HW Assignment 3:

1: Find a proper 4-coloring of the vertices of the icosahedron.
2: How does the 5 -color theorem work on the torus? Try to imitate the proof in class and see how far you get.

3: Suppose that every point in the plane is colored one of 3 colors. Prove that there must be 2 points, exactly one unit apart, which have the same color. (This is part of problem 5.1.25)

4: Prove that it is possible to color every point of the plane with one of 7 colors, so that no two points which are 1 unit apart have the same color. (This is also part of problem 5.1.25)

5: This is Problem 3.1.20 in the book: Suppose that G is a graph such that every pair of odd cycles in G intersect. Prove that G is 5 -colorable. (Hint: First consider the case when G has a single odd cycle.)

6: This is problem 3.1.22 from the book: Suppose that you draw a finite number of lines in the plane, such that no three contain the same point. Form a graph whose vertices are intersection points and whose edges join consecutive points on the same line. Prove that this graph is 3 -colorable.

7: This is problem 5.3.4: Prove that $\chi\left(C_{n}, k\right)=(k-1)^{n}+(-1)^{n}(k-1)$.
8: This is Problem 5.3.5. Let G_{n} be the same graph considered in HW set 1. Figure 1 shows it.

Figure 2: The graphs $G_{1}, G_{2}, G_{3}, \ldots$.
Prove that $\chi\left(G_{n}, k\right)=\left(k^{2}-3 k+3\right)^{n-1} k(k-1)$. (Hint: Look at Example 5.3.7.) Note: In the previous HW assignment, I had the index n shifted by 1 , so that my G_{n} was West's G_{n+1}. This wasn't important for the previous problem, but it is important here.

