

HW Exercises:

1. Let \mathbf{E} be a Weierstrass elliptic curve. Prove that a point on \mathbf{E} has order 3 if and only if it is an inflection point.
2. Let Λ_1 and Λ_2 be two lattices in \mathbf{C} . Prove that \mathbf{C}/Λ_1 and \mathbf{C}/Λ_2 are isomorphic groups. (Hint: They are all isomorphic to $\mathbf{R}^2/\mathbf{Z}^2$).
3. Let p be a prime number. Prove that there are p^2 points of order p in the group \mathbf{C}/Λ and that these points form a subgroup. Conclude from Problem 1 that if \mathbf{E} has a Weierstrass uniformization (meaning that \mathbf{E} is isomorphic to \mathbf{C}/Λ as a group) then \mathbf{E} has 9 inflection points.
4. Let $a, b \in \mathbf{Q}$ and let \mathbf{E}_K be the Weierstrass elliptic curve defined by $y^2 - (x^3 + ax + b)$ defined over the field K . Suppose K is a splitting field for some polynomial in $\mathbf{Q}[x]$. Prove that each Galois automorphism $\phi \in \text{Gal}(K, \mathbf{Q})$ induces a bijection $B_\phi : \mathbf{E}_K \rightarrow \mathbf{E}_K$ in such a way that $B_{\phi_1} \circ B_{\phi_2} = \phi_1 \circ \phi_2$.
5. Suppose that Λ is a lattice that is symmetric with respect to complex conjugation. That is, $\lambda \in \Lambda$ if and only if $\bar{\lambda} \in \Lambda$. Prove that the Weierstrass uniformization map $\Psi = (P, P')$ maps \mathbf{C}/Λ onto an elliptic curve whose equation has the form $4y^2 - (x^3 + ax + b)$ where $a, b \in \mathbf{R}$. Moreover, prove that Ψ maps $\mathbf{R}/(\Lambda \cap \mathbf{R})$ into the set of real points of the elliptic curve.
- 6: The map $f(x, y) = (Ax, By)$ is a perfectly good transformation from \mathbf{C} to \mathbf{C} . Here $A, B \in \mathbf{R}$ are positive numbers. (The positivity restriction is just to make the picture nicer.) Prove that f is a holomorphic map from \mathbf{C} to \mathbf{C} if and only if $A = B$.