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General Information: Math 113 is a course in real analysis. It is the
first half of the undergraduate series in real analysis, M113-4. There is some
overlap between M113 and M101. It is not necessary to take M101 before
taking M113, though some students feel that M101 is a good preparation for
the more difficult M113. If you don’t have any idea what real analysis is, you
can read my summary of M101.

M113 essentially covers 3 topics.

• Point set topology in metric spaces, especially as applied to Rn.

• Measure theory and the Lebesgue integral.

• The beginnings of functional analysis – e.g. Fourier series.

Metric Spaces: In M101 you pretty much stick to the real line when dis-
cussing concepts such as continuity, connectedness, and compactness. In
M113, you consider these ideas in a more general setting. A metric space is
a set X together with a distance function d : X ×X → R which satisfies the
following properties:

• d(x, y) > 0 for all x 6= y and d(x, x) = 0 for all x.

• d(x, y) = d(y, x).

• d(x, y) ≤ d(x, z) + d(y, z).

For instance, R is a metric space with the metric d(x, y) = |x − y|. More
generally, Rn is a metric space with the metric

d(x, y) =

√

√

√

√

n
∑

i=1

(yi − xi)2.

1



An Important Example: Lets L2(N) denote the space of infinite se-
quences {ai} such that

∞
∑

i=1

a2

i < ∞,

and one defines

d({ai}, {bi}) =

√

√

√

√

∞
∑

i=1

(ai − bi)2.

The space L2(N) is an infinite-dimensional version of Rn.

Limits and Convergence: The notion of convergence in a metric space
works just about the same way as it does in R. A sequence {xn} in a metric
space X is said to converge to x ∈ X if limn→∞ d(xn, x) = 0. A sequence
{xn} is said to be Cauchy if, for all each integer N > 0, there is some integer
M such that m, n > M implies that d(xm, xn) < 1/N .

The space X is said to be complete if every Cauchy sequence in X con-
verges to a point in X. In our summary for M101 we defined R as the set
of equivalence classes of Cauchy sequences in Q. One might say that R is
the completion of Q. In general, one can start with any metric space X and
form a complete metric space X∗ of equivalence classes of Cauchy sequences
in X. The space X∗ is called the completion of X.

A nice example of a complete metric space is L∞(R), the space of bounded
continuous functions on R. The metric is

d(f, g) = sup |f − g|.

Considering this space in detail, one can prove Picard’s theorem, the exis-
tence and uniqueness result for first order differential equations. This is one
of the applications you will see in M113.

Continuity: Given metric spaces X and Y , a map f : X → Y is said
to be continuous at x if it satisfies the following property: If {xn} is any
sequence in X that converges to x ∈ X then {f(xn)} is a sequence in Y that
converges to f(x). The map f is said to be continuous if it is continuous
at all x ∈ X. One can compose maps between metric spaces just like one
composes real valued maps. Given f : X → Y and g : Y → Z, we have the
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composition h : X → Z, where h(x) = g(f(x)). The map h is continuous
provided that both f and g are continuous. What is nice about this general
result is that you just have to prove it once, for a metric space, and then it
applies to all the examples of metric spaces.

Point Set Topology: Let X be a metric space and let x ∈ X be a point.
We define the ball

Br(x) = {y ∈ X| d(x, y) < r}.

This is the generalization of an open interval on R. A subset U ⊂ X is
called open if it has the following property. For every x ∈ U there is some
r = rx such that Br(x) ⊂ U as well. The set C ⊂ X is called closed if the
complement X − C is open.

A subset K ⊂ X is called compact if it has the following property: Sup-
pose U is a collection of open sets whose union contains K. Then there is
some finite collection U1, ..., Un ∈ U whose union contains K. (This is sup-
posed to hold for any such covering U .) Compactness is a very important
concept in analysis. In M113, you see a number of results about compact
sets:

• A subset of Rn is compact if and only if it is closed and bounded.

• Any infinite sequence of points in a compact set K has a convergent
subsequence. The limit of this subsequence lies in K.

• Every continuous function f : K → R attains its extreme points on
K. In particular, a positive continuous function on a compact set has
a positive minimum.

• If f : X → Y is continuous and K ⊂ X is compact, then f(K) is
compact in Y .

Flaws in the Riemann Integral: At some point in calculus, you learned
about Riemann integral. This magical construction works great for contin-
uous functions. However, for functions that aren’t continuous, the Riemann
integral has some serious flaws.

For example, consider the function f : [0, 1] → R such that f(x) = 1 if
x is irrational and f(x) = 0 if x is rational. The Riemann integral does not
assign a value to

∫

1

0

f dx
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because the upper and lower sums involved do not converge to the same
thing. However, our function f agrees with the constant function g ≡ 1
except on a countable set of points, so one would expect “the integral” to be
1.

More generally, the Riemann integral has trouble with functions that
have discontinuities at an infinite collection of points. Measure theory and
the associated Lebesgue integral are able to deal with a very broad class of
such functions. Moreover, on every function that has a Riemann integral,
the Lebesgue integral gives the same answer. So, the Lebesgue integral is a
kind of enhancement of the Riemann integral.

Measure Theory: The framework for measure theory is quite general. One
has a triple (X,A, µ), where X is a set, and A is a distinguished family of
subsets called a σ-algebra, and µ : A → [0,∞) is a map. A satisfies the
following axioms:

• A contains the empty set ∅.

• If S belongs to A then so does X − S.

