HW Assignment 1:

1: Prove that if a finite graph has an Eulerian circuit, then all the vertices of the graph have even degree. (This is the proof-practice problem.)

2: Describe the tree whose Prufer code is $111222333 \ldots(100)(100)(100)$. The labels are $1,2, \ldots, 300$.

3: Suppose that a tree T has m internal nodes with degrees d_{1}, \ldots, d_{m}, and k leaves. Prove that $d_{1}+\ldots+d_{m}=k+2 m-2$. Hint: start pulling off the leaves.

4: Let T be a finite tree. The vertices of T can be colored black and white in such a way that every edge is incident to one black vertex and one white vertex. Suppose that T has the same number of black vertices as white vertices. Prove that T has at least one black leaf and at least one white leaf. This is Problem 2.2.13a in West's book.

5: Let G_{n} be the graph shown in Figure 1 for the case $n=6$. In general, G_{n} is a 3 -valent graph with a ring of $m \theta$ graphs joined in a loop. Prove that G_{n} has $2 n 8^{n}$ spanning trees. This is problem 2.2.6 in West's book.

Figure 1: The graph G_{6}.
6: Let G_{n} be the graph shown in Figure 2. Let τ_{n} denote the number of spanning trees of G_{n}. Prove that τ_{n} satisfies the recurrence relation $\tau_{n}=$ $4 \tau_{n-1}-\tau_{n-2}$. (For this to work for all $n \geq 2$ we have to set $\tau_{0}=1$.) This is problem 2.2.15 in West's book.

Figure 2: The graphs $G_{1}, G_{2}, G_{3}, \ldots$

7: Prym's algorithm produces a minimum spanning tree on a connected weighted graph as follows: Supposing that some connected subtree T has already been constructed, pick any vertex v of T which is incident to vertices not in T. Augment T by adding the edge which joins v to the vertex not in T using the lowest-weight edge. (Break ties arbitrarily.) Continue until all edges are reached. Prove that Prym's algorithm produces a minimum weight spanning tree of G. To make your life easier, you can assume that the edges of G have distinct weights. This is Problem 2.3.10 in West's book.

8: Consider the set of all decompositions of a regular N-gon into triangles by drawing diagonals of the polygon. Figure 3 shows (when $N=7$) an example of an elementary move in which one such triangulation is converted into another by switching the diagonal in a single quadrilateral. Prove, for any N, that any two such triangulations of the regular N-con can be transformed into each other by a finite number of elementary moves.

Figure 3: An elementary move.
Incidentaly, Figure 3 also shows how such a triangulation corresponds to a tree with $N-2$ vertices.

Extra Credit: Referring to Problem 8, you can associate a vector in \boldsymbol{R}^{N} to each triangulated N-gon. The point is $\left(t_{1}, \ldots, t_{N}\right)$, where t_{k} is the number of triangles touching vertex k. If the polygons in Figure 3 are labeled so that the bottom vertex is labelled 1 and the labelings increase counterclockwise, then the first polygon corresponds to the vector $(1,4,1,2,3,1,3)$ and the second one corresponds to the vector $(1,3,1,3,2,1,4)$. Let P_{N} denote the set of all vectors arrived at this way. Prove that P_{N} is the vertex set of a convex polytope in \boldsymbol{R}^{N} and that the elementary moves correspond to the edges of this polytope.

