
HW Assignment 5:

1: In class I mentioned that there is a good analogy between discrete objects
and vector calculus. This problem lets you work one of these out. Let G
be a planar graph, in which every vertex has degree at least 3. Let E(G)
be the set of edges of G and let F (G) denote the set of faces of G which
are not the outermost face. Let ω be an assignment of a direction and a
number to each edge of G. Let ∂G denote the outermost face of G. Orient
∂G counterclockwise and then define∫

∂G
ω =

∑
e∈∂G

ω(e) · e,

Here ω(e)·e equals the number associated to e if the direction points counter-
clockwise and otherwise equals minus the number. We now define a function
dω on F (G) as follows: dω(σ) is the sum of the ω values of the edges go-
ing around σ, where the contribution of each edge is counted positively if
the edge direction aligns with the counterclockwise orientation around σ and
otherwise negatively. Next, define∫

G
dω =

∑
σ∈F (G)

dω(σ).

Here we are summing over all the faces except the outer one. Prove “Green’s
Theorem”: ∫

∂G
ω =

∫
G
dω.

Hint: First try this for one of those “ladder graphs” made out of squares
that have been the subject of several HW problems.

2: Let Z3 denote the standard tiling of R3 by unit cubes. Let G be a
graph made by taking a connected union of finitely many cubes of Z3 and
then considering the vertices and edges involved in the union. Let E(G)
denote the set of edges of G and let F (G) denote the set of 2-dimensional
faces of the cubes involved. Define a surface with boundary Σ to be a finite
union of squares in F (G) such that each square in Σ meets at most one other
square across an edge. Then ∂Σ is just the edges which only belong to one
square. Formulate and prove a version of Stokes’ Theorem along the lines of
Problem 1 using this setup. The final result should be∫

∂Σ
dω =

∫
Σ
dω.
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3: Formulate and prove a version of Max Flow Min Cut in a situation where
the single source s is replaced by a finite union s1, ..., sm of sources and the
single sink t is replaced by a finite union t1, ..., tn of sinks.

4: In class I explained how Hall’s Theorem follows from Max Flow Min
Cut. Compare the Max Flow Min Cut proof as applied to the graph associ-
ated to Hall’s Theorem with the direct proof involving M -alternating paths.
They should basically be the same thing.

5: Give an example of a finite directed graph with source and sink, together
with capacities on the edges, for which there are infinitely many maximum
feasible flows.

6: We can identify a flow with a point in Rn, where n is the number of
edges of the graph just by listing out the values of the flow in some order.
Show that the set of maximal feasible flows, when so considered, is a convex
subset of Rn. Problem 5 tells you that this subset can be more than just a
single point.

7: Let G be a graph. A labeling f of the vertices of G by real numbers
is harmonic at the vertex v if the value at v is the average of the values at
the neighbors of v. Such a labeling defines a flow on G as follows. Given an
edge of G having endpoints a and b. We orient e from the vertex with the
higher value to the vertex with the lower value, and we assign |f(a)− f(b)|
to the edge. Prove that this flow is conservative at a vertex v if and only if
f is harmonic at v. (This problem is really just a matter of unravelling the
definitions.)

8: An infinite graph is called hyperbolic if there exists a nonzero and bounded
positive labeling of its vertices which is harmonic except at one vertex and
which tends to zero on any sequence of vertices whose distance to the non-
harmonic vertex tends to ∞. The corresponding flow has one source and no
sinks. Show that the graph made from the integers by connecting consecutive
sides is not hyperbolic and give an example of a hyperbolic graph.
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