• If {Si} is a countable collection of sets in A then the union
⋃

Si also
belongs to A.

The measure µ satisfies the following axioms.

• µ(∅) = 0.

• µ(S) ≥ 0 for all S in A.

• If {Si} is a disjoint collection of sets in A then

µ
(

⋃

Si

)

=
∑

µ(Si).

An important special case is the triple (Rn,B, µ). Here B is the smallest
σ-algebra that contains all the open sets and µ is the extension of Euclidean
volume. One obtains a typical set in B by taking countable unions and
intersections of open sets, a fininte number of times. For instance, the unit
ball minus all rational points is a Borel set.

It turns out that the notion of volume extends to a measure on B. The
σ-algebra B is called the Borel σ-algebra. The fact that volume extends to a
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measure on B suggests the existence of a more powerful integral. After all,
one of the main functions of an integral is to compute volumes, and here we
are saying that one can assign a volume to any Borel set.

A closely related example is the Lebesgue σ-algebra. A set S ⊂ Rn is said
to have measure zero if, for every ǫ > 0, we have S ⊂ Tǫ, where Tǫ is a Borel
set such that µ(Tǫ) < ǫ. A Lebesgue set is one of the form B ∪ C, where B
is a Borel set and C has measure zero.

The Lebesgue Integral Let (X,A, µ) be a triple as above. Here we will
describe the Lebesgue integral for this triple. One builds this integral from
the ground up, in a completely canonical way.

Let S be a set in A. The characteristic function for S is the function
IS : X → [0, 1] such that IS(x) = 1 if x ∈ A and otherwise IS(x) = 0. One
defines ∫

X
IS = µ(S).

A simple function is a finite positive sum

f =
n

∑

i=1

aiISi
,

where S1, ..., Sn are sets in A and a1, ..., an are positive reals. One defines

∫

X
f =

n
∑

i=1

aiµ(Si).

Let f : X → R be a non-negative function. We define
∫

X
f = sup

g≤f

∫

Xg.

The supremum is taken over all simple functions g such that g(x) ≤ f(x) for
all x ∈ X.

If f is a function that takes on both positive and negative values, we may
write f = f+ − f−, where f+ and f− are both non-negative functions. We
defune ∫

X
f =

∫

X
f+ −

∫

X
f−.

This defines the Lebesgue integral for any real-valued function on X.
A function f is called measurable if f−1(I) is in A for any interval I. The

Lebesgue integral is well behaved on all measurable functions. One of the
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things you do in M113 is prove a number of theorems about the behavior of
the Lebesgue integral on measurable functions. For instance, if {fi} is any
nondecreasing sequence of bounded measurable functions and f = sup fj ,
then

∫

X
f = sup

(
∫

X
fj

)

.

This is known as the Monotone Convergence Theorem.
As a special case, you can do all this for the Lebesgue sets in Rn. Any

reasonable construction (i.e., one that does not use the axiom of choice in an
essential way) produces a measurable function. Thus, the Lebesgue integral
makes sense and behaves well for practically any function you can construct.
Moreover, the Lebesgue and Riemann integrals agree whenever the Riemann
integral is well-defined.

Hilbert Space: An inner product on a vector space V is a binary oper-
ation 〈 , 〉 such that

• 〈v, v〉 ≥ 0 with equality if and only if v = 0.

• 〈v, w〉 = 〈w, v〉.

• 〈v1 + v2, w〉 = 〈v1, w〉 + 〈v2, w〉.

The inner product defines a metric on V as follows:

d(v, w) = 〈v − w, v − w〉.

V is called a Hilbert space if V is complete with this metric. The space
L2(N) above is the prototypical example of a Hilbert space.

Equipped with the Lebesgue integral, we can generalize this example in a
useful way. Let V denote the vector space of Lebesgue measurable functions
f : R → R such that

∫

R
f 2 < ∞.

We write f ∼ g is f and g agree except on a set of measure 0. In this
case, these functions have the same integral. We let L2(R, R) = V/ ∼, the
quotient vector space. We define

〈f, g〉 =
∫

R
fg.
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This is well defined on L2(R, R) and makes L2(R, R) into a Hilbert space.
The construction we gave has some variants. For instance, one can extend

the Lebesgue integral to complex valued functions. One just integrates the
real and imaginary parts separately. We can then define L2(R, C) as above,
using complex-valued functions in place of real functions. The inner product
is given by

〈f, g〉 =
∫

R
fg.

That is, we take the complex conjugate of g.
Going in another direction, we can replace R with R/Z, the unit circle.

That is, we can look at 1-periodic functions and define the inner product
by integrating over a single period. This leads to the space L2(R/Z, C).
Similarly, in the example we gave in the very beginning of this summary, we
can replace N with Z and consider L2(Z, C), the Hilbert space of bi-infinite
complex-valued sequences.

Fourier Series: Let L2 = L2(R/Z, C) and l2 = L2(Z, C). Let gn be
the function

gn(x) = exp(2πinx).

It turns out that every f ∈ L2 gives rise to a unique sequence {ci} ∈ l2 such
that

f ∼
∞
∑

i=−∞

cngn.

In other words, the two functions agree up to a set of measure zero. Thus,
the sum on the right defines the same element in L2. This sum is called the
Fourier series of F .

One of the most beautiful facts about the Fourier series is that

∫

R
|f |2 =

∞
∑

n=−∞

|ci|
2.

That is, the map f → {cn} is an isometry (distance preserving map) from
L2 to l2.
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