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1 Introduction

There are various foundations for what you could call everyday mathematics.
These foundations usually come as a list of axioms describing the allowable
kinds of mathematical reasoning and constructions. The most popular foun-
dational axioms are the Zermelo-Frankel Axioms . Most of them sound com-
pletely obvious. However, the ZF axioms are not really stand-alone axioms.
In order to understand and use them, you need language and logic. Which
comes first, the language, the logic, or the axioms? I don’t know. In practice,
when you do mathematics, you freely use all three things in ways that are
not so easy to disentangle.

There are some additional axioms which do not follow from the ZF axioms
(and language and logic). The most famous is the Axiom of Choice, an axiom
which has many reformulations – e.g. Zorn’s Lemma. One purpose of these
notes is to discuss the ZF axioms, with a view towards putting the Axiom
of Choice in context. The main purpose is to show the equivalence of the
Axiom of Choice, Zorn’s Lemma, and the Well-Ordering Principle, given ZF.
Finally, the last purpose is to derive some nice applications of these axioms
– e.g., the existence of nonprinciple ultrafilters.

I got many of the details about the ZF axioms from Wikipedia and from
An introduction to Set Theory by William A.R. Weiss, though these notes are
not a perfectly faithful account of what is written there. In particular, the
arguments in the notes do not “go all the way back to the axioms”, though
of course they could be re-written (at length) to do so. Overall, I wanted to
write down how I think about the foundations, and to get to some interesting
highlights fairly efficiently.
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2 Sets

The foundational axioms of mathematics concern properties of sets . Here is
an informal definition:

A set is a collection of things, the things themselves being sets.

This is a very beautiful idea: There is only one kind of “thing” (or “ob-
ject” or “entity” or “structure” or “gadget” or “gizmo”) in the mathematical
universe, and it is made of parts which are “things” of the same kind.

On the down side, a set has no formal definition. It is considered to be a
basic and undefinable concept. How would you define it? As a collection of
things? What are collections? What are things? Any attempt will just lead
in circles. Another problem is that the mathematical universe turns out to
contain “collections of things” which are not actually sets – e.g., the class of
all sets. A class is like a set, but bigger. The ZF axioms do not apply to
classes, though you sometimes want to refer to classes when making a logical
argument which otherwise uses the ZF axioms. Yet another problem is that
the axioms assert the existence of sets, without saying in what sense sets
exists. Probably they don’t exist in the same sense that, say, New Jersey
exists. I don’t know any satisfying resolution to these problems, but if you
don’t move past them you won’t actually get to mathematics.

Once you grant the existence of sets (whatever they are), you have to
swallow the concept of equality and membership. One writes A = B to
indicate that A and B are the same set. One writes s ∈ S to indicate s
is a member of S. That is, s is one of the sets of which S is constituted.
Even though the members of a set are themselves sets, they are usually called
members , or elements . Again, ultimately everything (except classes) is a set.

The symbols { and } are often used to denote the members of a set. For
instance {1, 2, 3} denotes the set whose members are 1 and 2 and 3 (whatever
they are.) Other useful notions are reducible to these, such as the notion of
subset . One writes A ⊂ B if every member of A is also a member of B. That
is a ∈ A implies a ∈ B. Notice that even to talk about the basic definition
of a subset, we need a certain amount of language. For instance, we have to
know what the word implies means. This is what I mean when I say that
language and logic are part of the foundations of mathematics just as much
as the set-theoretic axioms.
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3 The Zermelo-Frankel Axioms

Now I’m going to list some version of the ZF axioms. Some of them are
redundant, though any list of the ZF axioms can be deduced from these.

Existence of the Empty Set: There exists a set with no members. It
is called ∅, the empty set. This axiom is usually considered a consequence of
the others, but I think it is a good place to start.

Axiom of Extension: Two sets are equal if and only if they have the
same members. This one seems completely obvious.

The Axiom of Foundation: Given any nonempty set S, there exists an
element T ∈ S such that T ∩ S = ∅. Note that the members of sets are
also sets, so this makes sense. As I’ll explain in the next section, this axiom
prevents a set from having itself as a member.

Axiom of Union: Given a set S, there is a set US so that t ∈ US if
and only if t ∈ A for some A ⊂ S. So, US is the union of the elements in
subsets of S. For instance, if

S = {{{A,B}, D}, {A,B}, {B,C}}

then US = {{A,B}, A,B,C,D}.

Existence of Power Sets: Given a set S there exists a set T whose mem-
bers are the subsets of S. For instance, if S = {1, 2, 3}, then

T = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Axiom of Pairing: Given sets A and B there exists a set C whose mem-
bers are A and B. That is C = {A,B} exists. This axiom turns out to be
redundant, but it is convenient to have it explicitly listed.

