The 4×4 minors of a 5 × n matrix are a tropical basis

Melody Chan UC Berkeley

joint work with Anders Jensen and Elena Rubei [arXiv:0912.5264]

June 16, 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Background: Tropical Arithmetic

The tropical semiring $(\mathbb{R}, \oplus, \odot)$ consists of the real numbers equipped with tropical addition and multiplication:

$$x \oplus y := \min(x, y)$$

 $x \odot y := x + y.$

Example:

$$3 \oplus 4 = 3$$
$$3 \odot 4 = 7$$

Background: Tropical Hypersurfaces

Let K be the field of well-ordered power series in a variable t

$$\{\alpha = \sum_{n \in S} a_n t^n : S \text{ a well-ordered subset of } \mathbb{R}, a \in \mathbb{C}\}.$$

Background: Tropical Hypersurfaces

Let K be the field of well-ordered power series in a variable t

$$\{\alpha = \sum_{n \in S} a_n t^n : S \text{ a well-ordered subset of } \mathbb{R}, a \in \mathbb{C}\}.$$

The tropicalization of a polynomial f with coefficients in K is the tropical polynomial F obtained by replacing each coefficient with its valuation (lowest exponent) and replacing all classical operations with tropical ones.

Example: $f = t^3x + 4ity - 5z$ yields $F = 3 \odot X \oplus 1 \odot Y \oplus Z$.

Background: Tropical Hypersurfaces

Let K be the field of well-ordered power series in a variable t

$$\{\alpha = \sum_{n \in S} a_n t^n : S \text{ a well-ordered subset of } \mathbb{R}, a \in \mathbb{C}\}.$$

The tropicalization of a polynomial f with coefficients in K is the tropical polynomial F obtained by replacing each coefficient with its valuation (lowest exponent) and replacing all classical operations with tropical ones.

Example:
$$f = t^3x + 4ity - 5z$$
 yields $F = 3 \odot X \oplus 1 \odot Y \oplus Z$.

The tropical hypersurface T(f) of a polynomial $f \in K[x_1, ..., x_n]$ is the set of points in \mathbb{R}^n at which F attains its minimum at least twice.

Example: T(f) is a tropical line centered at (-3, -1, 0).

Background: Tropical Prevarieties and Varieties

Fix polynomials $f_1, \ldots, f_k \in K[x_1, \ldots, x_n]$. Their tropical prevariety is

 $T(f_1) \cap \cdots \cap T(f_k).$

Background: Tropical Prevarieties and Varieties

Fix polynomials $f_1, \ldots, f_k \in K[x_1, \ldots, x_n]$. Their tropical prevariety is

 $T(f_1) \cap \cdots \cap T(f_k).$

Their tropical variety is

$$\bigcap \{T(h) : h \in \langle f_1, \ldots, f_k \rangle \}.$$

The polynomials f_1, \ldots, f_k are a tropical basis if their prevariety equals their variety.

Background: Tropical Prevarieties and Varieties

Fix polynomials $f_1, \ldots, f_k \in K[x_1, \ldots, x_n]$. Their tropical prevariety is

 $T(f_1) \cap \cdots \cap T(f_k).$

Their tropical variety is

$$\bigcap \{T(h) : h \in \langle f_1, \ldots, f_k \rangle \}.$$

The polynomials f_1, \ldots, f_k are a tropical basis if their prevariety equals their variety.

Theorem ("Fundamental Theorem of Tropical Geometry") For $I \subseteq K[x_1, ..., x_n]$, the tropical variety T(I) consists of those real points which lift (coordinate-wise) to the classical variety V(I).

Definition 1: Tropical Rank

An $n \times n$ real matrix A is tropically singular if the minimum, over all permutations $\pi \in S_n$, of $a_{1\pi(1)} + \cdots + a_{n\pi(n)}$ occurs at least twice.

The tropical rank of a matrix is the size of its largest nonsingular square submatrix.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition 1: Tropical Rank

An $n \times n$ real matrix A is tropically singular if the minimum, over all permutations $\pi \in S_n$, of $a_{1\pi(1)} + \cdots + a_{n\pi(n)}$ occurs at least twice.

