The Poincare Lemma

Rich Schwartz

March 11, 2015

The purpose of these notes is to explain the proof of Poincare's lemma from the book in somewhat less compressed form.

1 The Main Result

A domain $U \subset \boldsymbol{R}^{n}$ is star shaped with respect to $p \in \boldsymbol{R}^{n}$ if, for each $q \in U$, the entire segment $\overline{p q}$ lies in U. We say that U is star-shaped if U is star-shaped with respect to some point. Here is the main result. Recall that $\Omega^{r}(U)$ is the space of smooth r-forms on U.

Lemma 1.1 (Poincare) Let U be an open star-shaped subset of \boldsymbol{R}^{n} and let $\omega \in \Omega^{r}(U)$. Suppose that $d \omega=0$. Then there is some $\alpha \in \Omega^{r-1}(U)$ such that $d \alpha=\omega$.

The proof in the book is stated in terms of convex domains, but it really just uses the star-shaped property.

2 The Algebra Behind the Result

By symmetry, it suffices to consider the case when U is star-shaped with respect to the origin. We define $\widehat{U} \subset \boldsymbol{R}^{n} \times \boldsymbol{R}$ to be the set of points (u, t) such that $t u \in U$. Note that \widehat{U} is an open set which contains $U \times[0,1]$.

There is a map $F: \widehat{U} \rightarrow U$ given by

$$
\begin{equation*}
F(u, t)=u t . \tag{1}
\end{equation*}
$$

There are also two maps $g_{0}, g_{1}: U \rightarrow \widehat{U}$ given by

$$
\begin{equation*}
g_{i}(u)=(u, i) \tag{2}
\end{equation*}
$$

Notice that

- $F \circ g_{1}(u)=F(u, 1)=u$. Hence $F \circ g_{1}$ is the identity map. This means that $g_{1}^{*} \circ F^{*}=\left(F \circ g_{1}\right)^{*}$ is the identity on differential forms.
- $F \circ g_{0}(u)=F(u, 0)=0$. Therefore, $F \circ g_{0}$ is the constant map. Since $D\left(F \circ g_{0}\right)=0$, this means that $g_{0}^{*} \circ F^{*}=\left(F \circ g_{0}\right)^{*}$ is the 0-map.

Note that both g_{0}^{*} and g_{1}^{*} are maps from $\Omega^{r}(\widehat{U})$ to $\Omega^{r}(U)$. The main step in the proof is do construct a map $J: \Omega^{r+1}(\widehat{U}) \rightarrow \Omega^{r}(U)$ with the property that

$$
\begin{equation*}
J d-d J= \pm\left(g_{1}^{*}-g_{0}^{*}\right) \tag{3}
\end{equation*}
$$

The sign depends on r in a way that we don't care about. Equation 3 makes sense, because all maps go from $\Omega^{r}(\widehat{U})$ into $\Omega^{r}(U)$.

Let's see what Equation 3 gives us. We start with $\omega \in \Omega^{r}(U)$ such that $d \omega=0$. We then define

$$
\begin{equation*}
\widehat{\omega}=F^{*}(\omega) \tag{4}
\end{equation*}
$$

Note that

$$
\begin{equation*}
d \widehat{\omega}=d F^{*}(\omega)=F^{*} d \omega=F^{*}(0)=0 \tag{5}
\end{equation*}
$$

Hence $J d \widehat{\omega}=0$. We compute

$$
\begin{gathered}
d J(\widehat{\omega})= \\
0+d J(\widehat{\omega})= \\
-J d \widehat{\omega}+d J \widehat{\omega}= \\
\mp\left(g_{1}^{*}(\widehat{\omega})-g_{0}^{*}(\widehat{\omega})\right)= \\
\mp\left(g_{1}^{*} F^{*} \omega-g_{0}^{*} F^{*} \omega\right)= \\
\mp(\omega-0)=\mp \omega .
\end{gathered}
$$

We take

$$
\begin{equation*}
\alpha=\mp J(\widehat{\omega}) . \tag{6}
\end{equation*}
$$

If we pick the sign right then $d \alpha=\omega$.

