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In this article, I’ll try to do two things. First, I’ll give an
informal and elementary introduction to the idea of a moduli
space, and then to moduli spaces of Riemann surfaces and their
Deligne-Mumford-Knudsen compactifications. There is nothing
new in this first section of the article, but I hope some people
will enjoy it anyways.

Second, I’ll discuss some tropical geometry, assuming no prior
knowledge of the subject, and build up to some recent results on
moduli spaces that were obtained using tropical techniques. We’ll
encounter tropical curves, weight filtrations, graph complexes,
and more on the way. Those who know the usual story of moduli
spaces can start at page 7 for the second part of the article. The
discussion of new results begins on page 12.

In case you are interested, I put some exercises, ranging from
elementary to not so elementary, at the end of the article.

What is a moduli space?

A moduli space is a parameter space—usually, a parameter
space for classes of geometric objects of interest. Think of a
moduli space like a mail order catalog. Pointing to the catalog
conjures up a geometric object, off in a warehouse somewhere.

Furthermore, the catalog should be nicely organized. Nearby
points of the catalog specify “nearby” geometric objects. Instead
of a precise definition, let’s start with a toy example to get some
intuition. We ask:

(1) What is a moduli space of lines in R2?

Actually, let’s back up even further, and start with a warm-up
question:

(0) What is a moduli space of non-vertical lines in R2?
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An answer to question (0) is provided by the usual “y = mx+ b”
from high school—or “y = mx + c” if you’re from the U.K., or
probably yet other conventions. A separate copy of R2, with
coordinates called m and b, will do to answer question (0). In
other words, by associating a point (m, b) with the line

{(x, y) ∈ R2 : y = mx+ b},

we regard this (m, b)-plane as a “mail-order catalog” for non-
vertical lines. Look at Figure 1.

Next, how about question (1): how can we “glue in” a space
that parametrizes all vertical lines in the plane?

Elementary projective geometry provides an answer. Regard
the original R2 as sitting at height z = 1 inside R3. Then a line
in R2 sweeps out a plane in R3 through 0. Conversely, any plane
in R3 through 0, except for the plane z = 0, uniquely determines
a line in R2.

Next, the space of planes in R3 through 0 may be identified
with the space of lines in (a dual copy of) R3 through 0, by
associating to a plane ax+ by + cz = 0 the line through (a, b, c)
and 0.

Finally, the space of lines in R3 through 0 is exactly the real
projective plane RP2, obtained as S2/∼, where ∼ is antipodal
identification on the 2-sphere. One way to picture RP2 is as a
closed Northern hemisphere of the unit sphere in R3, with each
antipodal pair of equatorial points identified. Just picture a line
through 0 in R3 piercing the unit sphere x2 +y2 +z2 = 1: it does
so in two antipodal points. Either exactly one of the two is in
the open Northern hemisphere, or both of them are equatorial.

Working backwards, we conclude that the moduli space of lines
in R2 is RP2 minus a point—which is an (open) Möbius strip.
The (m, b)-plane of non-vertical lines inside it is then obtained
by deleting a “line’s worth of lines,” cutting the Möbius strip.

Onwards to a second toy example:

(2) What is a moduli space of triangles, i.e., for isomor-
phism classes of Euclidean triangles?
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Figure 1: The (m, b)-plane of non-vertical lines in R2.

Here we mean the familiar notion of triangles in the Euclidean
plane, with isomorphisms being isometries. This is an excellent
example to soak up at this point, as was apparently suggested by
M. Artin. It is an opportunity to probe what we really mean by a
moduli space, and shows some of the limitations of moduli spaces
and the necessity of moduli stacks in certain situations. Here, the
added subtlety is that triangles can have automorphisms, unlike
our example above of lines together with embedding in R2, which
don’t.

I haven’t given myself enough space here to take up mod-
uli of triangles very much, but there is a really nice article by
K. Behrend [Beh14] introducing algebraic stacks through this
lens, and which is written to be accessible, at least in part, to
undergraduates. I’ll follow that article in this section.

What do we really mean by a moduli space of triangles? The
most desirable situation would be to have a topological spaceM
which is a moduli space of triangles in the following strong sense.
Not only do

the points of M correspond bijectively to isomorphism
classes of triangles,

but also, for an arbitrary topological space S,

families of triangles over S, up to isomorphism, should
correspond bijectively to continuous maps S →M,

a

b
c

a′

b′

c′

v v

Figure 2: There are six isomorphism classes of families of (equi-
lateral, side-length-1) triangles over a circle.

where the bijection is required to take a family of triangles over
S to the natural continuous map S → M sending s ∈ S to the
point of M corresponding to the triangle over s.

Here, one has to have a robust notion of what a family of
triangles over S is, and what an isomorphism between two such
is. You are invited to come up with your own precise definition
of a family of triangles over S! Intuitively, it should be a triangle
sitting above each point of S, with a coherent notion of how edge
lengths vary continuously as one walks around S.

No such M can exist! Suppose instead it did exist. Look at
the family of triangles, over a line segment, drawn in Figure 2.
(Let’s just say all the triangles involved are equilateral of equal
side length 1.) No contradiction so far. . . but now imagine all
the ways of gluing the family over the endpoints of the segment
to produce a family of triangles over S1. There are six ways to
do this, corresponding to the 3! bijections {a, b, c} → {a′, b′, c′}.
Yet all six families of triangles over S1 yield the same constant
map S1 →M.

At this point, rather than throwing up our hands and giving
up, there are two ways to proceed. Option 1: work with the
coarse moduli space, which is a space that, in a way that can be
made precise, comes closest among all spaces to satisfying our two
desired conditions. Option 2: pass to an appropriate category of
stacks, living with, and eventually embracing, the fact that one
is no longer working with an actual space.

A word on Option 2: a stack is a category M together with
a functor from M to the category Top of topological spaces—or
to Schemes or whatever kind of geometry you’re interested in—
satisfying some precise extra conditions we won’t get into. (One
of them is called being fibered in groupoids.)

For example, continuing to work over Top, just as an example,
there is a categoryM whose objects are families of triangles T →
S, whose morphisms are pullback squares, and whose functor to
Top sends T → S to S.

This truly enlarges the category Top in the following sense:
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given a fixed topological space M , one can soup it up into a
category (fibered in groupoids) over Top. The objects of the
category are continuous maps S → M , and the morphisms are
commuting triangles S′ → S → M . The functor to Top sends
S →M to S.

This discussion is painfully brief, but I mention it in case it is
helpful. It used to bug me to no end to hear people in graduate
school say confidently, and cryptically, “Okay, so this isn’t really a
space, but let’s just pretend it is a space” and I was like, “Pretend
what is a space?” What is it? Well, it’s a certain category,
which generalizes the notion of topological space, or scheme, or
whatever, essentially by a Yoneda embedding.

