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1 Why Does Mathematics Work?

Mathematics seems to work amazingly well compared to other areas of human
thought. If you read the papers, you know that economists, physicians,
politicians, historians, etc., make one mistake after another. For a while it
seems that a glass of wine every day is good for you, and then somewhat
later the recommendation is reversed. For a while it seems that “trickle
down economics” might be a good idea, then it seems bad, then some people
embrace it again. And so on. This rarely happens with mathematics. A
theorem that has been completely understood is never overturned.

The hard sciences somewhat rival mathematics in accuracy, but this seems
to be a function of the extent to which mathematical models actually predict
what happens in the world. Newton’s theory of mechanics is flawless from a
mathematical point of view, but it describes an idealized universe that turns
out to be a bit different from ours. Physical laws have an asymptotically

correct feel to them. They make better and better predictions as we refine
our knowledge of the external world. Mathematics seems to be correct all
along.

So, why does mathematics work so well? This seems to be a hard question
to answer, and it has been a topic of philosophy for centuries. The best
answer I can give is that mathematics deals with very simple objects, and
reasons about them according to a small collection of precise logical methods
which appear to always lead to the correct answer. I would say that it is
really the simplicity and uniformity of mathematics that makes it work so
well. One real mystery is how the simple objects and rules lead to such
incredible complexity.
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Since the beginning, mathematicians have been interested in formulating
the foundations of the subject. What are the simple objects and methods
of reasoning in math? In the end, there seems to be a triple of things you
need for mathematics: language, logic, and some notion of an entity – i.e.,
set theory . It seems that there is no way to justify all the language, logic,
and set theory that mathematics uses. The best we can do is make them as
simple and as transparent as possible.

If you interpret language as “words on a page” then you could easily
imagine doing math without language. You might argue that some people
“think in pictures”, for instance. But, if you interpret language broadly, as
a method of storing and communicating ideas, then it hardly seems possible
to make any progress without it.

Once you are able to store ideas and communicate them, the next thing
you need is logic – e.g. basic notions of truth and falsehood. Mathematics
makes statements to the effect that various things are true and various things
are false. Also, you need to know how these words function: For instance, a
statement cannot be both true and false. The basic rules of logic are usually
formulated as first order logic, and then people freely use the rules of first
order logic when doing mathematics.

Even after you have language and logic, you need something for them to
talk about. Mathematics is primarily a dicussion of various kind of entities
and their properties – numbers, lines, planes, vector spaces, projective vari-
eties, etc. What are these things? The purpose of these notes is to discuss
Zermelo-Frankel (ZF) set theory, a collection of axioms which describes what
counts as a mathematical object and how you are allowed to deal with them.
However, notice that it is hard to disentangle the three basic components
of mathematics. For instance, what are axioms? Doesn’t a collection of ax-

ioms about entities seem to already presuppose that there are some entities
floating around in advance, namely axioms?

These questions are hard to answer. Maybe the best answer is given by
Henri Poincaré about 100 years ago:

Though the source be obscure, still the river flows on.

In writing these notes, I got many of the details about the ZF axioms from
Wikipedia and from An introduction to Set Theory by William A.R. Weiss,
though these notes are not a perfectly faithful account of what is written
there.
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2 Sets

The foundational axioms of mathematics concern properties of sets . Here is
an informal definition:

A set is a collection of things, the things themselves being sets.

This is a very beautiful idea: There is only one kind of “thing” (or “ob-
ject” or “entity” or “structure” or “gadget” or “gizmo”) in the mathematical
universe, and it is made of parts which are “things” of the same kind.

On the down side, a set has no formal definition. It is considered to be a
basic and undefinable concept. How would you define it? As a collection of
things? What are collections? What are things? Any attempt will just lead
in circles. Another problem is that the mathematical universe turns out to
contain “collections of things” which are not actually sets – e.g., the class of
all sets. A class is like a set, but bigger. The ZF axioms do not apply to
classes, though you sometimes want to refer to classes when making a logical
argument which otherwise uses the ZF axioms. Yet another problem is that
the axioms assert the existence of sets, without saying in what sense sets
exists. Probably they don’t exist in the same sense that, say, New Jersey
exists. I don’t know any satisfying resolution to these problems, but if you
don’t move past them you won’t actually get to mathematics.

