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Antoine’s necklace refers to a family of embeddings of a Cantor set into
R3. I will construct a self-similar example in this family, which I’ll callA. The
construction depends on an even integer K and works when K is sufficiently
large. Probably all you need is K ≥ 24. After giving the construction I’ll
prove two main things. First, A is homeomorphic to the middle third Cantor
set. Second, R3 − A is not simply connected. This is a rather amazing
thing: You can stick a Cantor set into R3 in such a way that some loops get
inextricably tangled up in it.

1 Construction

Let Π be the xy plane in R3. Let Ĉ0 ⊂ Π be a circle of radius 4K. Let
A0 denote the torus consisting of points having distance at most K from Ĉ0.
The shape of A0 (i.e. similarity equivalence class) is independent of K. Let
P ⊂ Ĉ0 be an inscribed regular K-gon. Let P0, ..., PK−1 be the vertices of P .
The distance 8K sin(π/K) between successive vertices of P converges to 8π
as K →∞.

For k ∈ {0, ..., K − 1} even let Ck be the circle of radius 6π centered
at Pk and contained in Π. For k odd let Ck be the circle of radius 6π
centered at Pk and contained in the plane perpendicular to the line through
the origin containing Pk. Adjacent circles are linked and non-adjacent circles
are unlinked. Moreover, the minimum distance between points on distinct
circles converges to 4π as K → ∞ and in particular exceeds 3π when K is
large. Let τk denote the torus consisting of all points within 3π/2 from Ck.
These tori have the same shape as A0. Let A1 be the union of these tori.
Figure 0 shows an fairly accurate projection (into Π) of 5 consecutive tori
when K is very large.
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Figure 0: Projections of 5 consecutive tori.

By construction the tori are disjoint, adjacent tori are linked, and non-
adjacent tori are unlinked. All points of A1 are within (15/2)π of Ĉ0. Hence
A1 ⊂ A0 once K > (15/2)π. At this point we fix K large enough to have all
the above properties. Again, I think that any K ≥ 24 will work.

There are similarities S0, ..., SK−1 such that Sk(A0) = τk for each index
k = 0, ..., K − 1. Let Am consist of all tori of the form SW (A0) where W is a
length m composition of these simiarities. Thus Am consists of Km disjoint
tori, and these tori are partitioned into “necklaces” of linked tori having
length K, each contained in a torus of Am−1. In other words, we get Am
by replacing each torus of Am−1 by a K-necklace that sits inside this torus
in the same way that A1 sits inside A0. Antoine’s necklace is the nested
intersection:

A =
∞⋂
m=0

Am.

Remark: What is the best value of K that will work for a self-similar
construction like this? With a modified construction one can get K = 20. I
don’t think it is possible to get K < 20.
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2 Cantor Set Property

The middle third Cantor set C is the subset of [0, 1] consisting of all points
whose base 3 expansion has no 1s in it. Here I will show in an elementary
way that A is homeomorphic to C.

Let TK denote the subset of all infinite words in the symbols {0, ..., K−1}.
The distance between two words in TK is 2−` where ` is the number of initial
spots where the two words agree. For example, the distance between 123123...
and 121212... is 2−2 because these words agree in the first two positions and
then disagree. A basis for the topology on TK is given by subsets of words
all having the same m-prefix for some m. In other words, you fix the first m
digits and then let the rest vary. These are the open metric balls of TK .

Lemma 2.1 TK is homeomorphic to A.

Proof: Each point in A is the nested intersection ∩τm, where τm is one of
the tori in the union Am. Thus each point of A defines a K-ary sequence,
which is to say a point of TK . We let φ : A → TK be this map. The map φ
is surjective because, from the construction of A, we can realize any K-ary
sequence. The map φ is injective because the diameters the tori in Am tends
to 0 as m→∞. Thus, distinct points of A define distinct K-ary sequences.
The subsets of A having the form A ∩ τ , for τ a torus in Am, form a basis
for the topology of A. The reason: these sets are open and the intersection
of any two of them, if nonempty, is another one. Hence φ maps the basis for
the topology of A to the basis for the topology of TK . Hence φ is a homeo-
morphism. ♠

Lemma 2.2 T2 is homeomorphic to C.

