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General Information: M154 is a course in abstract algebra. It is the sec-
ond half of the undergraduate algebra series 153-4. The core of M154 is
Galois Theory, a subject that combines fields, polynomials and groups in
a very beautiful way. Some people teach additional topics in M154, such
as group representation theory, or elliptic curves. In this summary (which
presumes you know about groups, polynomials, rings, and field) I will only
discuss Galois Theory.

The Fundamental Theorem of Algebra: The Fundamental Theorem
of Algebra says that every polynomial

P (z) = a0 + a1z + ... + anz
n; a0, .., an ∈ C.

has a root in C. The easiest proofs of this result use elementary facts from
complex analysis and/or differential topology, rather than abstract algebra.
While you may not see a proof of the Fundamental Theorem of Algebra in
M154, it is nice to keep the result in mind for perspective.

Extension Fields: Let F be a field. An extension field of F is simply
a field E such that F ⊂ E. Here are some examples.

• Let F = R the reals and E = C, the complex numbers.

• Let F = Q, the rationals, and let E = Q[
√

2], the field consisting of
all expressions of the form a + b

√
2, where a, b ∈ Q. Then E is an

extension of F . In this example, it is actually a bit surprising that E
is a field. The basic point is that

1

a + b
√

2
=

a − b
√

2

a2 − 2b2
.
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• More generally, F = Q and let S ⊂ C. Let E consist of all elements
of the form

∑

ajsj
∑

bjtj
; aj , bt ∈ Q; sj , tj ∈ S.

These are supposed to be finite sums.

If E is an extension field of F , then E is naturally a vector space over F . In
our first example {1, i} serves as a basis for this vector space, because every
element of C can be written as x + iy for x, y ∈ R. In the second example
{1,

√
2} serves as a basis. In the third example, the structure of the vector

space depends on the set S.

Creating Roots: Let F be a field and let P (x) be an irreducible poly-
nomial with coefficients in F . This means that P (x) does not factor into
lower degree polynomals in the ring F [x]. Here F [x] is the polynomial ring
in a variable x. One of the first nontrivial constructions in M154 is the
construction of an extension field E of F such that E contains a root of P .

Some remarks are in order. In case F = Q, we can always take E = C, by
the Fundamental Theorem of Algebra. However, this approach has several
shortcomings. First of all C is a giant field that contains all roots of all
such polynomials. Second of all, F might be some other kind of field, like
Z/p, and then the Fundamental Theorem doesn’t apply. In M154 you learn
a uniform way of constructing a “minimal” extension field that contains a
root of P that works for all fields.

Here is the construction. Let I ⊂ F [x] denote the ideal consisting of all
polynomals of the form P (x)Q(x), where P (x) is our initial polynomial and
Q(x) is allowed to vary. It turns out that I is a maximal ideal and that,
therefore, the quotient E = P (x)/I is a field.

Strictly speaking, E is not an extension field of F because F is not quite
a subfield of E. However, there is an isomorphic copy of F contained in E.
Namely, the map a → [a], the class of a, gives an embedding of F into E. We
idenfify F with the copy of F sitting inside E. Let α = [x], the equivalence
class of x. Since P has coefficients in F and now we have F ⊂ E, we can
think of P as a polynomial with coefficients in E. We have P (α) = [P (x)].
But P (x) ∈ I, so [P (x)] = [0]. In short α is a root of P . So, E is an extension
field of F that contains a root of P .
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Let [E : F ] denote the dimension of E, considered as a vector space over
F . It turns out that

[E : F ] = degree(P ).

Letting α be a root of P , a basis for E over F is given by {1, α, ..., αd−1},
where d is the degree of P .

Associating a Group: Let E be an extension field of F . We let G(E, F )
denote the set of all field automorphisms τ : E → E such that that τ(a) = a
for all a ∈ F . We can compose two such isomorphisms and get another one.
This makes G(E, F ) into a group. Here are a few examples.

• If F = Q and E = Q[
√

2] then G(E, F ) = {ι, τ}. Here ι is the identity
map and τ(a + b

√
2) = a − b

√
2. This G(E, F ) is isomorphic to Z/2.

• Let F = Q and ω be a primitive nth root of unity. Then the map
τ(ω) = ωd extends to an automorphism of E provided that d is rela-
tively prime to n. In this case G(E, F ) is isomorphic to (Z/n)∗, the
multiplicative group associated to Z/n.

• Let Q denote the field consisting of all algebraic numbers. An algebraic

number is the root of some polynomial in Q[x]. The infinite group
G(Q, Q), known as the absolute Galois group, is one of the deepest
groups in all of mathematics.

Splitting Fields: Let F be a field and let P be a polynomial with coefficients
in F . One can construct a field E that contains all the roots of P , in the
sense that P splits into linear factors when considered as an element of E[x].
The idea is simply to iterate the construction we gave above. We let E0 = F .
In general, we factor P into irreducible polynomials in Ek[x] and then let
Ek+1 be an extension of Ek that contains a root of one of the irreducible
pieces we have just found. This procedure stops in a finite number of steps.