In any case, we shall be primarily interested in this article in
moduli spaces, and their rational cohomology in particular, that
are Deligne-Mumford stacks—very roughly, locally admitting a
scheme covering space. In this situation, the rational cohomology
of the Deligne-Mumford stack coincides with that of the coarse
moduli space. So, having made my excuses, I will now do the
thing that bugged me in graduate school, which is to refer to the
coarse moduli spaces and the stacks interchangeably and ambigu-
ously whenever it suits us to do so.

Again, I refer enthusiastically to [Beh14] for further reading,
as well as to Fantechi’s short article [Fan01].

Why moduli spaces? Many spaces of classical interest in
algebraic geometry may naturally be regarded as moduli spaces:
Grassmannians and flag varieties, Hilbert schemes, moduli spaces
of vector bundles, moduli spaces of abelian varieties. . . Moduli
spaces are interesting! Things that might be simple when studied
individually, such as a line in R2, are richer when studied in
continuous families. (See Exercise 1.)

In fact, sometimes one is forced to study families even if one
is solely interested only in the behavior of single objects: the ge-
ometry of the moduli space itself can tell you about the individual
objects being parametrized.

Moduli spaces are also a natural setting in which intersection
theory is useful. This is one of the reasons that compact moduli
spaces are paramount. Otherwise, intersections can “escape to
infinity.” Therefore, if our moduli space is not compact, then we
seek a compactification, ideally a modular compactification. By
this we mean an embedding of the original space into a compact
space which is itself a moduli space, for some geometrically nat-
ural class of objects that enlarges the original. For example, RP2

compactifies the moduli space of lines in R2 by adding a single
point: the “line at infinity.” Technically, of course, every space
is tautologically a moduli space—for its own (functor of) points.

What’s in this article. We will now put lines and trian-

gles aside, and turn to the main characters of this article: the
moduli spaces Mg and Mg,n of Riemann surfaces, and their
Deligne-Mumford-Knudsen compactifications Mg and Mg,n. I
will describe these spaces, as well as some recent work, joint with
S. Galatius and S. Payne. In doing so, I shall attempt to illustrate
another reason that compactifications are useful: suitable com-
pactifications can provide insight into the topology of the space
being compactified. The chain of reasoning we shall illustrate
has many main characters: Riemann surfaces and their moduli,
tropical curves and their moduli, dual complexes, mixed Hodge
structures, graph complexes. . . These will all be introduced in
turn.

To close this section, let me also recommend D. Ben-Zvi’s 2008
survey on moduli spaces [BZ08], which I discovered after drafting
this article. That article takes a very similar expository at the
outset, including a similar warm-up example of RP1. But it also
discusses a range of interesting but still accessible examples of
moduli spaces.

Riemann surfaces

The first main character of this article is the moduli spaceMg,n

of n-marked Riemann surfaces of genus g.

A Riemann surface is a compact, connected complex
manifold of complex dimension 1.

(In this article, we build “compact” and “connected” into the
definition of Riemann surface.) An n-marking of a Riemann sur-
face is simply a choice of an ordered n-tuple of distinct points on
it.

The most basic invariant of a Riemann surface is its genus.
That is, a Riemann surface is a compact, connected oriented
2-manifold; the orientation comes from its complex structure.
Therefore it is homeomorphic to a “g-handled torus”—that is,
the connect sum of g tori—for some integer g ≥ 0. This number
g is its genus.

Here are just a few examples. First, we assert that there is,
up to isomorphism, just one Riemann surface of genus 0: the
Riemann sphere, also known as the (complex) projective line P1.
Note that P1 itself has a natural description as a moduli space:
it is the space of lines in C2 through the origin. (See Exercise 2.)

How about Riemann surfaces of genus 1? One may obtain
examples of the form C/Λ, where Λ is a lattice—that is, Λ is a
discrete, finitely generated additive subgroup of C of rank 2. So
C/Λ is homeomorphic to a parallelogram that has its two pairs
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of opposite sides glued appropriately. Thus C/Λ is a topological
torus, of genus 1, with its complex structure inherited from that
on C itself. Moreover, these are all possible examples in genus
1: a Riemann surface of genus 1 is, after choice of a basepoint,
identified isomorphically with its Jacobian variety via the Abel-
Jacobi map. So after choosing the basepoint, it is an abelian
variety of dimension 1, and hence of the form C/Λ.

How about Riemann surfaces of arbitrary genera? At least
in principle, one way to access them all is to exhibit them as
branched covers of P1. Indeed, this approach plays a prominent
role historically. More specifically, suppose you fix the following
data arbitrarily:

• a number d ≥ 1,
• distinct points p1, . . . , pb on P1, and
• permutations σ1, . . . , σb ∈ Sd such that

〈σ1, . . . , σb〉 = Sd and σ1 · · · · · σb = id.

Now pick a basepoint on your P1 distinct from the pis, together
with based loops γi around the points pi whose concatenation
γ1 · · · · · γb is topologically trivial. Then the Riemann Existence
theorem implies that there is a unique Riemann surface with a de-
gree d branched cover to P1, branched at the pi with monodromy
around γi as specified by the permutations σi.

The case d = 2 is already nice to consider. Given an even num-
ber, say 2g+ 2, of points on P1, there is a unique branched cover
of P1 of degree 2, branched exactly over these points: here each
σi = (12) ∈ S2 for each i. A Riemann surface obtained in this
way is called hyperelliptic, and an Euler characteristic check—
more precisely, the Riemann-Hurwitz formula—shows that it has
genus g.

We have now seen the definition of a Riemann surface. How-
ever, an algebraic geometer might offer the following definition
instead:

A Riemann surface is a smooth, projective, connected
algebraic curve over C.

Here, we have to live with an unfortunate terminology clash:
algebraic geometers call them curves, since they have dimension
1 over C; but topologically they are surfaces, of dimension 2 over
R. Sorry about that! I will tend to stick to the terminology of
curves as we go further.

The equivalence of the two definitions of Riemann surface of-
fered in this section—algebraic vs. analytic—is not at all ob-
vious. The proof relies on finding enough nonconstant mero-
morphic functions on a Riemann surface, via the Riemann-Roch
theorem.

There is much more to say about Riemann surfaces, but I will
forge ahead to a discussion of their moduli spaces.

The moduli spaces Mg,n

Fix numbers g, n ≥ 0 with 2g − 2 + n > 0. We now give a rough
definition:

Mg,n denotes the moduli space of genus g, n-marked
Riemann surfaces.

We write Mg = Mg,0. This definition is really a theorem,
which says that there exists a complex variety—more precisely,
a Deligne-Mumford stack—that can rightly be called a moduli
space, as discussed in the introduction. First and foremost is the
fact that the complex points of Mg,n correspond to isomorphism
classes of genus g, n-marked Riemann surfaces. For a detailed
history of the construction of Mg, you can see the interesting
survey [Ji15].