Proof: We define special subsets of C just as we did for TK . These are subsets
having the same m-prefix. These subsets are open (and closed). Moreover,
the intersection of any two of them, if non-empty, is a third. Hence these
special subsets form a basis for the topology on C. The map φ : T2 → C is
given by φ(a0, a1, ...) = .b0, b1, ... where bj = 2aj. That is, we just change the
1 digits to 2s. By construction, φ maps basis elements of T2 to basis elements
of C bijectively. Hence φ is a homeo. ♠
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Remark: Before reading the next proof, consider the fact that we could
take K to be a power of 2 in our construction of A. The choice K = 32
works. In this case, it is easy to show that T2 and T2k are homeomorphic.
I am including the next proof mainly to show how to prove that T2 and
TK are homeomorphic in general. The proof suggests how one might prove
in general that any compact, perfect, totally disconnected metric space is
homeomorphic to T2.

Lemma 2.3 T2 is homeomorphic to TK for all K ≥ 2.

Proof: Each ball of T2 is a union of 2 balls B(0) and B(1) having half the
diameter. There is a canonical homeomorphism from T2 to each of these:
For instance, φ0 : T2 → B(0) is given by φ0(a0, a1, ...) = (0, a0, a1, ...). This is
the “padding map”. More generally, T2 is homeomorphic to any of its metric
balls via a (iterated) padding map.

By recursively subdividing, we can partition T2 into K metric balls. We
do this, and we let Sk denote the padding map which carries T2 to the kth
ball in the partition. In general, T2 is partitioned into Kn metric balls. These
metric balls have the form San−1 ◦ ...Sa0(T2), where a0, ..., an−1 is any binary
sequence of length n. Call this partition Bn. The diameter of each ball in
Bn is at most 2−n.

Since we have a sequence of partitions (refining each other), each point
in T2 can be uniquely described as the limit point of a nested intersection of
the form ∩βn where βn is a metric ball of Bn. Thus each point in T2 defines
a K-ary sequence, namely a point of TK . We let φ : T2 → TK be the map
which has this description.

The map φ is surjective because we can realize any K-ary sequence. The
map φ is injective because the diameters the metric balls in Bn tends to 0.
The inverse image of any basis element of TK is a finite union of metric balls
in T2. Hence this inverse image is open. Note finally that φ maps each metric
ball in T2 is a union of metric balls of Tn once n is sufficiently large. Thus
φ maps metric balls to finite unions of metric balls. This shows that φ−1 is
continuous. All in all φ is a homeo. ♠

Stringing these lemmas together we see that A is homeomorphic to C.
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3 Structure of the Complement

Let A be Antoine’s necklace. The rest of these notes are devoted to prov-
ing that R3 − A is not simply connected. The argument will show more
strongly that a particular element [β0] of π1(R3−A) has infinite order. With
some modification the proof below would work for more general versions of
Antoine’s necklace.

In this section we reduce the main result to something we call the Linking
Lemma. Let An denote the union of the Kn linked tori as above. Let Ln
denote the link of circles obtained by replacing each torus in An by its core
circle. Let τ be some torus used in our construction. The fundamental group
π1(∂τ) = Z2 has a canonical basis:

• α(τ) is represented by a curve on ∂τ parallel to the core of τ .

• β(τ) is represented by a curve on ∂τ perpendicular to the core of τ .

The curve β(τ) links the core of τ .
Let β0 = β(A0), the boundary of the big outer torus. We take the base-

point p of R3−A on β0 and think of [β0] as an element of π1(R3−A, p). We
suppress p from our notation. Here is the main technical step:

Lemma 3.1 (Linking) [β0] has infinite order π1(R3 − Ln) for each n.

Let us deduce the main result from the Linking Lemma. Let m be an
arbitrary nonzero integer. Define the unit square Q = [0, 1]2. Suppose that
F : Q → R3 − A is a homotopy from βm0 to the trivial loop. We just have
to produce some q ∈ Q such that F (q) ∈ A. By the Linking Lemma, [βm0 ]
is nonzero in π1(R3 − Ln). Hence there is some point qn ∈ Q such that
F (qn) ∈ Ln. In particular, F (qn) ∈ Aj for all j = 0, ..., n. Since Q is compact
the sequence {qn} has an accumulation point q. By construction F (q) is an
accumulation point of Aj for all j. Hence F (q) ∈ A. Hence [βm0 ] is nontrivial
in π1(R3 − A). The rest of the notes are devoted to proving the Linking
Lemma.

Remark: If you are just interested in showing that the element [β0] is
nonzero in π1(R3 − A), you could get use a weaker form of the Linking
Lemma which just says that [β0] is nonzero in π1(R3 − An). However, the
weaker version of the Linking Lemma does not have the nice inductive proof
that the stronger version does. I will discuss this more at the end of the
proof.
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4 The Base of the Induction

Here we prove that [β0] is an infinite order element in π1(R3−L1). Figure 1
shows a projection of L1, in the case K = 8. The general case is very similar.
The labels a0, b0 and a1, b1 are meant to suggest that the pattern continues
around the loop, with additional elements a2, b2 and a3, b3 and so on.

a0
a1

1

Figure 1: L1.

