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1 Algebraic Background

Rings and Integral Domains: Previously in the class, we have defined
what groups are. A ring is an abelian group (R,+) with a second operation
× having the following properties:

• a× (b× c) = (a× b)× c for all a, b, c ∈ R.

• a× (b+ c) = a× b+ a× c for all a, b, c ∈ R.

• (a+ b)× c = a× c+ b× c for all a, b, c ∈ R.

R is called commutative if a× b = b×a for all a, b ∈ R. The ring R has a 1 if
there is some element, called 1, such that 1× a = a× 1 = a for all a ∈ R. A
commutative ring R with 1 is said to be an integral domain if the condition
a × b = 0 implies that either a = 0 or b = 0. All the rings we consider
will be integral domains. The integers are a classic example of an integral
domain. Another example is the ring of polynomials with integer coefficients.

Field of Fractions: Any field is an integral domain. Conversely, any in-
tegral domain is contained in a field, called its field of fractions . The field
of fractions of an integral domain R is the set F of equivalence classes a/b
with b 6= 0, such that ra/rb ∼ a/b for all nonzero r ∈ R. Addition and
multiplication in F work just like you think:

[a/b] + [c/d] = [(ad+ bc)/cd], [a/b]× [c/d] = [(a× c)/(b× d].
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It is important to note that the “division sign” is purely formal. It has no
meaning in R. However, division makes sense in F . When b, c are nonzero,
we have

[a/b]

[c/d]
= [(a× d)/(b× c)].

It is a routine exercise to check that all the operations above are well-defined
and make F into a ring. F is a field because every nonzero element [a/b] has
its multiplicative inverse, [b/a]. There is a natural inclusion of R in F . The
element a ∈ R corresponds to [a/1] ∈ F .

Modules: Let R be a ring. An abelian group M is called an R-module

if there is an operation × such that r ×m ∈ M for all r ∈ R and m ∈ M ,
subject to the following rules.

• r × (s×m) = (r × s)×m for all r, s ∈ R and m ∈ M .

• (r + s)×m = (r ×m) + (s×m) for all r, s ∈ R and m ∈ M .

• r × (m+ n) = (r ×m) + (r × n) for all r ∈ R and m,n ∈ M .

In the first rule above, r × s is defined relative to the multiplication on R.
This is almost the same definition as for a ring, but with a subtle difference:
The new × operation has input an element in a ring and an element in a
module. rather than 2 elements in a ring.

Exercise 1: let R be an integral domain and F be the field of fractions.
We choose 2 vectors Vj = (xj, yj) ∈ F 2 and define M to be the set of all lin-
ear combinations a1V1+a2V2 with a1, a2 ∈ R. Prove that M is an R-module.
This example shows how modules are generalizations of vector spaces.

Ring Homomorphisms: Let R1 and R2 be rings. A map φ : R1 → R2

is a homomorphism if φ(a + b) = φ(a) + φ(b) and φ(a × b) = φ(a) × φ(b)
for all a, b ∈ R1. The addition and multiplication laws are meant to take
place in the respective rings. The key example for us is the homomorphism
Z/mn → Z/n which just amounts to reducing mod n. Here Z/m is the
cyclic group of residues mod m and likewise Z/mn. We call φ a reduction

homomorphism.
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2 The P-adic Numbers

Let p be any prime. We have the reduction homomorphism

φ : Z/pn+1 → Z/pn.

For example, when p = 2 and n = 4 the map φ : Z/8 → Z/4 has the action
(0, 1, 2, 3, 4, 5, 6, 7) → (0, 1, 2, 3, 0, 1, 2, 3).

A p-adic integer is an infinite sequence {an}
∞

n=1 such that

• an ∈ Z/pn.

• φ(an+1) = an for all n.

The set of these sequences is denoted Zp. Componentwise addition and
multiplication make Zp into a ring:

• {an}+ {bn} = {an + bn}.

• {an} × {bn} = {an × bn}.

This works because all the reduction maps are ring homomorphisms. This
means that the sums and products of p-adic integers are again p-adic integers.

Lemma 2.1 Zp is an integral domain.

Proof: Zp is clearly commutative, and the 1 element is just 1, 1, 1, .... We
just have to see that there are no 0-divisors. Suppose that {anbn} = 0. Then
pn divides anbn for all n. That means that there are infinitely many even
indices such that either pn divides a2n or pn divides b2n. After switching a
and b if necessary, we can assume that the former occurs. So, pn divides
a2n infinitely often. But if pn divides a2n then pn also divides an because
a2n ≡ an mod pn. But then an = 0 in Z/pn. So, {an} is 0 infinitely often.
But this means that an = 0 for all n. ♠

Since Zp is an integral domain, it makes sense to take its field of fractions.
This is called Qp. The space Qp is called the field of p-adic numbers .