Once you grant the existence of sets (whatever they are), you have to
swallow the concept of equality and membership. One writes A = B to
indicate that A and B are the same set. One writes s ∈ S to indicate s

is a member of S. That is, s is one of the sets of which S is constituted.
Even though the members of a set are themselves sets, they are usually called
members , or elements . Again, ultimately everything (except classes) is a set.

The symbols { and } are often used to denote the members of a set. For
instance {1, 2, 3} denotes the set whose members are 1 and 2 and 3 (whatever
they are.) Other useful notions are reducible to these, such as the notion of
subset . One writes A ⊂ B if every member of A is also a member of B. That
is a ∈ A implies a ∈ B. Notice that even to talk about the basic definition
of a subset, we need a certain amount of language. For instance, we have to
know what the word implies means. This is what I mean when I say that
language and logic are part of the foundations of mathematics just as much
as the set-theoretic axioms.
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3 The ZF Axioms, Part 1

The ZF Axioms can be divided into two kinds. The first kind are individ-
ual statements which do not explicitly rely on first order logic. The second
kind is more complicated: it is really an infinite lists of statements whose
formulation requires first order logic in an explicit way. The first 4 axioms
are pretty straightforward. They correspond to operations in mathematics
you are familiar with.

Existence of the Empty Set: There exists a set with no members. It
is called ∅, the empty set. This axiom is usually considered a consequence of
the others, but I think it is a good place to start. This axiom formalizes our
notion that nothing is an entity in itself.

Axiom of Extension: Two sets are equal if and only if they have the
same members. This one seems completely obvious. It formalized our notion
of equality.

Axiom of Union: Given a set S, there is a set US so that t ∈ US if
and only if t ∈ A for some A ⊂ S. So, US is the union of the elements in
subsets of S. For instance, if

S = {{{1, 2}, 4}, {1, 2}, {2, 3}}

then US = {{1, 2}, 1, 2, 3, 4} and UUS
= {1, 2, 3, 4}. In compute science, this

operation is sometimes called flattening a list . This axiom gives us tools to
dissect a set, getting at its members, so to speak.

Existence of Power Sets: One set A is a subset of a set B if every member
of A is also a member of B. For instance {1, 2} is a subset of {1, 2, 3}. Given
a set S there exists a set T whose members are the subsets of S. For instance,
if S = {1, 2, 3}, then

T = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

The power set axiom gives a way to build more complicated sets our of
simpler ones.

4



4 The ZF Axioms, Part 2

Axiom of Pairing: Given sets A and B there exists a set C whose members
are A and B. That is C = {A,B} exists. One special case is when A = B.
In this case, the axiom of pairing says that there exists a set {A} whose only
member is A. This axiom seems rather obscure, but you can think of it as
an axiom which goes in the opposite direction of the Axiom of Union. The
Axiom of Union has to do with dissecting a set into its components whereas
the Axiom of Pairing has to do with building more complicated sets out of
simpler ones.

The Axiom of Foundation: Given any nonempty subset S, there exists
an element T ⊂ S such that T ∩ S = ∅. Note that the members of sets are
also sets, so this makes sense. The Axiom of Foundation prevents a situation
where a set has itself as a member. Suppose that there is a set S such that
S ∈ S. By the Axiom of Pairing, there is a set {S} whose only member is
S. But then the Axiom of Foundation says that there is a member of {S}
which has no members in common with {S}. The only member to choose
from is S, so S has no members in common with S. But if S ∈ S, then S is
a member common to both S and {S}. This is a contradiction. So, in short,
no set can have a member equal to itself.

We’ve said already that a set is a collection of things, the things them-
selves being sets. However, we like the idea that the members of a set are
somehow simpler than the set itself, so that one can (in principle) start with
a set and work backwards, dissecting it into its simpler components, and
then dissecting those, etc. You could say that complicated sets are founded

(or built out of) simpler sets. If some set had itself as a member, this whole
enterprise would be derailed. The Axiom of Foundation rules out this bad
situation.