Let Γ = π1(R3 − L1). Using the Wirtinger representation, we see that Γ
is generated by elements a1, ..., aK and b1, ..., bK subject to the relations

a0 = a1b0a
−1
1 , b1 = b0a1b

−1
0 , (1)

and all cyclic permutations of these: a1 = a2b1a
−1
2 and b2 = b1a2b

−1
1 , etc.

Note that
a1b
−1
1 = a1(b0a1b

−1
0 ) = a1b0a

−1
1 b−1

0 = a0b
−1
0 ,

and similarly for cyclic permutations. Thus we can see directly from the
presentation of Γ the element akb

−1
k is independent of k. We have

[β0] = akb
−1
k , ∀k. (2)

Geometrically, this is the element that starts from your nose, runs through
the middle of the necklace, links it, and returns to your nose.

To prove that a0b
−1
0 has infinite order in Γ it suffices to produce a group

H and a homomorphism φ : Γ → H such that φ(a0b
−1
0 ) has infinite order.

The group H will be the Heisenberg group. As a set H is C × R but the
group law is given by

(z1, t1) ∗ (z2, t2) = (z1 + z2, t1 + t2 + Im(z1z2)).
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The identity is (0, 0). Inverses are given by (z, t)−1 = (−z,−t). We compute

(z1, t1) ∗ (z2, t2) ∗ (z1, t1)−1 = (z2, t2 + 2Im(z1z2)). (3)

Define

φ(ak) = (ωk, µ), φ(bk) = (ωk,−µ), ω = eiµ, µ = 2π/K. (4)

To check that φ is really a homomorphism we just need to check that φ
respects the relations in Equation 1. It follows from symmetry (or similar
calculations) that φ respects the cyclic permutations of these relations as
well. We compute

φ(a1b0a
−1
1 ) = (1,−µ+ 2Im(ω)) = (1,−µ+ 2µ) = (1, µ) = φ(a0),

φ(b0a1b
−1
0 ) = (ω, µ− 2µ) = (ω,−µ) = φ(b1).

It works! Finally, we compute that

φ(a0b
−1
0 ) = (0, 2µ).

The element (0, 2µ) has infinite order in H because (0, 2µ)m = (0, 2mµ).
This completes the proof of the base case.

Remark: Where the hell did that come from? Well, a0b
−1
0 is a commu-

tator, so you need to take H to be non-abelian and of infinite order. The
Heisenberg group is one of the simplest infinite order non-abelian groups, so
it ought to be on any reasonable menu of choices.

The link L1 has K-fold rotational symmetry, and this suggests that you
might want to map the generators of Γ to elements which have some kind
of K-fold rotational symmetry. A natural choice would be to map these
elements to Kth roots of unity in C. This has nice symmetry properties
but unfortunately C is abelian. This won’t work, but H is a non-abelian
“extension” of C. There is an exact sequence 0 → R → H → C → 0. Put
in a more elementary way, there is a surjective homomorphism from H to C
whose kernel is R.

The nice feature of H is that all commutators in H lie in the R direction.
We need the images of akb

−1
k to be the same, independent of k, which means

that we want a whole bunch of commutators to be the same. The group H
is perfect for all that. This is really the consideration that led me to H. (I
didn’t look up a proof; presumably this is the “standard method”.)
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5 The Induction Step

Now we turn to the inductive step of the Linking Lemma. We take n ≥ 2
and assume by induction that [β0] has infinite order in π1(R3 − Ln−1). Our
goal is to show that [β0]m is nonzero in π1(R3 − Ln) for all m.

As a preliminary step, we clean up our homotopy. We think of βm0 as the
image of the unit circle S1 under the continuous mapping F : S1 → R3. Our
goal is equivalent to showing that no continuous extension of F to the unit
disk D2 maps D2 disjointly from Ln. We will suppose that there is some
choice of F such that F (D2) ∩ Ln = ∅ and we will derive a contradiction.

