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1 Introduction

A cycle double cover of a graph G is a list of cycles of G such that every edge
of G appears exactly twice. The cycle double cover conjecture (CDC) is the
following:

Conjecture 1. Every bridgeless graph has a cycle double cover.

This conjecture has been attributed variously to many mathematicians,
but was known to be a consequence of the Strong Embedding Conjecture
(Conjecture 2) by W. Tutte, G. Haggard, as well as by G. Szekeres and
P. Seymour, amongst others [18], [16]. In what follows, we survey some of
what is known about the above conjecture and discuss various related prob-
lems and techniques. We discuss the strong embedding conjecture and some
variants in Section 2. We consider the structure of a minimal counterexample
in Section 3. In Sections 4 and 5, we discuss generalizations to cycle k-covers
and to integer combinations of cycles, respectively.

In preparing this document, the author found F. Jaeger’s survey article
[12] and to C.Q. Zhang’s book [20] to be extremely helpful.

All of our graphs may contain loops and multiple edges.
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2 Strong embeddings

We begin by considering some topological conjectures and their relations to
cycle covers. By a surface, we mean a closed, connected, Hausdorff topolog-
ical space, every point of which has an open neighborhood homeomorphic
to R

2. An embedding of a graph G on a surface S is a drawing of G on
the surface without edge crossings. (This is an intuitive definition that can
easily be made rigorous: see e.g. [19]). It is a 2-cell embedding if every face
is homeomorphic to an open disc. We call a 2-cell embedding strong if every
face boundary is a cycle of the graph.

Conjecture 2. [9] (Strong embedding conjecture) Every 2-connected graph
has a strong embedding in some surface.

Note that the strong embedding conjecture already implies CDC: given a
bridgeless graph, embed each of its blocks into some surface. Then the face
boundaries for each block, taken all together, constitute a cycle double cover
for the original graph. In general, CDC is not known to imply the strong
embedding conjecture, but for cubic graphs the two are indeed equivalent:
given a list of cycles covering every edge twice, we “sew” a disc into each
cycle. We need only check that each point of our space has a neighborhood
homeomorphic to R

2. This is clear for the interiors of the polygons and for
the interiors of edges; for vertices, it follows from the fact that there is only
one way to cover the three edges incident to a given vertex with three cycles.

Call a list of cycles in G an orientable cycle double cover of G if the cycles
may be oriented so that each edge of G is used exactly once in each direction.

Conjecture 3. Every 2-connected graph has a strong embedding in some
orientable surface.

Conjecture 4. Every bridgeless graph has an orientable cycle double cover.

Note that Conjecture 3 implies Conjecture 4: just traverse all cycles in the
clockwise direction as given by the orientation of the surface. Furthermore,
Conjecture 4 implies Conjecture 3 in the case of cubic graphs, as above.

We mention one more strengthening of CDC. An embedding of G is said
to be face-k-colorable if its faces can be colored so that no two faces sharing
an edge have the same color. An m-cycle double cover (generally, an m-cycle
k-cover) is a list of m Eulerian subgraphs covering each edge exactly twice
(generally, exactly k times). One can check that a graph has a 3-cycle double
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cover if and only if it has a 4-cycle double cover if and only if it has a nowhere
zero 4-flow, and that the Petersen graph has none of these. However, we have
the following conjectures.

Conjecture 5. Every 2-connected graph has a face-5-colorable embedding in
an orientable surface.

Conjecture 6. ([3], [15]) Every bridgeless graph has a 5-cycle double cover.

Conjecture 5 clearly implies Conjecture 6. A. Huck showed in [10] that
a smallest counterexample to Conjecture 6 must have girth at least ten,
and gave a polynomial time construction of a 5-cycle double cover for any
bridgeless cubic graph with no Petersen minor.

Combining all of the above, we have:

Conjecture 7. [12] Every 2-connected graph has a strong, face-5-colorable,
embedding into an orientable surface.