Axiom of Infinity There exists a set S which contains the emptyset and
has the following property. If T is a member of S, then the successor of T is
also a member of S. Here, the successor of T is defined to be the set T ∪{T},
the union of T with the set whose only member is T . The Axiom of Infinity
guarantees the existence of an infinite set. I will discuss some consequences
of this axiom below.
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5 First Order Logic

First order logic is a certain collection of formulas involving variables, logical
connectives, and quantifiers. You should think of a formula as a general-
ization of the sort of thing you learned about in algebra, like f(x) = 2x.
Sometimes, first order logic is called the language of set theory . words like
variable are parts of our language: A variable is a kind of place-holder for
a collection of other words which can be substituted into it. Setting aside
what these entities might be, first order logic starts from the ground up and
defines exactly what counts as a legal formula.

The simplest formulas have the form A = B or A ∈ B. Here A and B

are the variables. These are called the atomic formulas . Then we have the
following rules.

• If S is a formula, so is NOT S.

• If S and T are formulas, so is S AND T .

• One can universally quantify over a formula. Given a formula S, one
also has the formula ∀AS, which means “S is true for all A.”

One can make other constructions based on these rules. For instance S OR
T is logically equivalent to NOT((NOT S) AND (NOT T )). Likewise ∃AS
is equivalent to NOT (∀A (NOT S)).

So, in short, a formula is any collection of symbols which can be built
from the atomic formulas using the above rules finitely many times. The
formulas acquire truth values when one substitutes sets for all the variables.
A formula like ∀A(A ⊂ B) would say that, for all sets A, the set A is a subset
of B. This is clearly false.

Free Variables: Here is a technical notion needed for the last ZF Axiom.
Given a formula F and a varaible A which occurs in F , you want to minimize
the number of times A occurs without changing the (potential) truth value of
F . You can do this by replacing all occurances of ∀A(..A...) and ∃A(...A...)
with ∀Â(...Â...) and ∃Â(...Â...), where Â is some new variable what does not
occur in F . The remaining instances of A are called free variables . Call F
clean if all such replacements have been made.

A set function is a clean formula F , with free variables S, x, y1, ..., yn, z,
such that for each set x, and each choice of sets y1, ..., yn, S, there is a unique
set z such that F is true. One then defines f(x) = z.
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6 The ZF Axioms, Part 3

Here is the final ZF axiom:

Axiom Schema of Replacement: Given any set S and a set formula f on
S as above, there exists a set T such that z ∈ T if and only if z = f(x) for
some x ∈ S. This axiom is saying that, under certain circumstances, we can
start with a set S and a function f and replace each member s ∈ S with f(s).

To give an example (which assumes that we’re already defined the in-
tegers, let S = {...,−3,−2,−1, 0, 1, 2, 3, ...} and let f(x) = 2x. This turns
out to be a set function. The Axiom Scheme of Replacement guarantees
that {, ...,−6,−4,−2, 0, 2, 4, 6, ...} (the even integers) is also a set. To tie
this axiom in with something more familiar, you could say that the set S

is the domain of the function f . The Axiom Schema of Replacement then
guarantees the existence of the range of f .

The Axiom Scheme of Replacement implies another axiom schema which
is sometimes also listed as a ZF axiom. Given a formula F with free variables
S, x, y1, ..., yn, we get a function f from S into {True,False} once y1, ..., yn
have been specified as sets. The Axiom Schema of Comprehension says that
there exists a subset T ⊂ S consisting exactly of those s ∈ S for which f(s)
is true. That is,

T = {s ∈ S| f(s) = True}. (1)

This is the usual way that one builds new sets out of old ones.
This axiom schema is a consequence of the Axiom Schema of Replace-

ment and the existence of the emptyset. If there is no s ∈ S for which f(s)
is true, we set T = ∅. Otherwise there is some s ∈ S for which f(s) is true.
In this case we define g : S → S by the rule that g(t) = t if f(s) is true and
g(t) = s0 if f(t) is false. We can write g as a set-valued function on S and
the set given by the Replacement Axiom is as in Equation 1.

There is something a bit disappointing about the Axiom Schema or Re-
placement and the Axiom Schema of Comprehension. At first you think that
the ZF axioms are going to give you a short finite list of all you need to know

to do math, but then out pop these infinite lists of axioms. On the other
hand, there is a sense in which all the axioms on the infinite list are the same.
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7 Intersections

The Axiom of Pairing the the Axiom of Union combine to give us a way
to take unions of sets in the usual way. I’m not going to talk about the
operation of union, but I do want to say something about intersections of
sets. This is an operation not explicitly mentioned by the axioms, but which
is also a consequence of them.

