
1 Hyperbolic Geometry

The purpose of this chapter is to give a bare bones introduction to hyperbolic
geometry. Most of material in this chapter can be found in a variety of
sources, for example:

• Alan Beardon’s book, The Geometry of Discrete Groups ,

• Bill Thurston’s book, The Geometry and Topology of Three Manifolds ,

• Svetlana Katok’s book, Fuchsian Groups ,

• John Ratcliffe’s book, Hyperbolic Geometry .

The first 2 sections of this chapter might not look like geometry at all, but
they turn out to be very important for the subject.

1.1 Linear Fractional Transformations

Suppose that

A =
[

a b
c d

]

is a 2×2 matrix with complex number entries and determinant 1. The set of
these matrices is denoted by SL2(C). In fact, this set forms a group under
matrix multiplication.

The matrix A defines a complex linear fractional transformation

TA(z) =
az + b

cz + d
.

We will sometimes omit the word complex from the name, though we will
always have in mind a complex linear fractional transformation when we say
linear fractional transformation. Such maps are also called Möbius transfor-

mations ,
Note that the denominator of TA(z) is nonzero as long as z 6= −d/c. It is

convenient to introduce an extra point ∞ and define TA(−d/c) = ∞. This
definition is a natural one because of the limit

lim
z→−d/c

|TA(z)| = ∞.
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The determinant condition guarantees that a(−d/c) + b 6= 0, which explains
why the above limit works. We define TA(∞) = a/c. This makes sense
because of the limit

lim
|z|→∞

TA(z) = a/c.

Exercise 1. First introduce a metric on C∪∞ so that C∪∞ is homeomor-
phic to the unit sphere S2 ⊂ R

3. Prove that TA is continuous with respect
to this metric. (Hint : Use the limit formulas above to deal with the tricky
points.)

Exercise 2. Establish the general formula

TAB = TA ◦ TB,

where A,B ∈ SL2(R). In particular (since A−1 exists) the inverse map T−1
A

exists. By Exercise 1, this map is also a continuous map of C∪∞. Conclude
that TA is a homeomorphism of C ∪∞.

1.2 Circle Preserving Property

A generalized circle in C ∪ ∞ is either a circle in C or a set of the form
L∪∞, where L is a straight line in C. Topologically, the generalized circles
are all homeomorphic to circles. In this section we will prove the following
well-known result.

Theorem 1.1 Let C be a generalized circle and let T be a linear fractional

transformation. Then T (C) is also a generalized circle.

One can prove this result by a direct (though tedious) calculation, and
there are also proofs which go through stereographic projection. For fun, I
will give a rather unconventional proof. I’ll prove 4 straightforward lemmas
and then give the main argument.

Lemma 1.2 Let C be any generalized circle in C ∪∞. Then there exists a

linear fractional transformation T such that T (R ∪∞) = C.

Proof: If C is a straight line (union ∞), then a suitable translation followed
by rotation will work. So, consider the case when C is a circle. The linear
fractional transformation

T (z) =
z − i

z + i
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maps R ∪ ∞ onto the unit circle C0 satisfying the equation |z| = 1. The
point is that every point z ∈ R is the same distance from i and −i, so that
|T (z)| = 1. Next, one can find a map of the form S(z) = az + b that carries
C0 to C. The composition S ◦ T does the job. ♠

Lemma 1.3 Suppose that L is a closed loop in C ∪∞. Then there exists a

generalized circle C that intersects L in at least 3 points.

Proof: If L is contained in a straight line (union ∞) the result is obvious.
Otherwise, L has 3 noncollinear points and, like any 3 noncollinear points,
these lie on a common circle. ♠

Lemma 1.4 Let (z1, z2, z3) = (0, 1,∞). Let a1, a2, a3 be a triple of distinct

points in R ∪ ∞. Then there exists a linear fractional transformation that

preserves R ∪∞ and maps ai to zi for i = 1, 2, 3.

Proof: The map T (z) = 1/(a3−z) carries a3 to ∞, but does not necessarily
do the right thing on the points a1 and a2. However, we can compose T by
a suitable map of the form z → rz + s to fix the images of a1 and a2. ♠

Lemma 1.5 Suppose T is a linear fractional transformation that fixes 0 and

1 and ∞. Then T is the identity map.

Proof: Let

T (z) =
az + b

cz + d
.