We remark that Conjecture 7, if true, would imply not only CDC but
also Tutte’s 5-flow conjecture:

Proposition 8. Suppose G has a strong, face-5-colorable, orientable embed-
ding. Then G has a nowhere-zero 5-flow.

Proof. Given a coloring of the faces of the embedding with colors {0, 1, 2, 3, 4},
push a flow around the (oriented) boundary of each face, of magnitude equal
to the color of that face. The result (mod 5) is a flow, and since the coloring
was proper, it is nonzero on every edge.

Thus, if Conjecture 7 is true, then one may apply Proposition 8 to the
blocks of any bridgeless graph to obtain a nowhere zero 5-flow. Of course,
Proposition 8 remains true with 5 replaced by any other number.

3 Smallest counterexamples

If CDC is false, then it must have a minimal counterexample. Following [12],
we summarize some basic facts about the structure of such a graph in the
proposition below. Recall that a graph is called cyclically k-edge-connected
if every cut separating the graph into non-acyclic components has at least k

edges. Call a cut trivial if one side consists of a single vertex. One may check
that a bridgeless cubic graph is cyclically 4-edge-connected if and only if it
has no nontrivial edge cuts of size 3.
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Definition. A snark is a simple, cubic, cyclically 4-edge-connected graph
with chromatic index 4.

Proposition 9. Suppose G is a bridgeless graph not admitting a cycle double
cover, with the minimum number of edges amongst all such graphs. Then G

is a snark.

Proof. If G had an edge cut of size 2, then then contracting one of those
edges would yield a smaller counterexample to CDC. So G must be 3-edge-
connected, and in particular each vertex has degree at least 3. Suppose some
v ∈ V (G) has d(v) > 3. Then by H. Fleischner’s vertex-splitting lemma,
there exist edges e, e′ incident to v such that adding an edge between the ends
of e and e′ different from v and deleting e and e′ yields a smaller bridgeless
graph which must also be a counterexample to CDC, contradiction. Hence
G is cubic. Now it is easy to check that G has no loops nor parallel edges.

Next, suppose G has a nontrivial 3-edge-cut. Then contracting each side
into a single vertex in turn yields two smaller graphs, the cycle double covers
of which can be pasted together to obtain a cycle double cover of G. So G

has no nontrivial 3-edge-cuts, hence is cyclically 4-edge-connected.
Finally, suppose G is 3-edge-colorable, with color classes M1, M2, M3.

Then each Mi must be a perfect matching, so M1∪M2, M1∪M3, and M2∪M3

would be a 3-cycle double cover, contradiction. Hence G has chromatic index
4, by Vizing’s Theorem.

L. Goddyn has shown that a smallest counterexample to CDC must have
girth at least ten ([7], [8]). More recently, A. Huck improved this result to
twelve, using a computer to check for certain reducible configurations [10].
One might hope, as was conjectured in [13], that snarks have bounded girth,
but this is not the case: in [14], M. Kochol gave a construction of cyclically
5-edge-connected snarks of arbitrarily large girth.

4 Cycle k-covers

Recall that an m-cycle k-cover of a graph is a list of m Eulerian subgraphs
using each edge exactly k times. We have concerned ourselves with the case
k = 2; what can we say about other values of k? It is clear that for odd k,
the graphs admitting a cycle-k-cover are the Eulerian graphs. For k = 4 and
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k = 6, we have the following results, which are consequences of the 8-flow
and the 6-flow theorems, respectively. For more on nowhere-zero flows, see,
for instance, [20].

Theorem 10. [2] Every bridgeless graph admits a 7-cycle 4-cover.

Proof. Every bridgeless graph admits a nowhere zero (Z2 × Z2 × Z2)-flow,
and hence has 3 Eulerian subgraphs, say C1, C2, C3, whose union is E(G).
Then every edge of G appears precisely 4 times in the Eulerian subgraphs

{C1, C2, C3, C1△C2, C1△C3, C2△C3, C1△C2△C3}.

