The 4×4 minors of a $5 \times n$ matrix are a tropical basis

Melody Chan
UC Berkeley

joint work with Anders Jensen and Elena Rubei
[arXiv:0912.5264]

June 16, 2010

Background: Tropical Arithmetic

The tropical semiring $(\mathbb{R}, \oplus, \odot)$ consists of the real numbers equipped with tropical addition and multiplication:

$$
\begin{aligned}
x \oplus y & :=\min (x, y) \\
x \odot y & :=x+y .
\end{aligned}
$$

Example:

$$
\begin{aligned}
& 3 \oplus 4=3 \\
& 3 \odot 4=7
\end{aligned}
$$

Background: Tropical Hypersurfaces

Let K be the field of well-ordered power series in a variable t

$$
\left\{\alpha=\sum_{n \in S} a_{n} t^{n}: S \text { a well-ordered subset of } \mathbb{R}, a \in \mathbb{C}\right\}
$$

Background: Tropical Hypersurfaces

Let K be the field of well-ordered power series in a variable t

$$
\left\{\alpha=\sum_{n \in S} a_{n} t^{n}: S \text { a well-ordered subset of } \mathbb{R}, a \in \mathbb{C}\right\}
$$

The tropicalization of a polynomial f with coefficients in K is the tropical polynomial F obtained by replacing each coefficient with its valuation (lowest exponent) and replacing all classical operations with tropical ones.

Example: $f=t^{3} x+4 i t y-5 z$ yields $F=3 \odot X \oplus 1 \odot Y \oplus Z$.

Background: Tropical Hypersurfaces

Let K be the field of well-ordered power series in a variable t

$$
\left\{\alpha=\sum_{n \in S} a_{n} t^{n}: S \text { a well-ordered subset of } \mathbb{R}, a \in \mathbb{C}\right\}
$$

The tropicalization of a polynomial f with coefficients in K is the tropical polynomial F obtained by replacing each coefficient with its valuation (lowest exponent) and replacing all classical operations with tropical ones.

Example: $f=t^{3} x+4 i t y-5 z$ yields $F=3 \odot X \oplus 1 \odot Y \oplus Z$.

The tropical hypersurface $T(f)$ of a polynomial $f \in K\left[x_{1}, \ldots, x_{n}\right]$ is the set of points in \mathbb{R}^{n} at which F attains its minimum at least twice.

Example: $T(f)$ is a tropical line centered at $(-3,-1,0)$.

Background: Tropical Prevarieties and Varieties

Fix polynomials $f_{1}, \ldots, f_{k} \in K\left[x_{1}, \ldots, x_{n}\right]$. Their tropical prevariety is

$$
T\left(f_{1}\right) \cap \cdots \cap T\left(f_{k}\right) .
$$

Background: Tropical Prevarieties and Varieties

Fix polynomials $f_{1}, \ldots, f_{k} \in K\left[x_{1}, \ldots, x_{n}\right]$.
Their tropical prevariety is

$$
T\left(f_{1}\right) \cap \cdots \cap T\left(f_{k}\right) .
$$

Their tropical variety is

$$
\bigcap\left\{T(h): h \in\left\langle f_{1}, \ldots, f_{k}\right\rangle\right\}
$$

The polynomials f_{1}, \ldots, f_{k} are a tropical basis if their prevariety equals their variety.

Background: Tropical Prevarieties and Varieties

Fix polynomials $f_{1}, \ldots, f_{k} \in K\left[x_{1}, \ldots, x_{n}\right]$.
Their tropical prevariety is

$$
T\left(f_{1}\right) \cap \cdots \cap T\left(f_{k}\right)
$$

Their tropical variety is

$$
\bigcap\left\{T(h): h \in\left\langle f_{1}, \ldots, f_{k}\right\rangle\right\} .
$$

The polynomials f_{1}, \ldots, f_{k} are a tropical basis if their prevariety equals their variety.
Theorem ("Fundamental Theorem of Tropical Geometry")
For $I \subseteq K\left[x_{1}, \ldots, x_{n}\right]$, the tropical variety $T(I)$ consists of those real points which lift (coordinate-wise) to the classical variety $V(I)$.

Definition 1: Tropical Rank

An $n \times n$ real matrix A is tropically singular if the minimum, over all permutations $\pi \in S_{n}$, of $a_{1 \pi(1)}+\cdots+a_{n \pi(n)}$ occurs at least twice.

The tropical rank of a matrix is the size of its largest nonsingular square submatrix.