The condition T (0) = 0 gives b = 0. The condition T (∞) = ∞ gives c = 0.
The condition T (1) = 1 gives a = d. Hence T (z) = z. ♠

Now we can give the main argument. Suppose that there is a linear
fractional transformation T and a generalized circle C such that T (C) is not
a generalized circle. Composing T with the map from Lemma 1.2, we can
assume that C = R∪∞. By Lemma 1.3 there is a generalized circle D such
that D and T (R ∪∞) share at least 3 points. Call these 3 points c1, c2, c3.
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Again by Lemma 1.2, there is a linear fractional transformation S such
that S(R∪∞) = D. There are points a1, a2, a3 ∈ R∪∞ such that S(aj) = cj
for j = 1, 2, 3. Also, there are points b1, b2, b3 ∈ R ∪∞ such that T (bj) = cj
for j = 1, 2, 3. By Lemma 1.4 we can find linear fractional transformations
A and B, both preserving R ∪∞ such that A(aj) = zj and B(bj) = zj for
j = 1, 2, 3. Here (z1, z2, z3) = (0, 1,∞). The two maps

T ◦B−1, S ◦ A−1

both map (0, 1,∞) to the same 3 points, namely (c1, c2, c3). By Lemma 1.5,
these maps coincide. However, note that

T ◦B−1(R ∪∞) = T (R ∪∞)

is not a generalized circle and S ◦ A−1(R ∪∞) = D is a generalized circle.
This is a contradiction.

1.3 The Upper Half-Plane Model

Now we turn to hyperbolic geometry. Once we define the hyperbolic plane
as a set of points, we will define what we mean by the lengths of curves in
the hyperbolic plane.

Let U ⊂ C be the upper half-plane, consisting of points z with Im(z) > 0.
As a set, the hyperbolic plane is just U . However, we will describe a funny
way of measuring the lengths of curves in U . Were we to use the ordinary
method, we would just produce a subset of the Euclidean plane. So, given a
differentiable curve γ : [a, b] → U , we define

L(γ) =
∫ b

a

|γ′(t)|
Im(γ(t))

dt. (1)

In words, the hyperbolic speed of the curve is the ratio of its Euclidean speed
to its height above the real axis.

Here is a simple example. Consider the curve γ : R → U defined by

γ(t) = i exp(t).

Then the length of the portion of γ connecting γ(a) to γ(b), with a < b, is
given by

∫ b

a

exp(t)

exp(t)
dt =

∫ b

a
dt = b− a.
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The image of γ is an open vertical ray, but our formula tells us that this
ray, measured hyperbolically, is infinite in both directions. Moreover, the
formula tells us that γ is a unit speed curve: it accumulates b − a units of
length between time a and time b.

The hyperbolic distance between two points p, q ∈ U is defined to be the
infimum of the lengths of all piecewise differentiable curves connecting p to
q. Let us consider informally what these shortest curves ought to look like.
Suppose that p and q are very near the real axis, say

p = 0 + i 10−100, q = 1 + i 10−100.

The most obvious way to connect these two points would be to use the path

γ(t) = t+ i 10−100.

This curve traces out the bottom of the (Euclidean unit) square shown in
Figure 10.1. Our formula tells us that this curve has length 10100.

Figure 10.1. Some paths in the hyperbolic plane

Another thing we could do is go around the other three sides of the square.
For the left vertical edge, we could use the path γ from our first calculation.
This edge has length

log(1)− log(10−100) = 100.

The top horizontal edge has height 1 and Euclidean length 1. So, this leg
of the path has length 1. Finally, by symmetry, the length of the right
vertical edge is 100. All in all, we have connected p to q by a path of length
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201. This length is obviously much shorter than the first path. It pays to
go upward because, so to speak, unit speed hyperbolic curves cover more
ground the farther up they are. Our second path is much better than the
first but certainly not the best. For openers, we could save some distance
by rounding off the corners. We will show in §1.6 below that the shortest
curves, or geodesics , in the hyperbolic plane are either arcs of vertical rays
or arcs of circles that are centered on the real axis.

When U is equipped with the metric we have defined, we call U the
hyperbolic plane and denote it by H

2. So far we have talked about lengths
of curves in H

2, but we can also talk about angles. The angle between two
differentiable and regular (i.e., nonzero speed) curves in H

2 is defined simply
to be the ordinary Euclidean angle between them. That is, the hyperbolic
and Euclidean angle between two intersecting curves is just the Euclidean
angle between the two tangent vectors at the point of intersection. So, in the
upper half-plane model of hyperbolic geometry, the distances are distorted
(from the Euclidean model) but the angles are not.