3 Construction of the Main Map

Now we construct the map $J: \Omega^{r+1}(\widehat{U})$ to $\Omega^{r}(U)$. It is convenient to set $t=x_{n+1}$.

Any form $\eta \in \Omega^{r+1}(\widehat{U})$ can be written in the standard basis:

$$
\begin{equation*}
\eta=\sum_{K} c_{K} d x_{K}, \tag{7}
\end{equation*}
$$

The sum take place over increasing multi-indexes of length $r+1$. We can write $\eta=\eta_{1}+\eta_{2}$, where η_{1} is the sum over the multi-indices which do not involve $n+1$ and η_{2} is the sum over the multi-indices which do involve $n+1$.

We have

$$
\begin{equation*}
\eta_{1}=\sum_{I} a_{I} d x_{I}, \quad \eta_{2}=\sum_{J} b_{J} d x_{J} \wedge d t \tag{8}
\end{equation*}
$$

The first sum is taken over multi-indices of length $r+1$ which involve $n+1$. The second sum is taken over multi-indices J of length r which do not involve $n+1$. Define

$$
\begin{equation*}
J(\eta)=\sum_{J} B_{J} d x_{J}, \quad B_{j}(p)=\int_{0}^{1} b_{j}(p, t) d t \tag{9}
\end{equation*}
$$

Notice that J really is a linear map from $\Omega^{r+1}(\hat{U})$ to $\Omega^{r}(U)$. Note also that $J\left(\eta_{1}\right)=0$.

4 The Calculations

Both sides of Equation 3 respect sums. So, it suffices to prove Equation 3 for a form $\eta=a d x_{I}$. There are 2 cases, depending on whether I involves $n+1$.

4.1 Case 1

Suppose that I does not involve $n+1$. Then $J \eta=0$ and so

$$
\begin{equation*}
d J \eta=0 . \tag{10}
\end{equation*}
$$

On the other hand

$$
d \eta=\frac{\partial a}{\partial t} d t \wedge d x_{I}+\beta
$$

where β only has terms which do not involve $d t$. Since $J(\beta)=0$, we have

$$
\begin{equation*}
J d \eta=(-1)^{r} A d x_{I}, \quad A(p)=\int_{0}^{1} \frac{\partial a(p, t)}{\partial t} d t=a(p, 1)-a(p, 0) \tag{11}
\end{equation*}
$$

Note that $g_{1}^{*}\left(d x_{i}\right)=d x_{i}$ for $i=1, \ldots, n$. For this reason

$$
\begin{equation*}
g_{0}^{*}(\eta)=a(\cdot, 0) d x_{I}, \quad g_{1}^{*}(\eta)=a(\cdot, 1) d x_{I} . \tag{12}
\end{equation*}
$$

Equation 3 follows in this case from Equations 10, 11, and 12.

4.2 Case 2

Now suppose that $\eta=a d x_{I}$ where I involves $n+1$. We can write

$$
\eta=a d x_{J} \wedge d t
$$

where J is obtained from I by dropping the $n+1$.
We compute

$$
J \eta=A x_{J}, \quad A(p)=\int_{0}^{1} a(p, t) d t
$$

Therefore,

$$
\begin{equation*}
d J \eta=d A \wedge d x_{J}=\sum_{i=1}^{n} \frac{\partial A}{\partial x_{i}} d x_{i} \wedge d x_{J} \tag{13}
\end{equation*}
$$

Differentiating under the integral sign, we get

$$
\begin{gather*}
\frac{\partial A}{\partial x_{i}}(p)=\int_{0}^{1} \frac{\partial a}{\partial x_{i}}(p, t) . \tag{14}\\
d \eta=\sum_{i=1}^{n} \frac{\partial a}{\partial x_{i}} \wedge d X_{J} \wedge d t
\end{gather*}
$$

We never differentiate by t because every term of η involves $d t$. Finally

$$
J d \eta=\sum_{i=1}^{n} \frac{\partial A}{\partial x_{i}} \wedge d X_{J}=d J \eta
$$

In this case $d J(\eta)-J d(\eta)=0$. On the other hand $g_{j}^{*}(d t)=0$ for $j=0,1$. So, Equation 3 again holds.