Example: M0,3. Let us begin with some examples, starting
with M0,3. First, we have asserted that every Riemann surface
of genus 0 is isomorphic to P1. Furthermore, Exercise 2, which
appears the end of the article, implies that for any genus 0 Rie-
mann surface X and distinct points p1, p2, and p3 on X, there
is a unique isomorphism X → P1 taking p1, p2, p3 to any fixed
ordered triple of distinct points of P1. In other words, M0,3 is a
single point. And the uniqueness mentioned above implies that
M0,3 really is a point as a stack, with no automorphisms in its
stack structure.

By the way, the discussion above hints at why we started
with n = 3 when g = 0, and more generally why we required
2g − 2 + n > 0. Namely, this numerical condition ensures that
an n-marked Riemann surface of genus g has finitely many au-
tomorphisms. That finiteness condition is necessary for the re-
quirement that Deligne-Mumford stacks admit what I roughly
called a “scheme covering space”: an étale, surjective morphism
from a scheme.

Example: M0,4. Next: what are the points ofM0,4? We are
really asking: what are all configurations of four distinct points
p1, p2, p3, p4 on the projective line P1, up to isomorphism? This
is a very good example to understand completely.

Let us say the same answer in two ways. First, by Exercise 2,
we may assume that (p1, p2, p3) = (0, 1,∞). Then p4 may vary
freely. Thus M0,4 is isomorphic to

P1 − {0, 1,∞}.
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Here is another way of saying the same thing. There is a
classical algebraic invariant of ordered quadruples of points on
P1 called the cross ratio, which, by rewriting the points of P1 for
short as a = (a : 1) and ∞ = (1 : 0), is expressed

cr(a, b, c, d) =
(a− d)(b− c)
(a− b)(d− c)

.

The formula above should be interpreted as the appropriate limit
if one of a, b, c, d is∞. There are varying conventions for the exact
expression; I chose one which has the property that

cr(0, 1,∞, d) = d.

Moreover, the cross ratio is a coordinate for M0,4, as you may
show in Exercise 3. The general case ofM0,n is in a similar vein;
see Exercise 4.

Example: M1,1. What about a moduli space of elliptic
curves? When do two lattices Λ and Λ′ produce isomorphic Rie-
mann surfaces C/Λ ∼= C/Λ′ of genus 1?

It is necessary and sufficient that there is a biholomorphism,
i.e., complex-linear map, of C to itself taking Λ to Λ′. Using
such a biholomorphism we may first assume that Λ = 〈1, τ〉 and
Λ′ = 〈1, τ ′〉 for τ, τ ′ in the complex upper half plane. Then a
computation, which I omit but can be found in standard sources,
shows that C/Λ ∼= C/Λ′ if and only if τ and τ ′ are in the
same SL2(Z)-orbit. Here, SL2(Z) acts on the upper half-plane
by Möbius transformations.

SoM1,1 is a quotient of the upper half plane by SL2(Z). (There
is an oft-drawn picture of a fundamental domain of this quotient:
see, e.g., [Har77, Figure 16].) But algebraically, a coarse moduli
space for M1,1 is given by an affine line, parametrizing the j-
invariant of the elliptic curve. The precise relationship between
these two descriptions is not at all obvious. In particular, it is
not elementary, and is quite beautiful, to describe how j may be
calculated from τ . But this is beyond the scope of this article.

Example: M2. Just one more example. It is a standard fact
that every genus 2 Riemann surface is hyperelliptic, a property
that we previously discussed. Such curves admit a unique degree
2 morphism to P1 ramified at 2g+2 = 6 points, called Weierstrass
points. Thus M2, at least as a variety, is a quotient M0,6/S6:
the moduli space of six distinct, unlabelled, points on P1.

Okay—these pleasant explicit descriptions ofMg,n can’t go on
forever. For one thing, for larger g, Mg,n is not even a rational
variety; for even larger g, it is not even unirational. So, eventu-
ally, no nice descriptions (as rational varieties) like what we have
seen can possibly exist!

A brief, biased survey of the cohomology
of Mg

The space Mg was already known to Riemann, who coined the
term “moduli” in his 1857 paper. The construction of Mg, as
a stack over Z having the appropriate moduli functor, was ob-
tained a century later, thanks to Deligne and Mumford. Yet the
topology of moduli spaces of curves remains largely a mystery,
despite the fact that Mg is so well-studied, and inhabits several
different flavors of geometry, topology, and physics.

In this article, we shall not focus on the constructions of Mg

and Mg,n—one can’t do everything! Very briefly, though, there
are a few ways of going about it. One of them is constructing it
as a quotient of a Hilbert scheme. Basically, one finds all genus g
curves as embedded in a projective space PN by a suitable power
of the canonical bundle. All such embedded curves have the
same Hilbert polynomial; then Mg is obtained as the quotient
of a subvariety of the relevant Hilbert scheme. The quotient is
simply by automorphisms of PN .

Another (nonalgebraic) perspective that we are giving no time
to, sadly, is the Teichmüller approach to Mg, namely realizing
Mg as the quotient of Teichmüller space by a properly discontin-
uous action of the mapping class group Modg. From this, though,
it follows that the rational cohomology of Mg is the same thing
as the rational cohomology of Modg.

A few things we do know: Mg is a connected, indeed irre-
ducible, variety of complex dimension 3g−3. This number 3g−3
was already known to Riemann. Another thing we know: Harer-
Zagier proved that the orbifold Euler characteristic of Mg is

χorb(Mg) =
Bg

4g(g − 1)
, (1)

where Bg denotes the gth Bernoulli number. They also show that
the (ordinary) Euler characteristic of Mg is asymptotically the
same.

This tantalizing result suggests yet-to-be-uncovered structure.
It also shows that there is, asymptotically, lots of cohomology!
Indeed, asymptotically as g →∞, it follows from (1) that

(−1)g+1χ(Mg) ∼ g2g

grows superexponentially.
On the other hand, the rational cohomology of Mg is largely a

mystery. It is entirely known only for g ≤ 4.
Geometers have (rightly) devoted lots of attention to the sta-

ble rational cohomology of Mg. Harer, in 1985, proved that
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Hi(Mg;Q) is in fact independent of g for g sufficiently large.
Subsequently, Mumford conjectured, and Madsen-Weiss eventu-
ally proved, that the cohomology ring H∗(Mg;Q), regarded as a
graded Q-algebra, is isomorphic in degrees up to 2

3 (g − 1) to the
graded polynomial algebra

Q[κ1, κ2, . . .].

Here, κi ∈ H2i(Mg;Q) denotes the ith Miller-Morita-Mumford
kappa class. This polynomial algebra had already been shown
to be contained in the stable cohomology of Mg by Miller and
Morita at the time of Mumford’s conjecture.

Here is a humbling realization. As you may check, the stable
cohomology of Mg grows only like (constant)

√
g. (A little more

precisely, we are asserting that the vector space dimension of the
degree at most 2

3 (g − 1) part of Q[κ1, κ2, . . .], with κi in degree

2i, is bounded by constant · (constant)
√
g + constant.)