Now that we have talked about hyperbolic length and angles, we discuss
hyperbolic area. Given how hyperbolic length relates to Euclidean length, it
makes sense to say that the area of a small patch of the hyperbolic plane is
the ratio of its Euclidean area to its height squared. Since the “height” of a
patch varies throughout the patch, we really have something infinitesimal in
mind. Thus, precisely, we define the hyperbolic area of a region D ⊂ H

2 to
be the integral

∫

D

dx dy

y2
. (2)

1.4 Another Point of View

An inner product on a real vector space V is a map 〈 , 〉 : V ×V → R which
satisfies the following properties:

• 〈av + w, x〉 = a〈v, x〉+ 〈w, x〉 for all a ∈ R and v, w, x ∈ V .

• 〈x, y〉 = 〈y, x〉.

• 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

You can remember this by noting that an inner product satisfies the same
formal properties as the dot product.
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For the moment, we care mainly about inner products on R
2. At the

point z = x+ iy we introduce the inner product

〈v, w〉z =
1

y2
(v · w). (3)

We mean to apply this to vectors v and w that are “based at” z. We then
define the hyperbolic norm to be

‖v‖z =
√

〈v, v〉z. (4)

With this definition, the length of γ : [a, b] → H
2 is given by

∫ b

a
‖γ′(t)‖γ(t) dt. (5)

With this formalism, the notion of hyperbolic length looks much closer to the
Euclidean notion. This way of doing things is the beginning of Riemannian
geometry.

1.5 Symmetries

The hyperbolic metric has more symmetries than you might think. Say that
a real linear fractional transformation is a linear fractional transformation
TA based on a matrix with real entries. In this case, TA(z) ∈ C provided
z ∈ C −R.

Exercise 3. Prove that z 6∈ R implies that TA(z) 6∈ R. Prove also that
TA maps H2 into itself.

The element TA is a homeomorphism of C ∪∞ which preserves H2.

Exercise 4. We say that a real linear fractional transformation is basic

if it has one of three forms:

• T (z) = z + 1.

• T (z) = rz.

• T (z) = −1/z.
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Prove that any real linear fractional transformation is the composition of
basic ones.

It turns out that these maps are all hyperbolic isometries. This is pretty
obvious for the map T (z) = z + 1. The hyperbolic metric is built so that
the second map is a hyperbolic isometry, and in a moment we will give two
proofs of that fact. The really surprising thing is that the third map turns
out to be a hyperbolic isometry as well.

Lemma 1.6 The map T (z) = rz is a hyperbolic isometry.

First Proof. If γ is any curve in H
2, then the dilated curve T (γ) moves

r times as fast in the Euclidean sense but is r times farther from the real
axis. Hence T (γ) and γ move at the same hyperbolic speed at corresponding
points. So, if we connect points p and q by some curve γ we can connect the
points T (p) and T (q) by the curve T (γ), which has the same length—and
vice versa. This shows that the distance from p to q is the same as the dis-
tance from T (p) to T (q). ♠

Second Proof. Suppose that v and w are two vectors based at z ∈ H
2.

Then we think of dT (v) = rv and dT (w) = rw as two vectors based at T (z).
Here dT is linear differential of T , i.e., the matrix of first partial derivatives.
Looking at the formula in equation (3), we see that

〈dT (v), dT (w)〉T (z) = 〈rv, rw〉rz =
1

r2y2
(rv · rw) = 1

y2
(v · w) = 〈v, w〉z.

So, T preserves the hyperbolic inner product at each point. Since the hyper-
bolic metric is defined entirely in terms of this family of inner products, T is
an isometry. ♠

Exercise 5. Prove that the map T (z) = −1/z is a hyperbolic isometry.

Combining Exercises 4 and 5, we see that any real linear fractional trans-
formation is a hyperbolic isometry ofH2. The space SL2(R) is a 3-dimensional
manifold. So, H2 has a 3-dimensional group of symmetries!

Say that a generalized circular arc is an arc of a generalized circle. We al-
ready know that any linear fractional transformation maps generalized circles
to circles. Hence, any real linear transformation maps generalized circular
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arcs to generalized circular arcs.