Exercise 2: A unit in a ring R is an element a ∈ R such that ab = 1
for some b ∈ R. Prove that {an} in Zp is a unit provided that a1 6= 0.
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Exercise 3: Use exercise 2 to prove that every p-adic number is equiva-
lent to one the form a/pk where a ∈ Zp and k is some integer. In other
words, a p-adic number is almost a p-adic integer; the only difference is that
you are allowed to have a power of p in the denominator.

Building on Exercise 3, we see that every p-adic number α can be written
uniquely in the form α = pju where u ∈ Zp is a unit. The integer j is known
as the p-adic valuation of α.

3 Geometry of the P-adic Integers

There is a rooted tree Tp associated to Zp. For this purpose, it is convenent
to define

Z/p0 = Z/1 = {0}.

The vertices of our tree are all the elements of Z/pn for every n = 0, 1, 2, ....
We join an element a ∈ Z/pn+1 to the element φ(a) ∈ Z/pn. We do this for
every n and every n. Figure shows the beginning of this tree for p = 2.
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Figure 1. The beginning of the rooted tree for p = 2.
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In general, Tp is a rooted infinite tree, in which the initial node has
degree p and the remaining notes have degree p + 1. We direct the edges of
Tp outward from the root. One can think of Zp as the set of infinite directed
paths in Tp.

There is a natural metric on Zp. The distance between {an} and {bn} is
2−N where N is the smallest index such that aN 6= bN . Geometrically, N is
the length that the two paths representing {an} and {bn} agree.

Exercise 4: Prove that + and × are continuous maps from Zp × Zp into
Zp. A ring with this property is called a topological ring . So, the p-adic
integers form a topological ring.

Lemma 3.1 Equipped with this topology Zp is homeomorphic to a Cantor

set!

Proof: I’ll explain this for the case p = 2. The general case is similar. We
can associate a binary sequence {βi} to each 2-adic integer {ai}. Here βi = 0
if ai+1 = ai and βi = 1 otherwise. We map {ai} to the point

∞∑

i=1

3−i × (2βi).

Call this map Φ. By construction Φ({ai}) is a real number whose base 3
decimal expansion has only 0s and 2s. This is a point in the middle third
Cantor set. Given the definition of Zp, and the definition of our metric, Φ
is a continuous bijection. Moreover, if two 2-adic integers {ai} and {bi} are
not that close together, then the base-3 expansions of Φ({an}) and Φ({bn})
differ at an early stage. Hence their images are far apart. In other words,
Φ−1 is also continuous. Hence Φ is a homeomorphism from Z2 to the middle
third Cantor set. ♠

It is a beautiful fact that the Cantor set is a topological ring in many
different ways – one way for each prime. You might enjoy trying to visualize
what the map x → x+1 looks like e.g. on Z2 or what the map x → 2x looks
like on Z3.

Exercise 5: Extend the metric on Zp to a metric on Qp in such a way
that Qp becomes a topological field.
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4 Serre Trees: A First Pass

The problem with the tree Tp constructed in the previous section is that it is
not quite a homogeneous object. It has a special vertex of degree p whereas
all the other vertices have degree p + 1. It turns out that there is a way to
associate the regular (p + 1) valent infinite tree to Zp. This object, which
we call T̂p, is known as the Serre p-adic tree. In this section I will give the
definition that Serre gives in his famous book, Trees . The problem with this
definition is that it is then hard to see that it gives a tree. In the next section
I will explain a much more concrete construction of T̂p.

The description of T̂p builds on Exercise 1. The vertices of T̂p are equiv-
alences classes of rank-two Zp submodules of Q2

p. These are modules of the
form

M = {a1V1 + a2V2| a1, a2 ∈ Zp}.

Here V1, V2 ∈ (Qp)
2 are vectors. We insist that these vectors are linearly

independent over Qp. We sometimes write

M =
[
x1 y1
x2 y2

]
.

Here Vj = (xj, yj). Here are the two important auxiliary definitions:

• Two such modules M1 and M2 are equivalent if there is some λ ∈ Qp

such that λM1 = M2.

• Serre calls two such modules [M1] and [M2] adjacent if there are rep-
resentatives M ′

j ∈ [Mj] such that M ′

1 ⊂ M ′

2 and the quotient module
M ′

2/M
′

1 is isomorphic to Z/p.

The Serre tree T̂p is defined to be the graph whose vertices are equivalence
classes of rank two Zp modules and whose edges join adjacent equivalence
classes. Serre’s fundamental theorem is that T̂p is isomorphic as a graph to
the regular infinite (p+ 1) valent tree.