Therefore, the stable cohomology in fact occupies a vanishingly
small proportion of the rational cohomology of Mg. By the end
of this article we shall get our hands on a newly discovered source
of exponentially many of these unstable cohomology classes.

Here is another humbling realization. Consider again Harer-
Zagier’s Euler characteristic of Mg. Notice that when g is even,
χ(Mg) is a negative number with magnitude growing superex-
ponentially in g. That is to say: when g is even and very large,
Mg must have lots of rational cohomology in odd degree.

On the other hand, almost no explicit nonzero groups
Hi(Mg;Q) for i odd are known to this day. In fact, as remarked
by Harer-Zagier, at the time of their paper, none were known. In
2005, O. Tommasi found one, showing, en route to her calcula-
tion of the cohomology of M4 in the category of rational Hodge
structures, that dimH5(M4;Q) = 1 [Tom05].

By the end of this article we shall get our hands on a few more
nonzero, odd-degree rational cohomology groups ofMg. But we
are definitely far from the end of the road here.

B. Farb refers to the problem of explicit unstable cohomology
classes of Mg as the “dark matter” problem for Mg: we know
there is a lot of it, but we don’t know explicitly where. (Coho-
mology classes in odd degree are all examples of unstable classes:
the stable cohomology of Mg, being generated by κ-classes, is
entirely in even degree.) The dark matter problem forMg is yet
another manifestation of the usual difficulty in mathematics in
overcoming the gap between existence and construction.

The Deligne-Mumford-Knudsen com-
pactification Mg,n

Other than M0,3, the spaces Mg,n are not compact. A beauti-
ful modular compactification of Mg and Mg,n was obtained by
Deligne-Mumford in 1969 and by Knudsen (in the case of marked
points), called the compactification by stable curves, which we
now discuss.

The insight of Deligne and Mumford was to enlarge the no-
tion of a smooth, proper curve, to allow nodal singularities—the
mildest possible singularities—with only finitely many automor-
phisms. Such curves are called stable. To peek ahead at some
pictures, see Figure 3.

Definition 1 A nodal curve of genus g is a proper, connected
algebraic curve X over C with arithmetic genus h1(X,OX) = g
whose only singularities, if any, are nodes. A node is a complex
point x ∈ X with analytic-local equation uv = 0: two branches
meeting transversely.

Definition 2 (Marked points and stability) A nodal, n-marked
curve is a nodal curve X as above with p1, . . . , pn ∈ X distinct
smooth complex points of X. Simply put, you are forbidden from
marking a node.

Say (X, p1, . . . , pn) is stable if its automorphism group is fi-
nite. That is, only finitely many automorphisms of X fix the pi
pointwise. (Exercise 5.)

Definition 3 Fix g, n ≥ 0 with 2g − 2 + n > 0. Then Mg,n

denotes the moduli space of n-marked stable curves of genus g.

Again, this definition is really a remarkable theorem, that a space
(or Deligne-Mumford stack) that deserves to be called a moduli
space for stable curves really exists.

In fact, the boundary Mg,n \ Mg,n admits a stratification
in which the strata are assembled in a combinatorial way from
smaller moduli spaces Mg′,n′ . To describe the stratification in
a way that highlights its combinatorial nature, we shall define
the marked, vertex-weighted dual graph of a stable curve. If
(X, p1, . . . , pn) is a stable curve, its dual graph is a triple

G = (G,m,w)

as follows:

1. G is a (multi)graph, with a vertex v corresponding to each
irreducible component Cv of X, and with an edge between
v and w for every node of X on Cv ∩ Cw.

6



1 2 1
2

1
2

1
2

1
2

Figure 3: Above, the five strata of M1,2. Below, the five stable
graphs of type (g, n) = (1, 2), corresponding to the strata de-
picted above. Marked points are drawn as labelled “half-edges.”
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2. The marking functionm : {1, . . . , n} → V (G) sendsm(i) = v
when pi lies on Cv.

3. The weight function w : V (G)→ Z≥0 is given by setting w(v)
to be the genus of Cνv , the normalization of Cv.

Let’s call a triple G = (G,m,w) arising in this way a stable
graph. See Figure 3 for an example of the topological types that
arise when (g, n) = (1, 2), together with the corresponding sta-
ble graphs. (Exercise 6.) Incidentally, stability amounts to the
following purely combinatorial condition on (G,m,w): for every
vertex v,

2w(v)− 2 + nv > 0,

where nv is the number of half-edges and marked points at v.
Now fix a stable graph G, and ask: what is a moduli space of

stable curves with dual graph G? Our reference here is [ACG11],
by the way.

Informally speaking, a curve with dual graph G may be spec-
ified by naming, for each v ∈ V (G), an nv-marked, genus w(v)

0 0

Figure 4: A stable graph G on the left, and the corresponding
stable curve in M3.

curve; in other words, a point of Mw(v),nv
. But this is an over-

specification, exactly by the action of the automorphisms of the
combinatorial datum G in its action on

∏
vMw(v),nv

.

Thus the claim is as follows. Let

M̃G =
∏

v∈V (G)

Mw(v),nv
.

Then

MG = [M̃G/Aut(G)]

is a moduli space of stable curves of dual graph G. To be pre-
cise, the brackets here denote the quotient stack, which is again
a Deligne-Mumford stack. See [Beh14] for an elementary expla-
nation of quotient stacks.

For example, let G be a graph with two vertices and four
parallel edges between them, with no markings or weights. Then

MG = [(M0,4 ×M0,4)/(S2 × S4)].

A curve with dual graph G may be specified by four points on
each of two P1s, that is, choosing two cross ratios (α, β), and
gluing. See Figure 4. Note that MG has orbifold points, e.g.,
along the diagonal α = β. Indeed, such a curve is in the closure
of the hyperelliptic locus: it admits a nontrivial automorphism
exchanging the two P1s.

The previous example demonstrates, by the way, that consid-
ering moduli spaces of marked curvesMg,n is essential even just
to describe the boundary strata of moduli spaces of unmarked
curves Mg.

There are many nice surveys of Mg,n from various perspec-
tives, including in previous issues of the Notices [Vak03].

Tropical curves

I want to (seemingly) switch gears and discuss the tropical moduli
space of curves, assuming no background in tropical geometry.
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But first: what is tropical geometry? Well, it depends on
whom you ask. Tropical geometry has connections to many ar-
eas of mathematics: nonarchimedean geometry, mirror symme-
try, combinatorics, optimization, even economics. But I shall
center our discussion primarily on its connection with algebraic
geometry, and in particular its historical antecedents in the form
of degeneration techniques in algebraic geometry.

What do we mean by degeneration? The basic idea is to get
information on the generic behavior of a smooth algebraic curve,
say, by studying a one-parameter family of curves, which degen-
erates in the limit to a singular curve, instead. In general, the
singular curve could have many irreducible components, giving
rise to a rich combinatorial structure. The idea is then that prop-
erties of the smooth fibers may be deduced from properties of the
singular fiber.