The tropical rank of a matrix is the size of its largest nonsingular square submatrix.

Example:
$$\begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 has tropical rank 2.

The set of $d \times n$ matrices of tropical rank < r is the prevariety of the $r \times r$ minors of a $d \times n$ matrix.

Definition 2: Kapranov rank

Given a matrix A over the field K, let A be the real matrix of lowest exponents appearing in each entry of A. We say that A is a lift of A.

Example:
$$\mathcal{A} = \begin{pmatrix} 1 & t & t^2 \\ 2t & 3t & 5t \\ 1+2t & 4t & 5t+t^2 \end{pmatrix}$$
, $\mathcal{A} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

Definition 2: Kapranov rank

Given a matrix A over the field K, let A be the real matrix of lowest exponents appearing in each entry of A. We say that A is a lift of A.

Example:
$$\mathcal{A} = \begin{pmatrix} 1 & t & t^2 \\ 2t & 3t & 5t \\ 1+2t & 4t & 5t+t^2 \end{pmatrix}$$
, $\mathcal{A} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

The Kapranov rank of a real matrix A is the smallest rank of any lift of A to the field K. Example: The Kapranov rank of A is 2.

Definition 2: Kapranov rank

Given a matrix A over the field K, let A be the real matrix of lowest exponents appearing in each entry of A. We say that A is a lift of A.

Example:
$$\mathcal{A} = \begin{pmatrix} 1 & t & t^2 \\ 2t & 3t & 5t \\ 1+2t & 4t & 5t+t^2 \end{pmatrix}$$
, $\mathcal{A} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

The Kapranov rank of a real matrix A is the smallest rank of any lift of A to the field K. Example: The Kapranov rank of A is 2.

The set of $d \times n$ matrices of Kapranov rank < r is the variety of the $r \times r$ minors of a $d \times n$ matrix.

These notions of rank were studied by Develin, Santos, Sturmfels; also Akian, Gaubert, Izhakian, Rowen, Kim-Roush, ...

Today: Proof of a conjecture made by [Develin-Santos-Sturmfels]: the 4×4 -minors of a $5 \times n$ matrix form a tropical basis

Tropical Rank versus Kapranov Rank

Question: Does every matrix of tropical rank < r have Kapranov rank < r?

Equivalently: are the $r \times r$ -minors of an $d \times n$ matrix a tropical basis? That is, are the prevariety and the variety of the $r \times r$ minors equal?

Tropical Rank versus Kapranov Rank

Question: Does every matrix of tropical rank < r have Kapranov rank < r?

Equivalently: are the $r \times r$ -minors of an $d \times n$ matrix a tropical basis? That is, are the prevariety and the variety of the $r \times r$ minors equal?

- ▶ Yes, if $r \le 3$ or $r = \min\{d, n\}$ (Develin, Santos, Sturmfels 2006)
- No, if r = 4 and d = n = 7 (Fano plane)
- ▶ Challenge posed for r = 4, d = n = 5 (50€, Berlin, 2007)

Tropical Rank versus Kapranov Rank

Question: Does every matrix of tropical rank < r have Kapranov rank < r?

Equivalently: are the $r \times r$ -minors of an $d \times n$ matrix a tropical basis? That is, are the prevariety and the variety of the $r \times r$ minors equal?

- ▶ Yes, if $r \le 3$ or $r = \min\{d, n\}$ (Develin, Santos, Sturmfels 2006)
- ▶ No, if r = 4 and d = n = 7 (Fano plane)
- ▶ Challenge posed for r = 4, d = n = 5 (50€, Berlin, 2007)

Theorem

The 4 \times 4-minors of a 5 \times n matrix are a tropical basis.

Computational proof for the 5×5 case

The tropical prevariety of the 25 4 \times 4-minors is a pure 21-dimensional fan with 9-dimensional lineality space, and $f = (1450, 28450, 257300, \dots, 2521800).$

The tropical variety of the ideal $\langle 4 \times 4$ -minors \rangle is a pure 21-dimensional fan with 9-dimensional lineality space, and $f = (3250, 53650, 421750, \dots, 2894400)$.