The first thing to notice is that since F (D2) and Ln are both compact,
there is some positive ε > 0 such that the distance between any point of
F (D2) and any point of Ln is at least ε. This means that any continuous
map sufficiently close to F also misses Ln. We can replace F by a new map
G : D → R3 − Ln such that

1. D ⊂ D2 is a polygon and G(∂D) is homotopic to βm0 in R3 − A1.

2. G is a piecewise linear map, with respect to some triangulation of D.

3. If v is any vertex of the triangulation, G(v) is disjoint from all bound-
aries of all tori in A0, ..., An.

4. If e is any edge or face of the triangulation, G(e) is nowhere tangent to
any boundary of any torus of A0, ..., An.

To get Condition 1, we restrict F to an n-gon D inscribed in D2 and then
modify F so that it is piecewise linear on ∂D. If we take n large enough
then F (D2 − D) is disjoint from A1. Thus we can interpret the restriction
of F to D2 − D as a homotopy between β0 and F (∂D) in R3 − A1. We
let G = F on ∂D. To get Condition 2 we take a fine triangulation of D.
We then let G = F on the vertices of the triangulation and we make G
affine (linear composed with translation) on each triangle of the triangulation.
Note that G is completely determined by where it sends the vertices of the
triangulation. To get Conditions 3 and 4, we perturb the images of the
triangulation vertices.

These conditions imply that for each triangle τ in the triangulation, G(τ)
intersects each boundary torus in a finite disjoint union of smooth loops and
smooth arcs. The arcs in question have their endpoints in ∂G(τ). The arcs
in adjacent triangles piece together across common endpoints.
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Now we get to the main point. By induction, G(D) intersects Ln−1. This
means that G(D) non-trivially intersects ∂An−1. Consider the set

Σ = G−1(G(D) ∩ An−1). (5)

From the description of the triangle intersections above, Σ is a finite union
of loops. There are no arcs, because such arcs would have their endpoints on
∂D, and ∂D is disjoint from Σ.

Let σ be some loop of Σ. The image G(σ) is contained in ∂τ for some
torus τ of An−1. Interpreting G(σ) as an element of π1(∂τ), we have

[G(σ)] = aσα(τ) + bσβ(τ). (6)

Thus σ determines the two integers aσ and bσ. There are three cases.

Case 1: Suppose that aσ = bσ = 0 for all loops σ of Σ. Let Dσ be the
disk bounded by σ. In this case, G(σ) is trivial in π1(∂τ). Hence there is a
continuous map Hσ : Dσ → ∂τ which extends G|σ. In other words, we can
shrink G(σ) to a point inside ∂τ . We pick some ordering σ1, ..., σn on the
components of Σ and then, when applicable, we modify the map G so that
it implements Hσk on ∆σk . (The reason why we say “when applicable” is
that the modification made with respect to σ1 might eliminate some of the
other σj, and so on.) When we are done, the new map G′ has the property
that G′(D) is disjoint from the interior of An−1. The reason: G′(D) contains
points in the complement of An−1 and also this image never crosses ∂An−1.
But now we see that G′(D) is disjoint from Ln−1. This is a contradiction.

Case 2: Suppose that there is some σ such that bσ 6= 0. Let τ be the torus
of An−1 whose boundary contains σ, as above. With respect to a suitably
chosen basepoint, we interpret G(σ) as an element of

π1(Ω), Ω = R3 − (Ln ∩ τ).

The element α(τ) is trivial in π1(R3−τ) and so it is a fortiori trivial in π1(Ω).
Thus, G(σ) represents a multiple of β(τ) in π1(Ω). By the base case of the
Linking Lemma, β(τ) has infinite order in π1(Ω). Hence G(σ) is nonzero in
π1(Ω). Since R3 − Ln ⊂ Ω we see that G(σ) is nonzero in π1(R3 − Ln) as
well. But we can interpret G|∆σ as a homotopy from G(σ) to the constant
loop in R3 − Ln. This is a contradiction.
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Case 3: Suppose that there is some σ such that aσ 6= 0. Let τ be the
torus of An−1 whose boundary contains σ, as above. Let τ ′ be one of the two
tori of An−1 which links τ . Now we interpret G(σ) as an element of

π1(Ω′), Ω′ = R3 − (Ln ∩ τ ′).

In the set R3−τ −τ ′ we can move α(τ) to β(τ ′) by a homotopy. Likewise, in
R3− τ − τ ′ we can move β(τ) to α(τ ′) by a homotopy. This G(σ) represents
the same element as bσα(τ ′) + aσβ(τ ′) in π1(Ω′). Now the same argument as
in Case 2, using Ω′ in place of Ω, finishes the proof.

In all cases, we get a contradiction. The only way out of the contradic-
tion is that the original map F is such that F (D2)∩An 6= ∅. This completes
the proof of the induction step of the Linking Lemma. Hence, the Linking
Lemma is true.

Remark: Go back to Step 2 and look carefully at the underlined word
multiple. At this point in the proof we lose control over which multiple
we are taking about. So, if we only had the weaker version of the Linking
Lemma, we could not use the fact that β(τ) is nontrivial in π1(Ω) to conclude
that so is G(σ). This is why we need to run an induction argument on the
form of the Linking Lemma we have given.
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