For example, consider the family of projective plane quartics
Ct, parametrized by t ∈ C, defined by the equation

t(x4 + y4 + z4) + xyz(x+ y + z) = 0. (2)

When t is nonzero but close to 0, the plane curve is smooth.
When t = 0, the curve degenerates to the zero locus of

xyz(x+ y + z) = 0.

Thus the curve C0 over t = 0 is the union of four projective lines,
with each pair meeting transversely at a point.

What, then, is tropical geometry? The following is a slogan:

Tropical geometry is a very drastic degeneration
technique in algebraic geometry in which the
limiting object is entirely combinatorial.

To glimpse this principle, let us follow the example above all
the way into the tropical realm. One may associate a tropical
curve to the family of curves in (2). It is K4, the complete
graph on 4 vertices, equipped with edge lengths of 1. The edge
lengths will not be justified here. (But, roughly speaking, the
edge lengths measure the “speed of formation,” relative to t, of
the six nodes in the fiber over t = 0.) The reason that the
tropicalization of the family (2) is a K4 is that there are four
irreducible components in the fiber over t = 0, with each pair of
them meeting transversely once.

Now observe, for example, that the arithmetic genus, 3, of the
smooth curves Ct, is still visible in K4, which is a tropical curve
of genus 3. By the genus of a graph we mean the number

g(G) = dimH1(G,Q)

= |E(G)| − |V (G)|+ #{connected components of G}.

X1X2

X3

X4

X1

X2

X3X4

Figure 5: The special fiber of the family of curves defined in
Equation (2), consisting of four P1s, on the left; and the associ-
ated tropical curve, on the right.

In summary, we have seen a small example of an invariant of
a smooth curve that can be detected by its tropicalization. Of
course, there are more novel applications of the tropical point of
view than rederiving the degree-genus formula for plane curves.
For further reading, see the survey [BJ16] on degenerations of
linear series, and the references therein.

We now give the precise definition of a tropical curve.

A tropical curve is a pair (G, `) where

• G is a stable graph, in the precise sense of the
previous section, and

• ` : E(G)→ R>0 is a function on the edge set of G.

A tropical curve is, more or less, a metric graph: think of it
as a combinatorial, or non-archimedean, analogue of a Riemann
surface.

Given a one-parameter family of smooth curves over a neigh-
borhood of t = 0, there is a precise way to associate a tropical
curve. It goes roughly as in the above example. But see, e.g.,
[Cha17] and the references therein for the details, especially re-
garding edge lengths.

Let me pause to explain something that might be mystifying if
you have seen talks on tropical geometry in which tropical curves
are drawn very differently, perhaps more like the pictures in the
bottom right of Table 1. If you have seen no such talks, then skip
to the next section.

Morally, the two different definitions of tropical curves, on dis-
play in the bottom row of Table 1, arise in parallel to the two
different ways to think of algebraic curves in classical algebraic
geometry, on display in the top row of the figure. Algebraic
curves can arise as subvarieties of projective spaces, given as the
vanishing locus of homogeneous polynomials. Or, they can be
given as Riemann surfaces, equipped with complex structure by
specifying an appropriate sheaf of functions. (The original sin of
drawing Riemann surfaces as complex 1-dimensional manifolds,
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Table 1: Cartoons of abstract/embedded algebraic/tropical
curves of genus 3.

abstract embedded

algebraic

tropical

but embedded curves as if they were real 1-dimensional mani-
folds, is on full display in the top row of Table 1.)

It is interesting to study all four squares in Table 1 and their
relationships with each other. For example, going from the top
left picture to top right “is” Brill-Noether theory: the theory of
embedding curves into projective space. And the corresponding
theory of tropical linear series, going from the bottom left box to
the bottom right, is very interesting too; see [BJ16].

Going from the top right to the bottom right box is the theory
of “embedded” tropicalization of subvarieties of toric varieties.
This is the usual setting of introductions to tropical geometry,
e.g., [MS15].

But the focus of this article is about “abstract” tropicalization,
i.e., getting from the top left box in Table 1 to the bottom left
box. I hope this helps explain the bigger picture.

Moduli spaces of tropical curves

The tropical moduli space M trop
g,n parametrizes isomorphism

classes of n-marked tropical curves of genus g. Roughly speak-
ing, it is a combinatorial space, glued from polyhedral cones, each
cone parametrizing all possible ways to “metrize” a stable graph.
To peek ahead at a picture, see Figure 6.

Tropical moduli spaces of curves were constructed in this
form by Brannetti-Melo-Viviani, building on work of Caporaso

and Mikhalkin, and with antecedents in related constructions of
Gathmann-Markwig. Actually, many of the ideas can be traced
back even further to the work of Culler-Vogtmann on Outer Space
Xg, a space of marked metric graphs of genus g on which the
outer automorphism group Out(Fg) acts. There have been some
results on the precise connection between Outer Space and tropi-
cal moduli space and in bringing techniques from geometric group
theory to play, but more attention is certainly needed.

To defineM trop
g,n precisely, fix a stable graph G. (For example, if

(g, n) = (1, 2), then pick one of the five stable graphs in Figure 3.)
What is a parameter space for all isomorphism classes of tropical
curves of this combinatorial type?

Our first guess might be RE(G)
>0 : that is, we specify a tropical

curve of type G by assigning a positive real number, interpreted
as a length, to each edge. But this overcounts because of auto-
morphisms of G. For example, for G as in the top left of Figure 6,
the two tropical curves given by edge lengths (α, β) and (β, α) are
isomorphic, for any α, β ∈ R>0. Thus a better parameter space
would be

M trop
G = RE(G)

>0 /Aut(G),

where the automorphism group Aut(G) acts by permuting coor-
dinates.

Now we need to glue these spaces together. With foresight,
let us allow edge lengths to go to zero, with the understanding
that such a point in the moduli space shall be identified with the
tropical curve obtained by contracting—shrinking away—edges of
length zero. (The weight of the vertex resulting from contracting
an edge is the sum of the weights of the endpoints—or w(v) + 1
if the contracted edge was a loop based at v.) Note, then, that
contraction defines a partial ordering on the stable graphs of type
(g, n); when (g, n) = (1, 2), the Hasse diagram of the resulting
poset is shown in Figure 3.

In other words, define

M trop
g,n =

(∐
G

RE(G)
≥0 /Aut(G)

)
/ ∼

where the equivalence relation is generated by contracting zero-
length edges, as described above. A picture of M trop

1,2 is shown in
Figure 6.

To end this section, notice that M trop
g,n is always contractible.

Indeed, it is an instance of a generalized cone complex, i.e., glued
from polyhedral cones via face morphisms. And all connected
generalized cone complexes, being glued from cones, deformation
retract to the cone point.
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Figure 6: The tropical moduli space M trop
1,2 . Compare with Fig-

ure 3.