Same Euler characteristic $\chi = -3120$

Careful computations in gfan (Anders Jensen) show that the supports agree.

Suppose

$$W = \left[\begin{array}{cccc} | & | & | & \cdots & | \\ w_1 & w_2 & w_3 & \cdots & w_n \end{array}\right]$$

has tropical rank \leq 3; want to <u>lift</u> it to a matrix in $K^{5 \times n}$ of rank 3.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Suppose

$$W = \left[\begin{array}{ccc} | & | & | & \cdots & | \\ w_1 & w_2 & w_3 & \cdots & w_n \end{array} \right]$$

has tropical rank \leq 3; want to <u>lift</u> it to a matrix in $K^{5 \times n}$ of rank 3.

Idea: Delete last row of W, get n coplanar points in \mathbb{TP}^3 They lie on a plane $a_1 \odot x_1 \oplus a_2 \odot x_2 \oplus a_3 \odot x_3 \oplus a_4 \odot x_4$. So columns of W

lie on hyperplane

$$H_5 = a_1 \odot x_1 \oplus \cdots \oplus a_4 \odot x_4 \oplus \infty \odot x_5$$

Suppose

$$W = \left[\begin{array}{cccc} | & | & | & \cdots & | \\ w_1 & w_2 & w_3 & \cdots & w_n \end{array}\right]$$

has tropical rank \leq 3; want to <u>lift</u> it to a matrix in $K^{5 \times n}$ of rank 3.

Idea: Delete last row of W, get n coplanar points in \mathbb{TP}^3 They lie on a plane $a_1 \odot x_1 \oplus a_2 \odot x_2 \oplus a_3 \odot x_3 \oplus a_4 \odot x_4$. So columns of W

lie on hyperplane

$$H_5 = a_1 \odot x_1 \oplus \cdots \oplus a_4 \odot x_4 \oplus \infty \odot x_5$$

Similarly for other rows: Get five special hyperplanes H_1, \ldots, H_5 .

Lemma: If the *stable intersection* $H_i \cap_{\text{stab}} H_j$ of some pair contains W, then W lifts to a matrix of rank 3 as desired.

Lemma: If the *stable intersection* $H_i \cap_{\text{stab}} H_j$ of some pair contains W, then W lifts to a matrix of rank 3 as desired.

Otherwise, for each pair i, j, there must exist a witness pair k, l: a pair such that some column w_s lies in the closed sectors k and l, and no other closed sectors, for both hyperplanes H_i and H_j .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Lemma: If the *stable intersection* $H_i \cap_{\text{stab}} H_j$ of some pair contains W, then W lifts to a matrix of rank 3 as desired.

Otherwise, for each pair i, j, there must exist a witness pair k, l: a pair such that some column w_s lies in the closed sectors k and l, and no other closed sectors, for both hyperplanes H_i and H_j .

This gives, for each i, j, a geometric condition on the hyperplane arrangement. Combinatorial case analysis shows that no hyperplane arrangement can satisfy these $\binom{5}{2}$ conditions.

Lemma: If the *stable intersection* $H_i \cap_{\text{stab}} H_j$ of some pair contains W, then W lifts to a matrix of rank 3 as desired.

Otherwise, for each pair i, j, there must exist a witness pair k, l: a pair such that some column w_s lies in the closed sectors k and l, and no other closed sectors, for both hyperplanes H_i and H_j .

This gives, for each i, j, a geometric condition on the hyperplane arrangement. Combinatorial case analysis shows that no hyperplane arrangement can satisfy these $\binom{5}{2}$ conditions.

In fact no tropical oriented matroid can satisfy these conditions (Ardila and Develin).

What next?

- 4 × 4-minors and 5 × 5-minors of 6 × n matrices
- ► Topology, e.g. shellability, schönness of these spaces...
- Matrices with special structure: symmetric, Hankel, ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?