One view of the hyperbolic plane is that space of lattices in R2 modulo
similarity. From this perspective, the hyperbolic plane and the Serre tree T̂p

are pretty close relatives.
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5 Serre Trees: A Second Pass

One way to understand the Serre tree is just to start building it. We will
take p = 2 as usual. First of all, we can view Tp as a subtree of T̂p. Recall
that the vertices of Tp are pairs (k, 2n) where k is an element of Z/2n. We
can associate to (k, 2n) the lattice

M(k, 2n) =
[
2n 0
k 1

]

Notice that M(k1, 2
n1) and M(k2, 2

n2) really are adjacent when (k1, 2
n1) and

(k2, 2
n2) are adjacent vertices of Tp. An example will illustrate this. Consider

(1, 4) and (5, 8). The corresponding lattices are

M(k, n) =
[
4 0
1 1

]
,

[
8 0
5 1

]
.

The second one is a sub-module of the first, and the quotient is just Z/2.
Any element of M(1, 4) either belongs to M(3, 8) or has the form W + (1, 1)
where W ∈ M(5, 8). For instance,

(4, 0) = (8, 0)− (5, 1) + (1, 1).

The argument above, suitably generalized, identifies Tp as a subtree of
T̂p. There is one fine point, however. We would need to see that two distinct
members of Tp give rise to inequivalent lattices.

Lemma 5.1 M(k1, 2
n1) and M(k2, 2

n2) are equivalent lttices only if we have

(k1, n1) = (k2, n2).

Proof: We will suppose that M1 and M2 are equivalent and we will show
that M1 = M2. Suppose there is some λ ∈ Qp such that M1 = λM2. Then
the vector (k1, 1) is the Zp span of the vectors (λ2n2 , 0) and (λk2, λ). By
looking at the second coordinate, we see that this is possible only if λ has
non-positive p-adic valuation. That is, λ = pju for some j ≤ 0. On the other
hand, we have M2 = λ−1M1. Therefore λ−1 has non-positive p-adic valua-
tion. But the p-adic valuation of λ−1 is the negative of the p-adic valuation
of λ. Hence λ has p-adic valuation 0. That is, λ is a unit in Zp. But the lat-
tices uM2 and M2 coincide for any unit u. In particular, M1 = λM2 = M2. ♠
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Now we explain the difference between T̂p and Tp. Again, we consider the
case p = 2. The root vertex in T2 is (0, 1). The corresponding lattice is

[
1 0
0 1

]
.

This lattice is adjacent to the three lattices:
[
2 0
0 1

]
,

[
2 0
2 1

]
,

[
1 0
0 2

]
.

The third lattice is new: It belongs to T̂2 and not T2. We can identify an
entire new ray in T̂2. This ray corresponds to the lattices

[
1 0
0 2n

]
, n = 1, 2, 3, ....

Figure 2 shows how this ray sits with respect to T2.

1 0

0 1
1 0

0 2
1 0

0 4

2 0

1 1

2 0

0 1

4 0 

1

4 0 

2 1

4 0 

1 1

4 0

3 1

Figure 2. The tree T2 and its tail in T̂2.

Figure 2 gives us a hint about how to fill in the rest of the Serre tree. We
have highlighted “the odd part” of T2 in orange. The idea is simply to copy
the odd part of T2 downwards, appropriately changing the lower right entry
of the matrix. Figure 3 shows how this works.

1 0

0 1
1 0

0 2

1 0

0 4

2 0

0 1

4 0 

1

4 0 

2 1

2 0

1 1

4 0 

1 1

4 0

3 1

2 0

1 2

4 0 

1 2

4 0

3 2

2 0

1 4

4 0 

1 4

4 0

3 4

Figure 3. The tree T̂2.
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Figure 3 suggests an infinite 3-valent tree labeled by adjacent and in-
equivalent lattices. This tree is a sub-graph of T̂2. At this point, all we have
done is shown that T̂2 contains the regular 3-valent tree as a subgraph. If
you believe Serre’s theorem, then the subgraph above must be precisely T̂2.

I am not going to actually prove Serre’s theorem in these notes, but let
me discuss how far away what we’ve done is from the proof. A proof would
involve 2 more ingredients:

• The result that T̂2 is connected.

• The result that the vertices of T̂2 have degree at most 3.

These two facts, together with knowledge of the tree from Figure 3 would
complete the proof of Serre’s theorem.

Exercise 6: Work out a similar description for the Serre tree T̂3.

6 The Group Action

You might wonder what is the point of defining the Serre tree. After all, the
construction of regular infinite trees is well known. At first glance, Serre’s
construction just looks like the world’s most complicated definition of a reg-
ular infinite tree. What makes Serre’s construction come alive is that the
group GL2(Qp), meaning the group of 2 × 2 invertible matrices with p-adic

entries, acts in a natural way on T̂p.
Given an element Λ ∈ GL2(Qp) and a vertex [M ] of the Serre tree, we

choose a representive M of [M ] and let V1 and V2 be two vectors which span
M . We then define Λ([M ]) to be the equivalence class of the Zp span of the
vectors Λ(V1) and Λ(V2). This definition is independent of all choices.

