually you do two proofs of set containment.
Sometimes, one of the containments is already given to you. For example, suppose
you are asked to prove that

Q = {a ∈ Q : a = 2b for some b ∈ Q}.
Here, by its construction, the set on the left hand side is evidently a subset of Q. So
you need only prove the containment ⊆, namely, that every rational number a is of
the form 2b for some rational number b. (Do you believe it?)

(3) Uniqueness:

Prove that there is at most one blah such that [some condition holds].

In this situation, you suppose that there are two blahs such that the condition holds;
name them x and y. Then endeavor to show that x = y.
This may feel unnatural at first. It’s not really the way we argue things in real life—is
it? Say you want to argue that you have at most one sister. That’s a weird thing to
argue. Think of it as arguing against a contrarian who insists you have two sisters:
“there’s the sister x I went to middle school with, and the sister y I saw at the grocery
store the other day.” You have to argue that those two people are one and the same:
you have to argue x = y.

(4) Existence and uniqueness:

Prove that there exists a unique blah such that [some condition holds].

In this situation, there are two claims: there’s at least one blah, and there’s at most
one blah. You have to prove them both.
It is counterintuitive, but it is often useful to prove uniqueness first, then exis-
tence. Basically, when proving uniqueness, you tend to narrow down what the object
blah could be, which then makes it more direct to actually exhibit the thing.
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