Exercise 6. Prove that a real linear fractional transformation T has the
following property: if a and b are two smooth curves in H

2 which intersect
at a point x and make an angle of θ, then T (a) and T (b) make the same angle
θ at the point T (x). (Hint : If you don’t feel like grinding out the calculation,
you can assume the result is false and then deduce that the differential dT
fails to map circle to circles. In any case, the result is obvious for all the
basic maps except z → −1/z, and so it suffices to consider this one.)

1.6 Geodesics

In this section we will describe the shortest curves connecting two points in
H

2. We first consider the case of points p and q that lie on the imaginary
axis.

Lemma 1.7 The portion of the imaginary axis connecting p to q is the

unique shortest curve in H
2 that connects p to q.

Proof: Our proof is very similar to the proof we gave in Lemma ?? for the
spherical case. Consider the map F defined by the equation F (x+ iy) = iy;
see Figure 10.2. Looking at the definition of the hyperbolic metric, we see
that F is hyperbolic speed nonincreasing. That is, if γ is a curve in H

2,
then the hyperbolic speed of F (γ) at any point is at most the hyperbolic
speed of γ at the corresponding point. Moreover, if the velocity of γ has
any x-component at all, then F (γ) is slower at the corresponding point. The
idea here is that F does not change the y-component of the hyperbolic speed,
but kills the x-component. The total hyperbolic length of γ is the integral
of its hyperbolic speed. Thus the hyperbolic length of F (γ) is less than the
hyperbolic length of γ, unless γ travels vertically the whole time. Our result
follows immediately from this. ♠
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Figure 10.2. The map F

It follows from symmetry that the vertical rays in H
2 are all geodesics. A

vertical ray is the unique shortest path in H
2 connecting any pair of points

on that ray.

Exercise 7. Let p and q be two arbitary points in H
2. Prove that there is

a hyperbolic isometry—specifically, some linear fractional transformation—
that carries p and q to points that lie on the same vertical ray.

Theorem 1.8 Any two distinct points in H
2 can be joined by a unique short-

est path. This path is either a vertical line segment or else an arc of a circle

that is centered on the real axis.

Proof: We have already proved this result for points that lie on the same
vertical ray. In light of Exercise 7, it suffices to prove, in general, that the
image of a vertical ray under a linear fractional hyperbolic isometry is one
of the two kinds of curves described in the theorem.

Let ρ be a vertical ray, and let T be a linear fractional transformation
that is also a hyperbolic isometry. From the work in §1.2 we know that T (ρ)
is an arc of a circle. Since T preserves R∪∞, both endpoints of this circular
arc lie on R ∪∞. Finally, since T preserves angles, T (ρ) meets R at right
angles at any point where T (ρ) intersects R. If T (ρ) limits on ∞, then T (ρ)
is another vertical ray. Otherwise, T (ρ) is a semicircle, contained in a circle
that is centered on the real axis. ♠
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1.7 The Disk Model

Now that we have defined geodesics in the hyperbolic plane, we can go for-
ward and define geodesic polygons. Before we do this, we would like to have
another model in which to draw pictures. This other model is sometimes
more convenient.

Let ∆ be the open unit disk. There is a (complex) linear fractional map
M : H2 → ∆ given by

M(z) =
z − i

z + i
. (6)

This map does the right thing because z ∈ H
2 is always closer to i than to

−i and so |M(z)| < 1. Since M maps circles to circles and preserves angles,
M maps geodesics in H

2 to circular arcs in ∆ that meet the unit circle at
right angles.

Sometimes it is convenient to draw pictures of geodesics in the unit disk
rather than in the hyperbolic plane. So, when it comes time to draw pictures,
we will be drawing circular arcs that meet the unit circle at right angles. The
geodesics that go through the Euclidean center of ∆ are just unit line seg-
ments. The rest of them “bend inward” toward the origin.

Exercise 8. Draw pictures of 10 geodesics in the disk model.

Rather than just think of the open unit disk ∆ as a convenient place to
draw pictures, we can also think of ∆ as another model of H2. The cheapest
way to do this is to say that the distance between the two points p, q ∈ ∆ is
defined to be the hyperbolic distance between the points M−1(p) and M−1(q)
in H

2.
A more direct approach is to define a new inner product at each point

z ∈ ∆. The formula is given by

〈v, w〉z =
4v · w

(1− |z|2)2 . (7)

Once we have this inner product, we can directly define lengths of curves in
∆ as in equation (5). Then we can define distances in ∆ as in the upper
half-plane model. It turns out that this new method produces the same re-
sult as the cheap method. The proof is a calculation similar to our second
proof of Lemma 1.6. We just prove that M is an isometry relative to the
inner product on H

2 and the inner product on ∆.
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Exercise 9. Prove that the map M is an isometry from H
2 and ∆, when

lengths are defined in terms of the inner product in equation (7). That is,
prove that

〈v, w〉z = 〈dM(v), dM(w)〉M(z)

for any pair of vectors v and w based at z ∈ H
2.

