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General Information: M104 is a topics course on geometry. The idea of
the course is to introduce you to some of the beautiful classic geometric re-
sults and constructions. M104 is a good class to take if you want to teach
mathematics at the K-12 level, because it will give you a large supply of
interesting things to tell bright students about. I would imagine that M104
varies somewhat from year to year. I’ve never actually taught M104, but I’ll
summarize the kind of class I would teach.

The Euclidean Plane: The Euclidean plane is the set E
2 of pairs (x1, x2)

where x1, x2 are real numbers. The distance in E
2 is given by

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

Here, I’ve set x = (x1, x2) and y = (y1, y2). The distance formula in E
2 is a

reflection of the famous Pythagorean Theorem: a2 + b2 = c2, where a, b are
the lengths of the short sides of a right triangle and c is the length of the
long side. In M104 you’ll see a proof of the Pythagorean Theorem.

Lines in E
2 are given by equations of the form a1x1+a2x2 = a3. Polygons,

triangles, squares, etc., are as usual. Here is a sample of some nice result
about Euclidean polygons that one might see in M104:

• The sum of the interior angles of an n-gon is 2π(n − 2).

• The three angle bisectors of a triangle meet at a point.

• The three altitudes of a triangle meet at a point.

• The Law of Sines: In any triangle, the quantity s/ sin(θ) is independent
of the side. Here θ is the angle opposite the side of length s.
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• Heron’s formula: The area of a triangle having side length a, b, c is
given by

√

s(s − a)(s − b)(s − b); s =
a + b + c

2
.

• Bramagupta’s formula: Let Q be a quadrilateral that is inscribed in a
circle. If Q has side lengths a, b, c, d, the area of Q is

√

(s − a)(s − b)(s − b)(s − d) s =
a + b + c + d

2
.

• The isoperimetric inequality for polygons: If P and P ′ are polygons
having the same side lengths, and P is inscribed in a circle, then
area(P ) ≥ area(P ′).

• Pick’s Theorem: Say that a lattice point is a point of the form (m, n)
where m and n are integers. Say that a lattice polygon is a polygon
having vertices that are lattice points. If P is a lattice polygon then

area(P ) = L1 +
L2

2
− 1.

Here L1 is the number lattice points in the interior of P and L2 is the
number of lattice points on the boundary of P .

• Dissection Theorem: Let P1 and P2 be unit area polygons. Then P1 can
be cut into triangles, and those triangles can be rearranged (without
overlaps) to make P2.

Hyperbolic Geometry: The Euclidean plane is a model for the classical
Euclidean geometry of points and lines that is described in terms of 5 axioms:

• Any two distinct points can be joined by a line segment.

• Any line segment can be extended indefintely to a straight line.

• There is a circle of any radius through any point.

• All right angles are equal to each other.

• Given a straight line L and a point p not on L, there is a unique line L′

through P that does not intersect L. (That is L and L′ are parallel.)
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For about 2000 years, people wondered if the first four axioms implied the
fifth one. Finally, Lobachevski, Bolyai, and Gauss discovered a non-Euclidean
geometry, now known as hyperbolic geometry, in which the first four axioms
hold and the fifth one fails.

There are many useful and interesting models for the hyperbolic plane.
Here we will describe the Poincare model . In this model, the hyperbolic plane
is the interior of the unit disk. The straight lines are arcs of circles that meet
the unit circle at right angles. When two such straight lines intersect, their
angle of intersection is measured in the Euclidean sense, as the angle between
the tangents to the circles at the intersection point.

z1 z2

z3

z3

Figure 1: Some lines and points in the hyperbolic plane

Once you have the model for the hyperbolic plane, you can consider many
of the same objects as in the Euclidean plane, e.g. circles and polygons. One
(initially) shocking feature of the hyperbolic plane is that the sum of the
angles of a triangle is always less than π, and can take on all values between
0 and π.
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Hyperbolic Geometry In the Poincare model, there is a nice formula for
distance. One thinks of the unit disk as a subset of C, the set of complex
numbers. Given points z2 and z3, one finds the points z1 and z4 on the disk
boundary and then defines

d(z2, z3) = log χ; χ =
(z1 − z3)(z2 − z4)

(z1 − z2)(z3 − z4)
.

The quantity χ is defined for any quadruple of distinct complex numbers. It
is called the cross ratio. When the points all lie on the same circle χ is real.
The length of any line in the hyperbolic plane is infinite, in the sense that
there are points on the same line that are further than N apart for any N .

Given the distance function, one can define the lengths of curves in the
hyperbolic plane by an integration procedure that is similar to what one sees
in calculus for curves in the Euclidean plane. One shocking thing about the
geometry of the hyperbolic plane is that the circumference of a circle of ra-
dius R is about exp(R). Contrast this with the Euclidean case, where the
circumference would be πR2. In the hyperbolic plane, circles spread out ex-
ponentially, whereas in the Euclidean plane, circles spread out quadratically.

One can also define areas of regions in the hyperbolic plane by an integra-
tion procedure. One has the beautiful hyperbolic Gauss-Bonnet Theorem:
Let T be a hyperbolic triangle having interior angles a, b, c. Then

area(T ) = π − a − b − c.

So, the larger the triangle, the smaller the sum of the angles. One conse-
quence of this result is that all triangles have area less than π. This is quite
different from the situation in the Euclidean plane. In the hyperbolic plane,
large triangles look like tripods. A similar result holds for any polygon.