On the other hand, the link of M trop
g,n at its cone point is ex-

tremely interesting. Denote this link ∆g,n. The link is a “cross-
section” of M trop

g,n . Concretely, ∆g,n may be identified with the
subspace ofM trop

g,n parametrizing tropical curves having total edge
length 1.

The space ∆g,n plays a starring role in this article. To ade-
quately explain our interest in ∆g,n, we will stop to discuss mixed
Hodge structures on cohomology groups of complex varieties.

The weight filtration

One of Deligne’s many significant contributions was the theory of
mixed Hodge structures developed in the 1970s. At its most basic
level, this is some extra structure on the rational cohomology
of any complex variety, not just smooth projective ones, where
classical Hodge theory applies. It is something that can really
depend on the complex structure of a variety, and not just on
the homeomorphism type of its underlying topological space.

First, recall the definition of a pure Hodge structure. A pure
Hodge structure of weight k ∈ Z is a finitely generated free
abelian group HZ together with a decomposition of

HC = HZ ⊗ C =
⊕
p+q=n

Hp,q

such that Hq,p = Hp,q.
Now suppose X is a complex variety. No other requirements

on X are yet imposed; in particular we don’t require that it be
smooth or compact. A reasonable first example to keep in mind
is X = (C∗)n, the algebraic torus, which is smooth but isn’t
compact.

Deligne defines a weight filtration on the rational singular co-
homology of X

W0 ⊂ · · · ⊂W2i = Hi(X;Q)

in such a way that the weight j graded piece, namely

GrWj H
i := Wj/Wj−1,

is equipped with a pure Hodge structure of weight j. (In fact,
this pure Hodge structure is induced by a single Hodge filtration
on Hi(X;C) simultaneously for all the graded pieces.) Thus it
becomes interesting to study the weight filtration on the rational
cohomology of X, as a finer invariant than singular cohomology.
For example, when X =Mg,n, in which weights is the superex-
ponential growth of Euler characteristic hiding? We really don’t
know.

Though there are many things to say regarding mixed Hodge
theory, I shall specifically seek to promote the following “combi-
natorialist’s view” of the (associated graded pieces of the) weight
filtration—which was already present in Deligne’s original work—
as follows.

Suppose X is smooth and X ⊂ X is a simple normal crossings
compactification of X. What this means is:

1. X is a smooth variety that is complete, i.e., it is compact,

2. The irreducible components of the boundary D = X \X are
smooth and intersect transversely.

Transverse means that analytically-locally at any point of X, the
boundary looks like the transverse intersection of some number
of hyperplanes inside an affine space. A good example is the com-
pactification of (C∗)n ⊂ Pn, whose boundary is n+1 hyperplanes
meeting transversely.

Say D1, . . . , Dt are the irreducible components of the bound-
ary, and let d denote the complex dimension of X. Then the
weight 2d−j graded piece GrW2d−jH

∗(X;Q) can be completely
understood from the following data:

1. The rational cohomology groups

Hj(Di0 ∩ · · · ∩Dir ;Q),

for all r; that is, the rational cohomology of all possible
intersections of irreducible components. (I allow the empty
intersection r = −1 and interpret it to be X itself.)
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2. The natural maps between these cohomology groups

Hj(Di0 ∩ · · · ∩ D̂ij ∩ · · · ∩Dir ;Q)→ Hj(Di0 ∩ · · · ∩Dir ;Q)

obtained from dropping a term in the intersection in all pos-
sible ways.

Here is the precise formulation of what I just said: consider
the chain complex

0→ Hj(X;Q)
δ0−→
⊕
i0

Hj(Di0 ;Q)

δ1−→
⊕
i0<i1

Hj(Di0∩Di1 ;Q)
δ2−→ · · · −→ 0.

(3)

Here, the maps δi are the sum of the restriction maps on coho-
mology obtained by dropping one term in all possible ways; these
are summed with signs based on the placement of the term you
are dropping. Then I assert that

GrWj H
j+i
c (X;Q) ∼=

ker δi
im δi−1

,

where the “c” subscript denotes compactly supported coho-
mology. A justification for this assertion is summarized in
[CGP21, §5]; see the references therein.

Finally, to get from compactly supported to singular cohomol-
ogy, use Poincaré duality, which respects mixed Hodge structures,
on the smooth manifold X. We get

GrW2d−jH
2d−j−i(X;Q) ∼= (GrWj H

j+i
c (X;Q))∗,

where d is the (complex) dimension of X. (Exercises 7, 8, 9.)
Before going further, let’s remark that the prominence of nor-

mal crossings compactifications in the presentation above is re-
flective of Deligne’s original treatment. Deligne originally defined
the weight filtration on the cohomology groups of a smooth vari-
ety in terms of a filtration on the logarithmic de Rham cohomol-
ogy of the variety, defined with respect to a smooth normal cross-
ings compactification—very roughly, allowing differential forms
to have prescribed simple poles along the compactification. It
has to be proven that this construction is independent of choice
of compactification, but that is not the hardest part.

Just the combinatorics, please. Returning to the main
storyline, consider the chain complex (3) above in the case j = 0.
It becomes entirely combinatorial! What I mean is that each
H0(Y ;Q), where Y is anything, just counts the number of con-
nected components in Y .

To drive home the point, let’s pause for an important defini-
tion: the dual complex of D, also known as the boundary complex
of the pair X ⊂ X. What we mean is the combinatorial space
obtained by taking a vertex for every irreducible component Di0 ,
an edge for every irreducible component of a pairwise intersec-
tion Di0 ∩ Di1 , a triangle for every irreducible component of a
triple intersection, and so on. Denote the boundary complex by
∆(X ⊂ X). For example, the boundary complex of (C∗)n ⊂ Pn
is the boundary of an n-simplex.

Assume here that X is connected, purely for expository ease,
and look at (3) when j = 0 again. When j = 0, the chain com-
plex (3) is the reduced cochain complex of the boundary complex
∆(X ⊂ X). Do you agree?

Dualizing, we have a canonical identification

GrW2dH
2d−i(X;Q) ∼= H̃i−1(∆(X⊂X);Q). (4)

We call the cohomology in the 2d-graded piece of H∗(X;Q), as
in the left hand side of (4), the top-weight-cohomology of X. (It
is a fact that cohomology never appears in weight > 2d. Indeed,
Poincaré duality tells us that the weight (2d − i) cohomology
pairs with compactly supported cohomology in weight i.)

If you haven’t been following closely, here is the main point
distilled down, and without mentioning weight filtrations. The
left hand side of (4) is a quotient of H2d−i(X;Q), since after
all it is the top associated graded piece of a filtration thereon.
Therefore we have established a canonical surjection

H2d−i(X;Q) � H̃i−1(∆(X⊂X);Q), (5)

from the cohomology of the algebraic variety X, with an appro-
priate degree shift, to the homology of the combinatorial space
∆(X ⊂ X).

Distilling (5) into a mnemonic device: if you want to produce
lots of cohomology on the algebraic side, it’s enough to produce
lots of homology on the combinatorial side.

