
Euler’s Formula:

The purpose of these notes is to explain Euler’s famous formula

eiθ = cos(θ) + i sin(θ). (1)

1 Powers of e: First Pass

Euler’s equation is complicated because it involves raising a number to an
imaginary power. Let’s build up to this slowly.

Integer Powers: It’s pretty clear that e2 = e × e and e3 = e × e × e,
and so on. For any positive integer p, we have ep = e × ... × e, a total of p
times. For negative integers, the definition is also pretty clear. For instance
e−2 = 1/(e× e) and e−3 = 1/(e× e× e). And so on.

Fractional Powers: How would you define e2/3. This really means the
cube root of e× e. So e2/3 is the number y such that y× y× y = e× e. Using
this system, it is pretty clear that you can make good sense of ep/q where p/q
is any positive fraction. You can make sense of negative fractions using the
formula e−p/q = 1/ep/q.

Real Powers: If a is a positive real number, then you could define ea to
be the limit of expressions of the form epn/qn , where pn/qn is a sequence of
rational numbers converging to a. To give an example of what I’m talking
about, let a =

√
2.

• 17/12 is close to
√
2 and e17/12 = 4.1233529...

• 41/29 is closer to
√
2 and e41/29 = 4.111521...

• 577/408 is closer to
√
2 and e577/408 = 4.113259

• 1393/985 is closer to
√
2 and e1393/985 = 4.1132488.

And so on. Taking better and better rational number approximations to e,
you add more and more digits of accuracy. Once you know what ea is for
any positive a, you could define e−a = 1/ea.

1



2 Powers of e: Second Pass

Problems: This approach above has three problems. First, what is e in
the first place? Second, for irrational numbers, why do the rational approx-
imations really converge to something? Third, even if the whole approach
works perfectly, it doesn’t get us any closer to understanding what it means
to raise e to an imaginary power. Now we’re going to take an approach based
on differential equations.

A Special Function: Below we’re going to construct a (continuous and
differentiable) function f such that

• f(0) = 1.

• f ′(x) = f(x) for all x.

• f is always positive.

Once you know such a function exists, you define

ea = f(a).

This gives a clean definition of ea for all values of a.

Properties: The main problem in this definition is: How to we know that
the operation a → ea is anything at all like exponentiation? I mean, we could
have made up any crazy function f and then made the above definition. We
need to justify the choice of f .

Well, we know that
e0 = f(0) = 1.

That’s a good start, because it matches what we know about exponentiation.
But, this is a pretty weak property.

A more serious thing we can show is that f(x) is the inverse to ln(x).

d

dx
ln(f(x)) =

f ′(x)

f(x)
=

f(x)

f(x)
= 1.

This calculation just uses properties of f and the chain rule. Integrating,
we get ln(f(x)) = x + C. You can find C by plugging in x = 0. This gives
C = ln(f(0)) = ln(1) = 0. So, ln(f(x)) = x, as advertised.
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If you know all about the natural log function, the last calculation will
completely satisfy you. But you might want an explanation from scratch, one
that doesn’t just explain one function in terms of another equally mysterious
one. What would really clinch things is if we could prove, just from properties
of f , that

ea+b = eaeb.

This is the same as showing that f(a + b) = f(a)f(b). Once you have the
exponent rule, you can recover all the good things from the first pass above,
but avoid the problems: e is defined as f(1). Then, for instance,

e3 = f(3) = f(1 + 1 + 1) = f(1)f(1)f(1) = e× e× e.

At the same time, the hard cases, like when a is irrational, are handled au-
tomatically: ea is just f(a).

Proof of Exponent Rule: We want to prove that f(a+ b) = f(a)f(b) just
using the three properties of f . Consider the new function g(x) = f(a+ x).
Note that g′(x) = f ′(a + x) = f(a + x) = g(x). Consider the derivative of
g/f :

d

dx

g(x)

f(x)
=

g′(x)f(x)− f ′(x)g(x)

f 2(x)
=

g(x)f(x)− f(x)g(x)

f 2(x)
= 0.

So, the function g(x)/f(x) is constant. That means that

f(a+ b)

f(b)
=

g(b)

f(b)
=

g(0)

f(0)
=

f(a)

f(0)
= f(a).

Rearranging this gives the exponent law.