The open unit disk ∆, equipped with its metric, is known as the Poincaré
disk model of the hyperbolic plane. When T is a real linear fractional trans-
formation, the map M ◦ T ◦ M−1 is an isometry of ∆. Since M preserves
angles, the hyperbolic angle between two curves in ∆ is the same as the
Euclidean angle between them. Thus, in both our models, Euclidean and
hyperbolic angles coincide.

Before we continue, we mention one more piece of terminology. The ideal
boundary of H2 is defined to be R ∪∞ in the upper half-plane model and
the unit circle in the disk model. Points on the ideal boundary are called
ideal points . The ideal points are not points in H

2. They are considered
“limit points” of geodesics in H

2.

1.8 Geodesic Polygons

Now that we have our two models of the hyperbolic plane, and we know
that the geodesics are, we are ready to consider geodesic polygons in the
hyperbolic plane. To save words, we will use the term H

2 rather loosely to
refer to either of our two models of the hyperbolic plane. Since there is an
isometry, namely M , carrying one model to the other, there doesn’t seem to
be much harm in doing this.

Say that a geodesic polygon in H
2 is a simple closed path made from

geodesic segments. Here, “simple” means that the path does not intersect
itself. Say that a solid geodesic polygon is the region in H

2 bounded by
a geodesic polygon. It is convenient to allow some of the “vertices” of the
polygon to be ideal points. We call such “vertices” by the name ideal vertices .
The interior angle of a polygon at an ideal vertex is 0: the two geodesics both
meet the ideal point perpendicular to the ideal boundary.

We point out a special geodesic triangle, called an ideal triangle. An
ideal triangle is a geodesic triangle having 3 infinite geodesic sides and 3
ideal vertices; see Figure 10.3 below. The main result in this section, the
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Gauss–Bonnet formula for hyperbolic geodesic triangles.

Theorem 1.9 Let T be a geodesic triangle in the hyperbolic plane. The area

of T equals π minus the sum of the interior angles of T . In particular, the

sum of these interior angles is less than π.

We will give the same kind of proof that we gave for the analogous result
in §??.

Lemma 1.10 Theorem 1.9 holds for ideal triangles.

Proof: We are trying to prove that any ideal triangle has area π. By emma
1.4, we can move any one ideal triangle to any other using an isometry of
H

2. So, it suffices to prove this result for a single triangle. Let us prove this
for the triangle T , in the upper half-plane model, with vertices −1 and 1 and
∞. We first observe that

∫ ∞

y=y0

1

y2
dy = 1/y0.

Now we compute our area, using equation (2). Integrating in the y direction,
we have

area(T ) =
∫ 1

x=−1

∫ ∞

y=
√
1−x2

1

y2
dy dx =

∫ 1

−1

1√
1− x2

dx = π.

The last integral is most easily done making the trigonometric substitution
x = sin(t) and dx = cos(t)dt. ♠

Let T (θ) denote a geodesic triangle having two vertices on the ideal
boundary of H2 and one interior vertex having interior angle θ.

Lemma 1.11 Theorem 1.9 holds for T (θ).

Proof: Any two such triangles are isometric to each other. We first match
up the interior vertices and then suitably rotate one triangle so that the sides
emanating from the common vertex match. In particular, any incarnation of
T (θ) has the same area. Let

f(θ) = π − area(T (θ)).

We want to show that f(θ) = θ for all θ ∈ [0, π). We already know that
f(0) = 0, by the previous result.
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O

A B

C

Figure 10.3. Two dissections

To analyze the general situation, we work in the disk model and choose
T (θ) so that it has an interior vertex O at 0. Figure 10.3 shows a dissection
proof that

f(θ1 + θ2) = f(θ1) + f(θ2),

as long as θ1 + θ2 ≤ π. Just to make the picture clear, we point out the
following:

• The triangle T (θ1) has vertices O,A,B.

• The triangle T (θ2) has vertices O,B,C.

• The triangle T (θ1 + θ2) has vertices O,A,C.