Remark. The proof of Theorem 10 just a special case of the following easily
verified statement: given k sets C1, . . . , Ck, every element in their union
occurs exactly 2k−1 times in the 2k − 1 sets

{△i∈I Ci : ∅ 6= I ⊆ {1, . . . , k}}.

For cubic graphs, Theorem 10 resembles the well-known Berge-Fulkerson
Conjecture (see [6]), that every bridgeless cubic graph has 6 perfect matchings
covering every edge exactly twice. Or, taking complements:

Conjecture 11. Every bridgeless cubic graph has a 6-cycle 4-cover.

Next, for k = 6, we have the following theorem, due to G. Fan.

Theorem 12. [4] Every bridgeless graph admits a 10-cycle 6-cover.

Proof. Let G be a bridgeless graph. Then G has a nowhere zero 6-flow, and
hence a nowhere zero (Z3 × Z2)-flow. Thus, G has a nowhere zero 3-flow f

and a nowhere zero 2-flow g such that {f 6= 0} ∪ {g 6= 0} = E(G). (The
notation {f 6= 0} stands for {e ∈ E(G) : f(e) 6= 0}), the “support” of f).
Now f, f +g, and f +2g are integer flows, so we may take their residues mod
3 and consider them as Z3-flows.

Now since {f 6= 0} admits a nowhere zero Z3-flow, it admits a nowhere
zero 3-flow, hence a nowhere-zero 4-flow, hence a nowhere zero (Z2 × Z2)-
flow, hence has a 3-cycle double cover, say {C11, C12, C13}. Similarly, let
{C21, C22, C23} be a 3-cycle double cover of {f+g 6= 0}, and let {C31, C32, C33}
be a 3-cycle double cover of {f + 2g 6= 0}. One can now check that

{

g 6= 0
}

∪
{

{g 6= 0}△Cij : 1 ≤ i, j ≤ 3
}

is a 10-cycle 6-cover; just check the cases g = 0 and g 6= 0 separately.
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Combining the two theorems above, we see that, for each k ≥ 2, every
bridgeless graph has a (3k + ⌈k

3
⌉)-cycle 2k-cover. Note, however, that the

Berge Fulkerson Conjecture would imply the existence of a 3k cycle 2k-cover
for bridgeless cubic graphs and all even k.

5 Faithful cycle covers

Another generalization of CDC is the following: given an edge-weighting
w : E(G) → {0, 1, 2, . . .}, when does there exist a list of cycles of G such
that every edge e appears exactly w(e) times? Call such a list a faithful
cycle cover for w. Faithful cycle covers are well-studied; we summarize some
results below.

Two necessary conditions for a faithful cycle cover are easily verified:

Proposition 13. If the edge-weighting w : E(G) → {0, 1, . . .} has a faithful
cycle cover, then

1. The total weight across every edge cut is even, and

2. In every edge cut, no edge has weight more than half the total.

These conditions are not sufficient in general: consider the Petersen graph
with weight 2 on a perfect matching and 1 everywhere else. However, perhaps
the following is true; if so, it implies CDC.

Conjecture 14. [17] Let w : E(G) → {1, 2} satisfy the conditions in Propo-
sition 13, and suppose that {e ∈ E(G) : w(e) = 1} is a connected subgraph
of G. Then w admits a faithful cycle cover.

In any case, the conditions in Proposition 13 are sufficient for planar
graphs, as shown by P. Seymour in [16]:

Theorem 15. If G is a planar graph, then any function w : E(G) → {0, 1, . . .}
satisfying the conditions in Proposition 13 admits a faithful cycle cover.

In fact, B. Alspach, L. Goddyn, and C.Q. Zhang proved the following
strengthening.