To close this section, here are two technical remarks. First, for
applications, it is important to be able to handle the more general
case of a normal crossings compactification, which means that
the boundary components are no longer required to be smooth.
Second, one needs to work in the generality of smooth, separated
Deligne-Mumford stacks.

The first technical remark is actually heftier than the second.
Both generalizations are needed for our intended application to
the case X =Mg,n of moduli spaces of curves.
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The top-weight cohomology of Mg,n

The discussion in the previous section on weight filtrations, ap-
plied to X =Mg,n, says roughly that to produce rational coho-
mology onMg,n in top weight, it is sufficient to produce homol-
ogy in the dual complex of the boundary of Mg,n.

Let’s get right to the point of this section: an important the-
orem of Abramovich-Caporaso-Payne gives an identification

∆g,n
∼= ∆(Mg,n ⊂Mg,n)

of (the link of) the tropical moduli space of curves with the dual
complex of the boundary of Mg,n [ACP15]. In other words:

The boundary complex ofMg,n ⊂Mg,n can itself
be interpreted as a combinatorial moduli space:
the moduli space of tropical curves.

This shift in perspective has been quite useful for coming up with
applications such as the ones I will discuss next, and are a source
of new applications to moduli spaces other than Mg,n.

To summarize, we have a canonical surjection

H6g−6+2n−i(Mg,n;Q) � H̃i−1(∆g,n;Q).

This pushes our interest to a space ∆g,n that appears to be
almost as mysterious as Mg,n. Indeed, ∆g,n is largely still mys-
terious. But a recent theorem, obtained in collaboration with
S. Galatius and S. Payne, relates the homology of ∆g,n to a cer-
tain graph complex à la Kontsevich. This pushes the mystery yet
further into the territory of graph complexes, which we discuss
next.

Graph complexes

A graph complex is an umbrella term for a chain (or cochain)
complex of vector spaces that is generated by graphs with certain
labels or decorations, and often with boundary (or coboundary)
map defined by 1-edge-contraction. There are many different fla-
vors of graph complexes, and they have myriad connections to
geometry. The most directly relevant one here is a graph com-
plex denoted G(g,n). It is a marked version of a graph complex
G(g) first studied by Kontsevich, related to invariants of even-
dimensional manifolds and deformations of the operad en of little
n-disks, due to Boardman–Vogt and May, for even n.

To give you a feel for graph complexes, let me actually define
G(g,n). You can follow along using the example in Figure 7, which
is the case (g, n) = (1, 3).

1 2

3

0 1

2

1

23

0
1 2 1

32

0
1 2 2

31

0
1 2

1

3
2

0
1 1

23

0
1 1

32

0
1 2

31

0
1

1

3
20

1
1 1

−1 −1 −1

−1 −1 −1 −1

G
(1,3)
1

G
(1,3)
0

G
(1,3)
−1

Figure 7: The graph complex G(1,3).

For integers g, n ≥ 0 with 2g − 2 + n > 0, the generators
of G(g,n) as a rational vector space are triples (G,m,ω), where
G is a connected (multi)graph of first Betti number g, ω is a
total order on the edge set of G, and m : {1, . . . , n} → V (G) is
a marking function, such that every vertex has valence at least
3. (To calculate valence, loops count twice at their base vertex,
and each marking counts once.) We impose a relation (G,m,ω) =
±(G′,m′, ω′) whenever there is an isomorphism of marked graphs
(G,m) → (G′,m′); the sign depends on whether ω and ω′ are
related by an even or odd permutation under that isomorphism.
In particular, if (G,m) has an automorphism that acts as an
odd permutation on the edge set, then (G,m,ω) = 0, and it
never appears in our graph complex. For example, graphs with
parallel edges are always zero in G(g,n), since interchanging two
parallel edges is an odd permutation on the edge set.
G(g,n) is graded by number of edges; to be very precise, a

graph with e edges shall have homological degree e − 2g. The
boundary map ∂ is a certain signed sum of 1-edge-contractions.
The signs ensure that ∂2 = 0. For details, you can see [CGP]; or
you can probably even decipher them directly from the example
in Figure 7.

Galatius, Payne, and I prove that

H̃k+2g−1(∆g,n;Q) ∼= Hk(G(g,n)) (6)

for each k. (You should ignore the degree shift by 2g − 1; it’s
purely a matter of the grading convention.) This theorem is not
obvious, but its format is not implausible, at least after the fact.
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Indeed, the left hand side features a space of metric graphs, while
the right hand side features a finite chain complex generated
by graphs, suggesting cellular homology. Indeed, we formulate
our proof by introducing the formalism of a cellular homology
theory for symmetric ∆-complexes: roughly like CW complexes,
but with self-identifications of simplices along automorphisms al-
lowed.

For example, the graph complex G(1,3) shown in Figure 7 has
reduced homology Q in degree 1. Indeed, the “triangle of marked
points” is a nonzero cycle, since every 1-edge-contraction of it has
parallel edges and is therefore zero in G(1,3). This calculation is
then consistent with the fact, not too hard to check, that ∆1,3 '
S2.

At this point in the article, we have now established a chain of
identifications under which homology classes in G(g,n) produce
classes of cohomology (in top weight) inMg,n. But how, explic-
itly? I’ll have to refer you to [CGP21] for the details on how to
construct explicitly a homology class in Mg,n from a cocycle on
the tropical moduli space.

In the next section, we will deduce some notable consequences
of (6) as far as the cohomology of Mg and Mg,n is concerned.
But here is an aside to close this section. It’s worth mentioning
that historically, a different type of graph complex, the complex
of ribbon graphs (graphs decorated with cyclic orderings of edges
at each vertex), was used to study the cohomology of Mg,n for
n > 0: Mg,n × Rn>0 has a well-known orbifold cell decompo-
sition, due to Strebel, Penner, and others, with cells indexed
by ribbon graphs of genus g with n punctures. The connection
we make here, via degenerations and top-weight cohomology, is
different. (Note, however, that a framework relating these two
ways of associating graph complexes toMg,n has been proposed
by Andersson–Willwacher–Živković [AWŽ20], and Kalugin has
made progress in a recent preprint.)

It is greatly fascinating that graph complexes of various flavors
arise quite so often in geometry, topology, and physics.

The Grothendieck-Teichmüller Lie alge-
bra

Graph complexes have been studied intensively in recent years,
including in remarkable work of T. Willwacher [Wil15], who finds
a copy of the Grothendieck-Teichmüller Lie algebra grt1 in the
cohomology of (unmarked) graph complexes. More precisely, the

dual graph complex

GC =
∏
g≥2

Hom(G(g),Q)

has a Lie algebra structure (the differential of this cochain com-
plex becomes “bracket with an edge”). Willwacher proves that
there is an isomorphism of Lie algebras

H0(GC) ∼= grt1.

