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General Information: Math 126 is a course on complex analysis. You
might say that complex analysis is the study of what happens when you
combine calculus and complex numbers. Complex analysis contains some of
the most beautiful theorems in undergraduate mathematics. It is a course
that you can take right after the calculus series, but if you want extra ground-
ing in real analysis before taking complex analysis, you could take M 101 first.

A Quick Review of Calc 3: Let’s start with something from several vari-
able calculus. Suppose that F : R

2
→ R

2 is a (sufficiently) differentiable
map from the plane to itself. Given point p in the domain of F , the behavior
of F is well approximated near p by the matrix dFp of first partial derivatives
of F , evaluated at p. This is to say that

F (p + tv) = F (p) + t dFp(v) + O(t2).

Here v is a unit vector and t is a small positive number. Here O(t2) means
that the error term is at worst proportional t2. I am being a bit lazy in using
the term “sufficiently differentiable”. To be precise, all one needs is that the
first partials of F exist and vary continuously.

In this context, dFp is a linear transformation from the plane to itself. We
know geometrically that a linear transformation maps ellipses to ellipses. So,
geometrically, the approximation result above says that F maps very small
ellipses centered at p to curves which look very much like ellipses. Put still
another way, the approximation result above says that (sufficiently) differen-
tiable maps look like linear transformations on small scales.

Similarities: There is a special kind of linear transformation called a simi-

larity . Such a linear transformation has the effect of dilating and/or rotating
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the plane. If we identify the plane with C, the set of complex numbers, then
every similarity has the form T (z) = wz, where w is some complex number.
To give an example, if w = 2i, then T has the effect of rotating counter-
clockwise by 90 degrees and dilating by a factor of 2. Notice that complex
numbers enter into the picture when we think of the plane as C rather than
as R

2.

Holomorphic Functions: Now for the big idea: The map F is said to
be holomorphic if the map dFp is a similarity at each point p in the domain.
(The conditions on dFp that make this true are called the Cauchy-Riemann

equations .) Geometrically, the condition means that F maps tiny circles to
curves that are nearly circles. So, on small scales, F practically maps circles
to circles. To tie this even more closely to complex numbers, it turns out
that the condition that F is holomorphic is equivalent to the condition that
the limit

lim
h→0

F (p + h) − F (p)

h
exists for all points where everything is defined. Here we think of F as a map
from C to C and all the numbers involved in the limit are complex numbers.

It turns out that many of the functions you know and love are holomor-
phic. For instance.

• The polynomials f(x) = a0 + a1z + ... + anzn are holomorphic.

• Convergent power series: You can stick complex numbers into Taylor
series. If the result converges, the resulting function is holomorphic.
For instance, the series

1 +
z

1!
+

z2

2!
+

z3

3!
+ ...

converges for every complex number z, and defines the exponential
function ez on all of C.

• Using the same trick as in the previous example, all the trig functions
are defined and holomorphic on all of C. There are some great identi-
ties, such as cos(iz) = cosh(z). If you ever wondered how the hyperbolic
cosine relates to the ordinary cosine, the identity I just mentioned tells
you. There is a single holomorphic function which equals the cosine
along the real axis and the hyperbolic cosine along the imaginary axis.
There is a similar formula for sines.
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• Up to rotations, there is a unique holomorphic map that bijectively
carries the regular n-gon to the unit circle in such a way that the
center gets mapped to the center. This result is part of the famous
Riemann mapping theorem.

Properties: Once holomorphic functions are defined in M126, their proper-
ties are explored. There is some preliminary material on limits and continuity,
just as in a real analysis class, but then the good stuff comes. Holomorphic
functions have some amazing properties. Here are 3 such properties.

• A holomorphic function is infinitely differentiable. The definition, in
terms of similarities, only requires that the first partials exist and vary
continuously, but then it automatically happens that all higher deriva-
tives exist.

• Two holomorphic functions agree everywhere provided that they agree
on any bounded infinite collection of points. For instance, if two holo-
morphic functions agree on the points (1/n, 0) for n = 1, 2, 3... then
they agree. This is to say, in some sense, that a holomorphic function
is like a hologram: You can reconstruct the whole thing if you know
(well enough) how it behaves in even the tiniest of regions.

• The property we just mentioned can be turned on its head: If you know
the values of a holomorphic function on some big circle, you can figure
out the value of the function at the center of the circle. This is sort
of like saying that the exact pattern of your life can be determined by
looking at the distant stars. The method of determining the value of
a holomorphic function at the center of a circle based on the values
on the circle is known as the Cauchy integral formula. It is one of the
important theorems you learn in M 126. The Cauchy integral formula
is expressed in terms of something called a contour integral.

Contour Integrals: In Calc 3, you may have learned about line integrals.
These are integrals of the form

∫
γ
f(x, y)dx + g(x, y)dy.

Here γ is some curve in the plane and f and g are real valued functions.
In complex analysis, a contour integral is a very similar gadget. Contour
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integrals have the form ∫
γ
F (z)dz.

To make this look more like a line integral, we go back to working in R
2 and

write
F (z) = u(x, y) + iv(x, y).

Then ∫
γ
F (z)dz =

∫
γ
(u(x, y) + iv(x, y)) × (dx + idy) =

=
∫

γ
u(x, y)dx− v(x, y)dy + iu(x, y)dy + iv(x, y)dx.

We are just multiplying things out formally. This is not the rigorous way to
do things, but it gives you an expression you might recognize from calculus,
except for the appearance of i in the final answer.

With this notation, the Cauchy integral formula looks like

f(0) =
1

2πi

∫
C

f(z)

z
dz.

Here C is a circle centered at the origin. A similar result holds for circles not
centered at 0, but we chose circles centered at 0 for convenience.

It turns out that many integrals, which are quite hard to evaluate using
just ordinary calculus, can be evaluated using contour integration. In M 126
you’ll learn a basic result about how to evaluate contour integrals, known as
the residue theorem.

Power Series: We already mentioned above that convergent power series
give examples of holomorphic functions. That is, the function

f(z) = a0 + a1z + a2z
2...

is holomorphic provided that the series converges. One purpose of Math 126
is to make this idea precise. Another purpose is to prove the converse result:
Any holomoprhic function can be expressed as a convergent power series in
a small disk about any point where it is defined.

In a certain sense, the convergent power series give all the examples of
holomorphic functions. Another way to think about complex analysis is that
it is the study of what happens when complex numbers are plugged into Tay-
lor series. However, this description somehow doesn’t capture the richness
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of the subject. In any case, writing out a holomorphic function in a power
series and analyzing that series is one of the basic techniques you’ll learn in
M 126.

Harmonic Functions: When discussing contour integrals, we wrote

F (z) = u(x, y) + iv(z, y).

The functions u and v are real valued functions on the plane. It turns out
that these functions have special properties when F is holomorphic. Namely,
u and v are harmonic functions. One way to say this is that the value of u
at any point is the same as the average of u on a disk centered at that point.
(The same goes for v.) Another way to say this is that ∆u = ∆v = 0, where

∆u = uxx + uyy

is the Laplacian of u. Exploring the basic properties of harmonic functions,
and their relation to holomorphic functions, is another topic in M 126.
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