More Problems: We have a great definition of ea for all real numbers
a, but we haven’t shown that the function f exists. Also, we haven’t come
any closer to saying what eiθ means.

3 Powers of e: third pass

Construction of f : Now we’re going to construct the function f advertized
above. Define

f(x) = 1 +
x

1!
+

x2

2!
+

x3

3!
+ ... (2)
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Here 2! = 2 × 1 and 3! = 3 × 2 × 1, and so on. This is supposed to be an
infinite sum. The sum is finite for any value of x, because n! is eventually
much larger than |x|n, no matter what the choice of x is.

Property 1: It’s pretty clear that f(0) = 1.

Property 2: If you think of f as an “infinite polynomial” then you might
guess that you can compute f ′(x) just by differentiating term-by-term. This
is actually true, but it takes some work to prove. I won’t justify this step.
But, assuming that term-by-term differentiation gives the right answer, you
can see right away that f ′(x) = f(x).

Property 3: This is kind of a sneaky argument. Notice that f(x) > 0 when
x > 0 because, in that case, f(x) is a sum of positive numbers. Suppose that
there is some value u where f(u) = 0. Choose u to be as large as possible,
so that f(x) > 0 for all x > u. The proof that f(a + b) = f(a)f(b), given
above, works as long as a, b > u. But then, by continuity, f(u)f(−u) = 1.
(The point is that −u > u.) This is impossible if f(u) = 0.

Complex Exponentiation: Notice that the formula for the function f
given in Equation 2 works even if you plug in complex numbers. So, now we
can say what it means to raise e to a complex power. It means

ez = 1 +
z

1!
+

z2

2!
+

z3

3!
+ ... (3)

Grouping Real and Imaginary Parts: Now set z = iθ, and group real
and imaginary terms.

eiθ = 1 +
iθ

1!
+

i2θ2

2!
+

i3θ3

3!
+

i4θ4

4!
+ ... = C(θ) + iS(θ),

where

C(θ) = 1− θ2

2!
+

θ4

4!
− θ6

6!
+ ...,

S(θ) = θ − θ3

3!
+

θ5

5!
− θ7

7!
...,

We used the fact that the successive powers of i are 1, i,−1,−i repeating.
All we have to do is prove that C(θ) = cos(θ) and S(θ) = sin(θ) and

we’re done.
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4 Recognizing C and S

Elementary Properties: Notice that

• C(0) = cos(0) = 1.

• S(0) = sin(0) = 0.

• C ′(θ) = −S(θ) and cos′(θ) = − sin(θ).

• S ′(θ) = C(θ) and sin′(θ) = − cos(θ).

So, C and S do have some things in common with cosine and sine. That’s a
good start.

The Pythagorean Identity: Consider the function g(θ) = C2(θ) + S2(θ).
Using the product rule, and the facts above, we compute

g′(θ) = −2C(θ)S(θ) + 2S(θ)C(θ) = 0.

So, the function g(θ) is constant. Also g(0) = 11 + 02 = 1. That means that
g(θ) = 1 for all θ. We’ve just proved the identity C2(θ) + S2(θ) = 1. This is
another thing that C and S have in common with cosine and sine.

The End of the Proof: Let’s interpret the Pythagorean identity geometri-
cally. Consider the curve p(θ) = (C(θ), S(θ)). The x-coordinate is described
by C(θ) and the y-coordinate is described by S(θ). From the Pythagorean
identity, we know that p(θ) lies on the unit circle x2 + y2 = 1 for all values
of θ. Also, the velocity vector of p(θ) is given by

p′(θ) = (−S(θ), C(θ)).

Note that p′(θ) has length 1. This means that our curve has speed 1 (if we
think of θ as time.) But then both curves (C(θ), S(θ)) and (cos(θ), sin(θ))
trace out the unit circle starting at the point (1, 0) and moving at the same
speed (and going in the same direction). So, this means that the two curves
do exactly the same thing: They are the same curve. So, C(θ) = cos(θ) and
S(θ) = sin(θ).

A Fine Point: There is a stupid fine point. Why don’t the two curves
trace out the circle in opposite directions? Well, they have the same velocity
at θ = 0, namely (0, 1), so they are both going the same direction, namely
counterclockwise.
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