This theorem is crucial to our story. Brown proved in 2012
[Bro12] that there is an injection

F̂Lie(σ3, σ5, σ7, . . .) ↪→ grt1. (7)

The left-hand side is (the degree completion of) the graded
Lie algebra freely generated in degrees 3, 5, 7, . . . . The Deligne-
Drinfeld-Ihara conjecture states that this is an isomorphism. But
in any case, the fact of the injection (7) means, of course, that
the dimensions of the graded pieces of the right hand side grow
at least as fast as those of the left hand side. In fact, one de-
duces that the degree g graded piece grows faster than βg for
any β < β0, where β0 ≈ 1.3247 . . .. (This constant β0 appears
mysterious when presented out of the blue. It is the real root of
t3 − t − 1 = 0, which is a cubic polynomial related in an appro-
priate way to the Poincaré series t3/(1− t2) of the graded vector
space 〈σ3, σ5, σ7, . . .〉. See [CGP21] if you really want the details
of this calculation.)

The Grothendieck-Teichmüller Lie algebra was introduced by
Drinfeld in 1990, and explicitly described via generators and re-
lations by Furusho in 2010. It is related to other parts of math-
ematics: multiple zeta values, little 2-disk operads, . . .. But the
connection to H∗(Mg;Q) that we’re in the process of describing
seems to be new. I think it’s fair to say that we as a community
do not fully understand what grt1 is doing in the cohomology of
Mg, though we would hope to be able to say something more
soon.

Back to the cohomology of Mg

From the connections from moduli spaces of curves to boundary
complexes to tropical moduli spaces to Kontsevich graph com-
plexes to the Grothendieck-Teichmüller Lie algebra, all described
throughout this article, we finally deduce:

Theorem 4 [CGP21] We have

dimH4g−6(Mg;Q) > βg + constant,
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for any β < β0, where β0 ≈ 1.3247 . . . is the real root of t3−t−1 =
0.

This is a previously unknown source of cohomology, growing
at least exponentially, and in fact it appears in top weight. A few
remarks are in order. First of all, this theorem was not expected.
Rather, a conjecture of Kontsevich from about 25 years ago,
along with a more recent conjecture of Church-Farb-Putman,
predicted eventual vanishing of these cohomology groups. Both
of these conjectures are refuted by the theorem above.

The degree 4g−6 in the theorem is also worth a remark. Harer
proved in 1986 that the virtual cohomological dimension (vcd) of
Mg is 4g − 5. In case the definition is unfamiliar, you can use
the following as a placeholder: “Mg successfully masquerades as
a space of dimension 4g − 5, from the point of view of cohomol-
ogy with coefficients in any local system of Q-vector spaces.” In
particular, the rational cohomology ofMg must vanish in degree
above 4g − 5.

Moreover, it is known from theorems of Harer, Church-Farb-
Putman and Morita-Sakasai-Suzuki that H4g−5(Mg;Q) = 0.
This is no contradiction to the vcd, since the statement per-
tains only to constant Q-coefficients. (Indeed, Harer proves that
H4g−5(Mg; Stg⊗Q) 6= 0, where Stg = H2g−2(Cg;Z) is the Stein-
berg module. Here, Cg denotes the curve complex.) This is all to
say that the theorem above finds exponential growth in the next
highest degree: just one degree below the vcd.

There are yet more surprising consequences for the cohomol-
ogy of Mg. An unpublished 2001 manuscript of Bar-Natan–
McKay undertakes computations of homology of several graph
complexes, including G(g). Bar-Natan–McKay’s computations,
translated back through tropical moduli spaces and boundary
complexes over to the top-weight cohomology ofMg, imply that

H15(M6;Q), H23(M8;Q), and H27(M10;Q) are nonzero.

These mark the next progress, since Tommasi’s 2005 article, on
the problem that I mentioned earlier in this article: of finding
elusive, yet abundant, odd-degree cohomology groups of Mg.

By the way, it is fun to remark that Bar-Natan-McKay call
G(g) “the basic example”—it is bH in their notation—and note
that

“While simplest to define, Basic Graph Cohomology
does not appear in nature. . . bH is simpler than its twist
H, defined below. Why is it thatH is related to so many
things while bH is related to none? What is bH?”

By this point in the present article, the geometric significance of
bH as it relates to Mg is now evident.

Moreover, the computations of Bar-Natan–McKay have more
recently been extended by computations of Willwacher, as re-
ported in [KWŽ17]. These computations would imply that

H37(M9;Q) and H31(M10;Q) are nonzero—

except for the fact that the calculations there are only carried out
in floating point arithmetic, due to their size. So they cannot be
considered completely rigorous! So for now, these two instances
of nonzero cohomology groups in odd degree are, officially, no
more than strong suspicions.

There are interesting consequences and computations for the
spacesMg,n which I haven’t yet mentioned, including a proof of
a formula for the Sn-equivariant top-weight Euler characteristic
ofMg,n, in joint work of mine with Faber, Galatius, and Payne.
This intricate formula—which is lovely to stare at, but too long
to print here—was conjectured by Zagier in 2009, who arrived at
it by looking at the output of remarkable computer calculations
that Faber initially achieved up to g = 8. (On the other hand,
Zagier claims no memory of the conjecture now, as I understand.)
Actually, another formula for what turns out to be the same
data was previously obtained by Tsopmené-Turchin [STT18], in
the context of studying the topology of spaces of string links.
However, it is still a mystery as to how to derive either formula
from the other!

These topics would take us too far past the space limit, so I
refer to [CFGP,CGP] and the discussions therein.
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Exercises

1. The tangent lines to the unit circle x2 + y2 = 1 form a
loop inside the moduli space of lines in R2. Is this loop
nullhomotopic? What about when considered inside RP2?

2. Recall that the automorphism group of P1 is PGL2(C), act-
ing on P1 by multiplication. Verify that for any three distinct
points a, b, and c of P1, and any three distinct points a′, b′,
and c′, there is a unique automorphism of P1 taking a, b, c
to a′, b′, c′ in that order.
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3. Show that the cross ratio defines an (algebraic) map

{quadruples of distinct points in P1} −→ (P1 − {0, 1,∞});

and the cross ratio is preserved under the action of an auto-
morphism of P1.

4. For each n > 3, construct M0,n as a complement of
(
n−1
2

)
hyperplanes in Pn−3.

5. Argue that (P1, p1, . . . , pn) is stable if and only if n ≥ 3.

6. Draw the analogues to Figure 3 for (g, n) = (1, 3).

7. As a sanity check, recover the fact that Hk(X;Q) is sup-
ported in weights k, . . . , 2k for a smooth variety X.

8. Compute each GrWj H
k((C∗)n;Q).

9. Argue that Hk(X;Q) is concentrated in weight 2k if X is a
hyperplane arrangement complement in Pn. Concentrated
in weight 2k means exactly that GrWj H

k(X;Q) 6= 0 only
if j = 2k. Start with the case of transverse arrangements,
in which each subcollection of hyperplanes intersects in ex-
pected dimension.
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