Definition 1: Tropical Rank

An $n \times n$ real matrix A is tropically singular if the minimum, over all permutations $\pi \in S_{n}$, of $a_{1 \pi(1)}+\cdots+a_{n \pi(n)}$ occurs at least twice.

The tropical rank of a matrix is the size of its largest nonsingular square submatrix.

Example: $\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$ has tropical rank 2.
The set of $d \times n$ matrices of tropical rank $<r$ is the prevariety of the $r \times r$ minors of a $d \times n$ matrix.

Definition 2: Kapranov rank

Given a matrix \mathcal{A} over the field K, let A be the real matrix of lowest exponents appearing in each entry of \mathcal{A}. We say that \mathcal{A} is a lift of A.

Example: $\mathcal{A}=\left(\begin{array}{ccc}1 & t & t^{2} \\ 2 t & 3 t & 5 t \\ 1+2 t & 4 t & 5 t+t^{2}\end{array}\right), A=\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$.

Definition 2: Kapranov rank

Given a matrix \mathcal{A} over the field K, let A be the real matrix of lowest exponents appearing in each entry of \mathcal{A}. We say that \mathcal{A} is a lift of A.

Example: $\mathcal{A}=\left(\begin{array}{ccc}1 & t & t^{2} \\ 2 t & 3 t & 5 t \\ 1+2 t & 4 t & 5 t+t^{2}\end{array}\right), A=\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$.

The Kapranov rank of a real matrix A is the smallest rank of any lift of A to the field K. Example: The Kapranov rank of A is 2 .

Definition 2: Kapranov rank

Given a matrix \mathcal{A} over the field K, let A be the real matrix of lowest exponents appearing in each entry of \mathcal{A}. We say that \mathcal{A} is a lift of A.

Example: $\mathcal{A}=\left(\begin{array}{ccc}1 & t & t^{2} \\ 2 t & 3 t & 5 t \\ 1+2 t & 4 t & 5 t+t^{2}\end{array}\right), A=\left(\begin{array}{lll}0 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$.

The Kapranov rank of a real matrix A is the smallest rank of any lift of A to the field K. Example: The Kapranov rank of A is 2 .

The set of $d \times n$ matrices of Kapranov rank $<r$ is the variety of the $r \times r$ minors of a $d \times n$ matrix.

Outline of the Talk

These notions of rank were studied by Develin, Santos, Sturmfels; also Akian, Gaubert, Izhakian, Rowen, Kim-Roush, ...

Today: Proof of a conjecture made by [Develin-Santos-Sturmfels]: the 4×4-minors of a $5 \times n$ matrix form a tropical basis

Tropical Rank versus Kapranov Rank

Question: Does every matrix of tropical rank $<r$ have Kapranov rank $<r$?

Equivalently: are the $r \times r$-minors of an $d \times n$ matrix a tropical basis? That is, are the prevariety and the variety of the $r \times r$ minors equal?

Tropical Rank versus Kapranov Rank

Question: Does every matrix of tropical rank $<r$ have Kapranov rank $<r$?

Equivalently: are the $r \times r$-minors of an $d \times n$ matrix a tropical basis? That is, are the prevariety and the variety of the $r \times r$ minors equal?

- Yes, if $r \leq 3$ or $r=\min \{d, n\} \quad$ (Develin, Santos, Sturmfels 2006)
- No, if $r=4$ and $d=n=7 \quad$ (Fano plane)
- Challenge posed for $r=4, d=n=5$ ($50 €$, Berlin, 2007)

Tropical Rank versus Kapranov Rank

Question: Does every matrix of tropical rank $<r$ have Kapranov rank $<r$?

Equivalently: are the $r \times r$-minors of an $d \times n$ matrix a tropical basis? That is, are the prevariety and the variety of the $r \times r$ minors equal?

- Yes, if $r \leq 3$ or $r=\min \{d, n\} \quad$ (Develin, Santos, Sturmfels 2006)
- No, if $r=4$ and $d=n=7 \quad$ (Fano plane)
- Challenge posed for $r=4, d=n=5$ ($50 €$, Berlin, 2007)

Theorem
The 4×4-minors of a $5 \times n$ matrix are a tropical basis.

Computational proof for the 5×5 case

The tropical prevariety of the 254×4-minors is a pure 21-dimensional fan with 9 -dimensional lineality space, and $f=(1450,28450,257300, \ldots, 2521800)$.

The tropical variety of the ideal $\langle 4 \times 4$-minors \rangle is a pure 21-dimensonal fan with 9 -dimensonal lineality space, and $f=(3250,53650,421750, \ldots, 2894400)$.