• The triangle with vertices A,B,C is an ideal triangle.

To make this formula work even when θ1 + θ2 = π, we set f(π) = π. The
quadrilateral we have drawn can be dissected in two ways. One way gives
A1 + A2. The other way gives A+ π. Here Ak is the area of T (θk) and A is
the area of T (θ1 + θ2).

Since f(π) = π, we can use our formula inductively to show f(rπ) = rπ
for any rational r ∈ (0, 1). But the function f is pretty clearly continuous.
Since f is the identity on a dense set, f is the identity everywhere. ♠

Now we take an arbitrary geodesic triangle and extend the sides so that
they hit the ideal boundary of H2. Then we consider the dissection of the
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ideal triangle defined by the (ideal) endpoints of these sides, as shown in
Figure 10.4.

Figure 10.4. A Dissected ideal triangle.

The ideal triangle and also the three outer triangles are of the kind we have
already considered. Theorem 1.9 holds true for these. The ideal triangle has
area π, and the three outer triangles have areas α, β, and γ, the three interior
angles of the inner triangle. Hence, the inner triangle has area π−α−β−γ,
as desired. This completes the proof.

A solid geodesic polygon P is convex if it has the following propery: if
p, q ∈ P are two points then the geodesic segment joining p and q is also
contained in P . It is easy to prove, inductively, that any convex geodesic
polygon can be decomposed into geodesic triangles.

Lemma 1.12 The area of a convex geodesic n-gon is (n − 2)π minus the

sum of the interior angles.

Proof: Just decompose into triangles and then apply the triangle theorem
multiple times. ♠

Exercise 10 (Challenge). Suppose that θ1, θ2, θ3 are three numbers whose
sum is less than π. Prove that there is a hyperbolic geodesic triangle with
angles θ1, θ2, θ3.

Exercise 11 (Challenge). Say that a geodesic triangle is δ-thin if every
point in the interior of the (solid version of) triangle is within δ of a point
on the boundary. Note that there is no universal δ so that all Euclidean
triangles are δ-thin. Prove that all hyperbolic geodesic triangles are 10-thin.
(The value δ = 10 is far from optimal.)

15



1.9 Classification of Isometries

Let T be a real linear fractional transformation. If T (∞) = ∞, then we
have T (z) = az + b. If T (∞) 6= ∞, then the equation T (z) = z leads to a
quadratic equation az2+ bz+ c = 0, with a, b, c ∈ R. If T is not the identity,
then there are 3 possibilities:

• T fixes one point in H
2 and no other points.

• T fixes no points in H
2 and one point in R ∪∞.

• T fixes no points in H
2 and two points in R ∪∞.

T is called elliptic, parabolic, or hyperbolic, according to which possibility
occurs. We will discuss these three cases in turn. Before we start, we mention
a helpful construction. Given isometries g and T , we call S = gTg−1 a
conjugate of T . Note that g maps the fixed points of T to the fixed points
of S.

Suppose T is elliptic. Working in the disk model, we can conjugate T so
that the result S fixes the origin. In this case, S maps each geodesic through
the origin to another geodesic through the origin. Moreover, S preserves
the distances along these geodesics. From here, we see that S must be a
rotation. So, in the disk model, all the elliptic isometries are conjugate to
ordinary rotations.

Suppose that T is parabolic. Working in the upper half-plane model, we
can conjugate T so that the result S fixes ∞. In this case S(z) = az + b. If
a 6= 1, then S fixes an additional point in R. Since this does not happen,
a = 1. Hence S(z) = z + b. So, in the upper half-plane model, all parabolic
isometries are conjugate to a translation.

Suppose that T is hyperbolic. Working in the upper half-plane model,
we can conjugate T so that the result S fixes 0 and ∞. But then S(z) = rz
for some r 6= 0. So, in the upper half-plane model, all hyperbolic isometries
are conjugate to dilations (or contractions).

Neither the parabolic elements nor the hyperbolic elements have fixed
points in H

2, but they still behave in a qualitatively different way. Consid-
ering the parabolic map S(z) = z + b, we see that there is no ǫ > 0 such
that S moves all points of H2 more than ǫ. For example, the hyperbolic
distance between iy and S(iy) tends to 0 as y → ∞. On the other hand, if
we examine the map S(z) = rz, we see that there is some ǫ > 0 such that S
moves all points of H2 by at least ǫ. Indeed, ǫ = | log(r)|.
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