It turns out that the hyperbolic plane is “as symmetric” as the Euclidean
plane. Given any two points in the hyperbolic plane, there is a distance-
preserving map that carries the one point to the other. Moreover, there
is a 1-parameter family of rotations about any point. So, to an observer
living in the hyperbolic plane, any location looks the same as any other and
any direction looks the same as any other. In the Poincare model, these
distance-preserving maps, or isometries have the form

T (z) =
az + b

cz + d
. (1)
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One can characterize the quadruples (a, b, c, d) ∈ C
4 which give rise to actual

hyperbolic isometries. In general, maps as we have defined are called Mobius

transformations.

Inversive Geometry: Let C denote the complex plane. We add an extra
point, called ∞, and call the union C ∪∞ the Riemann sphere. We think
of ∞ as being “close” to points in C that are far from the origin. When this
is done rigorously, one can simply interpret C ∪ ∞ as a sphere. C ∪ ∞ is
not “round” as the ordinary sphere, but it “topologically equivalent” to the
sphere in the sense that there is a homeomorphism between C ∪∞ and the
round sphere S2. A homeomorphism is a bijection f such that both f and
f−1 are continuous. In fact, there is a beautiful homeomorphism from S2 to
C ∪ ∞ called stereographic projection. This map is shown, one dimension
down, in Figure 2. The red point gets mapped to ∞.

S2
x

yf(x)

f(y)

C

Figure 2: Stereographic Projection

A circle in C ∪ ∞ is defined to be either an ordinary circle in C or a
straight line. It is a classical theorem in geometry that stereographic projec-
tion maps circles on S2 to circles in C ∪∞.

We have already described the isometries of the hyperbolic plane in the
Poincare model. Here we can re-purpose these maps. Dropping the “hyper-
bolic isometry condition” (which we didn’t state) and considering all maps
of the form given by in Equation 1, subject only to the constraint that

ad − bc 6= 0, (2)

we get a nice family of transformations of C ∪ ∞. It turns out that these
maps permute the circles of C ∪ ∞. A natural topic in M104 would be to
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explore patterns of circles in C ∪ ∞ and how they interact with Mobious
transformations. This subject is known as inversive geometry .

Projective Geometry: A close relative of C ∪ ∞ is the real projective

plane, RP
2. This is the space of lines through the origin in R

3. A line in
the projective plane is the set of lines through the origin that are contained
in a plane through the origin.

A linear isomorphism of R
3 permutes both the lines through the origin

and the planes through the origin. Thus, any linear isomorphism gives rise to
a transformation of RP

2 known as a projective transformation. The projec-
tive transformations are homeomorphisms of RP

2 that carry lines to lines.
One should compare this with the statement that the Mobius transformations
are homeomorphisms of C ∪∞ that carry circles to circles.

Indeed, C ∪∞ also has an interpretation as the space of complex lines
through the origin in C

2, and the Mobius transformations are none other
than the actions of complex linear isomorphisms of C

2 on these lines. Thus
the relationship between the Riemann sphere and the projective plane is
analogous to the relationship between C

2 and R
3.

It is possible to see the Euclidean plane inside RP
2. One considers all

the lines through the origin in R
2 that are not contained in the (x, y)-plane.

Any such line intersects the plane {z = 1}. Conversely, any point in the
plane {z = 1} determines a unique line through the origin in R

3. Thus, we
can identity the plane {z = 1} with a subset of RP

2.
It is also possible to see the hyperbolic plane in RP

2. Working in the
Eucliean subset of RP

2 we have just discussed, we say that the Klein model

for the hyperbolic plane is the open unit disk in (the Euclidean plane inside)
RP

2. This time the straight lines are ordinary line segments in the open
unit disk. The isometries in this case are exactly the real projective trans-
formations that map the unit disk to itself. There is a formula for distance
that is similar to what we gave above for the Poincare model. The one funny
thing about this model is that the angles are distorted. The hyperbolic angle
between two straight lines is different from the Euclidean angle.

Though the real projective transformations do not preserve this planar
subset of RP

2, they do map large portions of it back into itself. In an in-
formal way, we can speak of the real projective transformations as acting on
the plane. It is a beautiful fact that the real projective transformations per-
mute the conic sections. Thus, one can map a circle to an hyperbolic using
a real projective transformation. In this way, one sees the conic sections in
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a uniform way: The various conic sections in the plane are all images of a
single object in RP

2 under various real projective transformations.

Configuration Theorems: There are a number of classical configuration
theorems in projective geometry. Oneof these is Pappus’s theorem: Refer-
ring to Figure 3, the points A3, B3, C3 are collinear provided that the points
A1, B1, C1 are collinear and the points A2, B2, C3 are collinear.

B2
C2

A1 B1
C1

C3
B3

A2

A3

Figure 3: Pappus’s Theorem

Pappus’s Theorem holds not only when the 6 black points lie in a pair of
lines, but also when these 6 points lie on a conic section. This generalization
is known as Pascal’s Theorem. Pascal’s Theorem in turn is equivalent to
Brianchon’s Theorem: If a hexagon is inscribed in a conic section, then the
three main diagonals of the hexagon meet at a point. M104 is a perfect place
to explore these sorts of results.
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