Suppose that S is a nonempty set and T ∈ S. Then we use the language of
set theory and the Axiom Schema of Comprehension to define the intersection
of all the members of S which are also members of T . I’ll denote this as

T⋂
S = {s ∈ T | ∀t ∈ S, s ∈ t}.

We think of T as the “container” for the intersection. For example, if

S = {{1, 2, 3, 4}, {1, 2}, {1, 3}, {1, 4}}, T = {1, 2, 3, 4},

then
T⋂
S = {1}.

8 The Natural Numbers

In the preceding sections, we have been using the symbols 1, 2, 3, ... informally
to denote sets, and also as part of the language of set theory. We might have
used other symbols like A,B,C, ... for these purposes, but still you might
wonder how the natural numbers are related to the ZF axioms. Here I’ll
sketch how one defines the natural numbers in terms of the axioms.

Let S be the set from the Axiom of Infinity. Let 2S denote the set of
subsets of S. This set is guaranteed by the Existence of Power Sets. Let
Σ ⊂ 2S denote those elements t such that ∅ ∈ t and u ∈ T implies u′ ∈ T .
As above u′ is the successor of u. In other words Σ consists of all the subsets
of S which also satisfy the Axiom of Infinity. The set Σ is guaranteed by the
Axiom Schema of Comprehension. Note that S ∈ Σ. We define

N =
S⋂
Σ. (2)

That is, N is the smallest set satisfying the Axiom of Infinity.
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One can prove that N consists precisely of ∅ and the successors of ∅. If
N contains any other element s, one can produce a smaller set satisfying the
Axiom of Infinity by removing s and all its “predecessors”.

Once N is defined, we can give the elements of N their more traditional
names.

• 0 is a name for ∅.

• 1 is a name for (0)′ or {∅}.

• 2 is a name for (1)′, or {∅, {∅}}.

• 3 is a name for (2)′, or {∅, {∅}, {∅, {∅}}}.

and so on. This definition has a special beauty: A natural number is a set,
with fintely members, each of which is a natural number. Given any two
natural numbers, one is a subset of the other. The natural numbers are
literally built out of nothing!

With the above definition of natural numbers, you can define m < n if
m ⊂ n and also n + 1 = n′. From there, you can derive all the usual rules
of arithmetic. Then you can define the integers, the rationals, the reals,
complex numbers, matrices, vector spaces, manifolds, etc.

9 The Axiom of Choice

The Axiom of Choice is another axiom one can introduce for sets. Say that a
partition is a set S whose members are pairwise disjoint. That is, if A,B ∈ S,
then A ∩ B = ∅. We insist that the emptyset is not a member of S.

Here is an example. The set

{{1, 2}, {3, 4}}

is a partition but {{1, 2}, {2, 3}} is not. It is worth pointing that the set S
is usually considered to be a partition of the union set US. For instance, the
partition above is a partition of {1, 2, 3, 4}.

Axiom of Choice: If S is a partition, then there exists a set T such that
T has one member in common with each member of S.

9



For instance, if S is the partition above, we could take T = {1, 3}.
Sometimes, you can get the result of the Axiom of Choice just using the

ZF axioms. For instance, suppose that S is a partition of N the natural
numbers, and each member of S is a finite set of natural numbers. We could
then define T to be the set consisting of least elements of members of S.
That is, a ∈ T if and only if a is the least element of the member of S which
contains a.

You need to invoke the Axiom of Choice when you do not have a clear
selection process like this. For instance, (jumping back to normal mathemat-
ical usage for a minute) say that two real numbers are equivalent if and only
if their difference is a rational number. The set S of equivalence classes gives
a partition of the set R of real numbers, and here you really need the Axiom
of Choice to get the set T .

You might ask: What is the big deal about the Axiom of Choice? Well,
let Br denote the ball of radius r about the origin in R

3. Here is a famous
theorem.

Theorem 9.1 (Banach-Tarski) Assume ZF and also that the Axiom of

Choice holds for all partitions of R. Then there are finitely many subsets

S1, ..., Sn ⊂ B1 and rigid motions T1, ..., Tn of space, so that

B2 = T1(S1) ∪ ... ∪ Tn(Sn).

That is, you can cut apart the unit ball into finitely many pieces, and rear-

range the pieces so that they equal the ball of radius 2.
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