Theorem 16. [1] If G does not contain the Petersen graph as a topological
minor, then any function w : E(G) → {0, 1, . . .} that satisfies the conditions
in Proposition 13 has a faithful cycle cover.
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Of course, if w = 2 on every edge, then the conditions in Proposition 13
hold for all bridgeless graphs, and we recover the cycle double cover conjec-
ture. More generally, P. Seymour has conjectured:

Conjecture 17. [16] If w : E(G) → {0, 1, . . .} satisfies the conditions in
Proposition 13, and in addition, w is even on every edge, then w admits a
faithful cycle cover.

Equivalently:

Conjecture 18. [17] If w : E(G) → {0, 1, . . .} is a nonnegative rational
combination of cycles of G, then it is a nonnegative half-integer combination
of cycles.

Here is a possible approach to Conjecture 14.

Conjecture 19. ([17]) Let G be a bridgeless cubic graph and C a cycle of
G. Then there is another cycle C ′ 6= C of G with V (C) ⊆ V (C ′).

Note that if C is Hamiltonian, then Conjecture 19 follows from Smith’s
Theorem on Hamiltonian cycles.

We now show that Conjecture 19 implies Conjecture 14 and hence implies
CDC.

Lemma 20. If G is a minimal counterexample to Conjecture 14, then G is
a bridgeless cubic graph with no nontrivial edge cuts of size 3.

Proof. That G is bridgeless is clear. If G has a nontrivial edge cut of size
3, contract both sides of the cut in turn and obtain a cycle cover for G by
pasting together cycle covers for the two smaller graphs.

Now suppose v ∈ V (G) is a vertex of degree at least 4. We claim that
we can split off any two edges e, e′ incident to v, in the manner described in
Proposition 9, to obtain a bridgeless graph G′ with fewer edges. For if G′ had
a cut edge f , then {e, e′f} was a nontrivial 3-edge-cut in G, contradiction.
Now we may check that we can always find two edges incident to v such that
splitting them off produces another graph in which {e ∈ E(G) : w(e) = 1} is
a connected subgraph of G.

Proposition 21. Conjecture 19 implies Conjecture 14.
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Proof. Let G be a graph and w : E(G) → {1, 2} be a minimal counterexample
to Conjecture 14. So G is bridgeless and cubic. Let C = {e ∈ E(G) : w(e) =
1}. Now C is an Eulerian connected subgraph of a cubic graph, so it is a cycle.
By Conjecture 19, there exists another cycle C ′ 6= C with V (C) ⊆ V (C ′).
Then C△C ′ is Eulerian, so let us subtract weight 1 from all edges in C△C ′

and delete edges of weight 0 to obtain a subgraph G′ of G and a new edge
weighting w′ for G′. We claim that we can inductively apply Conjecture 14
to obtain a cycle w′-cover for G′. We need only check that that {w′ = 1} is
Eulerian and connected, and that G′ has no cut edges.

Indeed, the set {e ∈ E(G) : w′(e) = 1} is precisely C ′, so is connected and
Eulerian. Now suppose for a contradiction that V (G′) has a partition (X, Y )
with a single cut edge e. Then V (C ′) must lie entirely in one part, say X.
But V (C) ⊆ V (C ′) by choice of C ′, so V (C) also lies inside X. But then no
edges in δ(X, Y ) were changed in getting G′ from G, because none of those
edges lie in C or C ′, so e was a cut edge in G as well as G′, contradicting
that G is bridgeless.

Thus, G′ has a w′-cover, and adding weight 1 to the edges in C△C ′, we
obtain a w-cover for G.

We do not have a proof of Conjecture 19, but we can prove the following.
Given a graph G, call a cycle C of G central if at most one component X of
G − C is such that |δ(X)| is odd.

Proposition 22. Let G be a bridgeless cubic graph and let C be a central
cycle of G. Then there exists a cycle C ′ 6= C of G such that V (C) ⊆ V (C ′).
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