Lemma 6.1 The action of Λ is an automorphism of T̂p.

Proof: Since Λ is invertible, Λ is a bijection from the vertices of T̂p to the
vertices of T̂p. We just have to check that the action of Λ preserves adjacency.
If [M1] and [M2] are adjacent lattices, then we may choose representatives
M1 and M2 so that M1 ⊂ M2 and M2/M1 = Z/p. But Λ(M1) ⊂ Λ(M2) and
Λ induces a surjective homomorphism from M2/M1 to Λ(M2)/Λ(M1). Since
Λ(M1) 6= Λ(M2), this forces Λ(M1)/Λ(M2) = Z/p. This means that Λ(M1)
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and Λ(M2) are adjacent. Hence Λ preserves adjacency in the Serre tree. ♠

Here is a simple example. Suppose that Λ(x, y) = (x, 2y). Then Λ is
essentially downward translation of the tree shown in Figure 3. Indeed, one
can use the action of this Λ to figure how T̂2 extends T2. Just take the orbit
of T2 under the action and see how the new vertices are created.

Let’s concentrate on the case p = 2. Even with the explicit parametriza-
tion suggested by Figure 3, figuring out the action of Λ on T̂2 can be tricky.
The problem is that the two vectors Λ(V1) and Λ(V2) are not necessarily in a
form which makes it easy to see how they are Z2 linear combinations of the
vectors generating one of the special lattices shown in Figure 3. Here are 2
tricks to help do this:

1. It might turn out that Λ can be decomposed into simpler matrices, say
Λ = Λ1...Λn. Then it suffices to figure out the action of Λj for each
j = 1, ..., n.

2. One can figure out the action of Λ in an iterative way. Let M0 be
the equivalence class of the identity matrix in T̂2. Assuming we want
to compute the action of Λ on some Mk, we consider the path in T̂2

connectingM0 toMk. Call this pathM0, ...,Mk. Once we locate Λ(Mi),
we have narrowed down the possibility for Λ(Mi+1) to just 3 lattices.
This presents us with a much easier identification problem.

We have stated these tricks for p = 2, but the general case is similar.

7 Sketch of an Algorithm

My computer program computes the action of certain matrices on the Serre
trees T̂2 and T̂3. In this section I will explain how this works. Certain of the
routines will look a bit idiosyncratic, due to the way I set up the program.
(For instance, I have to take transposes of matrices sometimes; a better
implementation would straighten all this out.)

My basic routine works for the matrices

[
2 0
0 1

]
,

[
3 0
0 1

]
,

[
2 1
0 2

]
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and their transposes and their adjoints. Many other matrices, such as the
generators of the Long-Reid group, can be written as words in these. The
algorithm also works directly for some other matrices, for not for all of them.

Here are some routines:

Adjoint: [
a b
c d

]
→

[
d −b
−c a

]
.

Clear Factors:

[
a b
c d

]
→

1

K

[
a b
c d

]
, K = gcd(a, b, c, d).

Act:

Act(M,A) = clearFactors(M t.A)t.

The transposes are just present because of the way I have set up my program.

Brittle Equivalance We compute

C = Act(Adjoint(A), B)

and then check if det(C) = ±1. If so we declare that A and B are equivalent.
This is a quick way to tell if two lattices are equivalent, but it does not always
work.

Dividing by Units: Let V ∈ Z2 be a vector. We define

[
x
y

]
→

1

K

[
x
y

]
, K = gcdp(x, y).

Call the new vector V ′. Here we obtain K by taking the GCD and then
removing all factors of the prime p of interest – either 2 or 3 in this case. To
V and the new vector are Zp multiples of each other.

Tweaking a Lattice: Starting with the lattice L = (a, b), with a, b ∈ Z2,
there are 4 ways we replace it with an equivalent representation.

1. (a, b) → (a′, b′).

2. (a, b) → (b, (a+ b)′).
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3. (a, b) → (a, (a− b)′)..

We let Lk be the kth tweak of L.

Robust Equivalence: Given lattices A and B0, we do the following:

• Let B = (B0)
1, the first tweak of B0.

• If easyMatch(A1, B) is true, return true.

• If easyMatch(A12, B) is true, return true.

• If easyMatch(A13, B) is true, return true.

Otherwise return false. Here, for instance, A12 is the second tweak of the
first tweak of A. The robust evaluation seems to work without fail for the
several matrices listed above.

Guided action: We precompute where our given matrix Λ sends the base
lattice

A0 =
[
1 0
0 1

]

We then take a path A0, ..., An to the lattice An of interest to us. Assuming
that we have determined Λ(Ak) we compute Λ(Ak+1) and compare it to each
of the neighbors of Λ(Ak) using the robust comparison. We then pick the
winner and move on. That’s it.
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