E is called a splitting field for P if P factors into linear factors in E[x],
but no proper subfield E ′ of E has this property. To construct a splitting
field, we first find some field extension in which P factors into linear factors,
and then we take a minimal subfield that has this property.

One of the beautiful results in M154 is that any two splitting fields for
the same pair (F, P ) are isomorphic as fields. Thus, the splitting field is
unique. If turns out that [E : F ] ≤ n!, where n is the degree of P and E is
the splitting field.
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The Galois Group: Let F be a field, and let P be a polynomial in F [x].
Let E be the splitting field for (F, P ). The group G(E, F ) is known as the
Galois group of P . This group acts on E in such a way as to fix F and
permute the roots of E.

An intermediate field (relative to E and F ) is a field K such that

F ⊂ K ⊂ E.

We can convert back and forth between subgroups of the Galois group and
intermediate fields.

• To the field K we associate the subgroup G(E, K) of field automor-
phisms of E that fix all element of K.

• To the subgroup H ⊂ G(E, F ) we associate the field K such that every
element of H fixes every element of K. This field K is called the fixed

field of H .

Beautifully, this sets up a bijective correspondence between subgroups of
the Galois group and intermediate field extensions. This correspondence is
known as the Galois correspondence.

Normal Extensions and Normal Subgroups: A field extension K of
F is called normal if F is precisely the fixed field of G(F, K). It turns out
that K is a normal extension of F if and only if K is the splitting field for
some polynomial in F .

Referring to the Galois correspondence, it turns out that G(K, E) is nor-
mal in G(F, E) if and only K is a normal extension of F . In this case, the
quotient group G(F, E)/G(K, E) is isomorphic to G(F, K). Thus, the Galois
correspondence pairs up normal subgroups of the Galois group with interme-
diate fields that are normal extensions of F .

Solvability by Radicals: A group G is called solvable if there is a se-
quence of subgroups Gn ⊂ Gn−1 ⊂ ... ⊂ G0 = G such that Gk is normal in
Gk−1 for all k and Gk−1/Gk is abelian for all k. Let Sn denote the permuta-
tion group on n letters. It turns out that Sn is a solvable group if and only
if n ≤ 4.

4



At the same time, a polynomal P (x) ∈ Q[x] is said to be solvable by

radicals if one can produce all roots of P just by considering iterated kth
roots. Such a root might look like

√

1 + (7)1/3

191/5
+ 1.

If P (x) has degree 2, then the quadratic formula gives us the roots of P in
these terms. There are similar formulas in the case when P has degree 3
and 4, but they are much more complicated. In any case, P is solvable by
radicals provided that deg(P ) ≤ 4.

One of the great results proved in M154 is that P is solvable by radicals if
and only if its Galois group is a solvable group. It is easy to produce quintic
polynomials (meaning degree 5) having S5 as Galois group. Such polyno-
mials are not solvable by radicals, by the theorem we just mentioned. This
famous “unsolvability result” dashed the longstanding hope that there were
formulas like the quadratic formula that worked in any degree.

Ruler and Compass Constructions: One of the ancient problems in
geometry is the question of which figures can be constructed with a ruler
and a compass. A ruler allows you to draw straight lines, and also to copy
line segments that have already been drawn. A compass allows you to draw
circles.

Suppose you start with the points (x1, y1), ..., (xn, yn) marked in the plane.
Let F be the field Q(x1, y1, ..., xn, yn), the smallest field containing both Q

and all these coordinates. It turns out that you can construct the point (x, y)
if and only if both x and y lie in a field extension E of F such that [E : F ]
is a power of 2. The basic idea here is that one step of a ruler and compass
construction allows you to take square roots and rational combinations of
coordinates of points you already have.

Using this basic result, you can show that various constructions are im-
possible. For instance, it is impossible to trisect an angle, because this con-
struction involves a degree 3 field extension of the relevant fields. You can
also use the basic result to show that various constructions are possible. For
instance, you can establish Gauss’s famous theorem that it is possible to
construct a regular 17-gon.

Finite Fields: Another application of Galois Theory is the complete classi-
fication of finite fields. It turns out that a finite field has order pn for some
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prime p and some n ≥ 1. Moreover, there is a unique field of this order, up
to isomorphism. To construct the field F (p, n) of this order, we consider the
splitting field of the polynomial

P (x) = xpn − x

over F = Z/p. It turns out that this splitting field has order pn. Conversely,
we recognize and such field of order pn as the splitting field for this particular
polynomial over Z/p. This gives the existence and uniqueness.

There is more to say about the structure of finite fields. For instance, the
group of nonzero elements is cyclic. That is, there is a single element a such
that every nonzero element is a power of a.
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