Same Euler characteristic $\chi=-3120$
Careful computations in gfan (Anders Jensen) show that the supports agree.

Combinatorial Proof for a $5 \times n$ Matrix

Suppose

$$
W=\left[\begin{array}{|ccccc}
& \mid & & \cdots & \mid \\
w_{1} & w_{w_{2}} & w_{3} & & w_{n}
\end{array}\right]
$$

has tropical rank ≤ 3; want to lift it to a matrix in $K^{5 \times n}$ of rank 3 .

Combinatorial Proof for a $5 \times n$ Matrix

Suppose

$$
W=\left[\begin{array}{l|l|l|l}
& \mid & & \cdots \\
w_{1} & w_{2} & w_{3} & \\
w_{n}
\end{array}\right]
$$

has tropical rank ≤ 3; want to lift it to a matrix in $K^{5 \times n}$ of rank 3 .

Idea: Delete last row of W, get n coplanar points in $\mathbb{T P}$ They lie on a plane $a_{1} \odot x_{1} \oplus a_{2} \odot x_{2} \oplus a_{3} \odot x_{3} \oplus a_{4} \odot x_{4}$. So columns of W
lie on hyperplane

$$
H_{5}=a_{1} \odot x_{1} \oplus \cdots \oplus a_{4} \odot x_{4} \oplus \infty \odot x_{5}
$$

Combinatorial Proof for a $5 \times n$ Matrix

Suppose

$$
W=\left[\begin{array}{|c|ccc}
& \left.\right|_{w_{1}} & & \cdots \\
w_{2} & w_{3} & & w_{n}
\end{array}\right]
$$

has tropical rank ≤ 3; want to lift it to a matrix in $K^{5 \times n}$ of rank 3 .

Idea: Delete last row of W, get n coplanar points in $\mathbb{T P}$ They lie on a plane $a_{1} \odot x_{1} \oplus a_{2} \odot x_{2} \oplus a_{3} \odot x_{3} \oplus a_{4} \odot x_{4}$. So columns of W
lie on hyperplane

$$
H_{5}=a_{1} \odot x_{1} \oplus \cdots \oplus a_{4} \odot x_{4} \oplus \infty \odot x_{5}
$$

Similarly for other rows: Get five special hyperplanes H_{1}, \ldots, H_{5}.

Combinatorial Proof for a $5 \times n$ Matrix

Lemma: If the stable intersection $H_{i} \cap_{\text {stab }} H_{j}$ of some pair contains W, then W lifts to a matrix of rank 3 as desired.

Combinatorial Proof for a $5 \times n$ Matrix

Lemma: If the stable intersection $H_{i} \cap_{\text {stab }} H_{j}$ of some pair contains W, then W lifts to a matrix of rank 3 as desired.

Otherwise, for each pair i, j, there must exist a witness pair k, l : a pair such that some column w_{s} lies in the closed sectors k and I, and no other closed sectors, for both hyperplanes H_{i} and H_{j}.

Combinatorial Proof for a $5 \times n$ Matrix

Lemma: If the stable intersection $H_{i} \cap_{\text {stab }} H_{j}$ of some pair contains W, then W lifts to a matrix of rank 3 as desired.

Otherwise, for each pair i, j, there must exist a witness pair k, l : a pair such that some column w_{s} lies in the closed sectors k and I, and no other closed sectors, for both hyperplanes H_{i} and H_{j}.

This gives, for each i, j, a geometric condition on the hyperplane arrangement. Combinatorial case analysis shows that no hyperplane arrangement can satisfy these $\binom{5}{2}$ conditions.

Combinatorial Proof for a $5 \times n$ Matrix

Lemma: If the stable intersection $H_{i} \cap_{\text {stab }} H_{j}$ of some pair contains W, then W lifts to a matrix of rank 3 as desired.

Otherwise, for each pair i, j, there must exist a witness pair k, l : a pair such that some column w_{s} lies in the closed sectors k and I, and no other closed sectors, for both hyperplanes H_{i} and H_{j}.

This gives, for each i, j, a geometric condition on the hyperplane arrangement. Combinatorial case analysis shows that no hyperplane arrangement can satisfy these $\binom{5}{2}$ conditions.

In fact no tropical oriented matroid can satisfy these conditions (Ardila and Develin).

What next?

- 4×4-minors and 5×5-minors of $6 \times n$ matrices
- Topology, e.g. shellability, schönness of these spaces...
- Matrices with special structure: symmetric, Hankel, ...