Axiom of Infinity There exists a set S which contains the emptyset and
has the following property. If T is a member of S, then the successor of T is
also a member of S. Here, the successor of T is defined to be the set T ∪{T},
the union of T with the set whose only member is T .
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The Language of Set Theory: There is one more axiom - really an in-
finite list of them - but it requires a buildup of terminology. The language
of set theory is a certain collection of formulas involving variables, logical
connectives, and quantifiers.

The simplest formulas have the form A = B or A ∈ B. Here A and B
are the variables. These are called the atomic formulas . Then we have the
following rules.

• If S is a formula, so is NOT S.

• If S and T are formulas, so is S AND T .

• One can universally quantify over a formula. Given a formula S, one
also has the formula ∀AS, which means “S is true for all A.”

One can make other constructions based on these rules. For instance S OR
T is logically equivalent to NOT((NOT S) AND (NOT T )). Likewise ∃AS
is equivalent to NOT (∀A (NOT S)).

The formulas acquire truth values when one substitutes sets for all the
variables. A formula like ∀A(A ⊂ B) would say that, for all sets A, the set
A is a subset of B. This is clearly false.

Free Variables: Given a formula F and a varaible A which occurs in F ,
you want to minimize the number of times A occurs without changing the
(potential) truth value of F . You can do this by replacing all occurances of
∀A(..A...) and ∃A(...A...) with ∀Â(...Â...) and ∃Â(...Â...), where Â is some
new variable what does not occur in F . The remaining instances of A are
called free variables . Call F clean if all such replacements have been made.

A set function is a clean formula F , with free variables S, x, y1, ..., yn, z,
such that for each set x, and each choice of sets y1, ..., yn, S, there is a unique
set z such that F is true. One then defines f(x) = z.

Axiom Schema of Replacement: Given any set S and a set formula
f on S as above, there exists a set T such that z ∈ T if and only if z = f(x)
for some x ∈ S.

This is really an infinite list of axioms, because it makes one statement
per formula, and there are infinitely many formulas. The Axiom Schema of
Replacement basically says that you get a new set if you replace each element
of S by its image under f .
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4 Some Consequences

No Self-Membership: The Axiom of Foundation prevents a situation
where a set has itself as a member. Suppose that there is a set S such
that S ∈ S. By the Axiom of Pairing applied to A = B = S, there is a set
{S} whose only member is S. But then the Axiom of Foundation says that
there is a member of {S} which has no members in common with {S}. The
only member to choose from is S, so S has no members in common with
{S}. But if S ∈ S, then S is a member common to both S and {S}. This is
a contradiction.

Set Building: Given a formula F with free variables S, x, y1, ..., yn, we get
a function f from S into {True,False} once y1, ..., yn have been specified as
sets. The Axiom Schema of Comprehension says that there exists a subset
T ⊂ S consisting exactly of those s ∈ S for which f(s) is true. That is,

T = {s ∈ S| f(s) = True}. (1)

This is the usual way that one builds new sets out of old ones.
This axiom schema is a consequence of the Axiom Schema of Replace-

ment and the existence of the emptyset. If there is no s ∈ S for which f(s)
is true, we set T = ∅. Otherwise there is some s ∈ S for which f(s) is true.
In this case we define g : S → S by the rule that g(t) = t if f(t) is true and
g(t) = s if f(t) is false. We can write g as a set-valued function on S and
the set given by the Replacement Axiom is as in Equation 1.

Intersections: Suppose that S is a nonempty set and T ∈ S. Then we
use the language of set theory and the Axiom Schema of Comprehension to
define the intersection of all the members of S which are also members of T .
I’ll denote this as

T⋂
S = {s ∈ T | ∀t ∈ S, s ∈ t}.

We think of T as the “container” for the intersection. For example, if

S = {{1, 2, 3, 4}, {1, 2}, {1, 3}, {1, 4}}, T = {1, 2, 3, 4},

then
T⋂
S = {1}.
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5 The Natural Numbers

In the preceding sections, we have been using the symbols 1, 2, 3, ... informally
to denote sets, and also as part of the language of set theory. We might have
used other symbols like A,B,C, ... for these purposes, but still you might
wonder how the natural numbers are related to the ZF axioms. Here I’ll
sketch how one defines the natural numbers in terms of the axioms.

Let S be the set from the Axiom of Infinity. Let 2S denote the set of
subsets of S. This set is guaranteed by the Existence of Power Sets. Let
Σ ⊂ 2S denote those elements t such that ∅ ∈ t and u ∈ T implies u′ ∈ T .
As above u′ is the successor of u. In other words Σ consists of all the subsets
of S which also satisfy the Axiom of Infinity. The set Σ is guaranteed by the
Axiom Schema of Comprehension. Note that S ∈ Σ. We define

N =
S⋂

Σ. (2)

That is, N is the smallest set satisfying the Axiom of Infinity.
One can prove that N consists precisely of ∅ and the successors of ∅. If

N contains any other element s, one can produce a smaller set satisfying the
Axiom of Infinity by removing s and all its “predecessors”.

Once N is defined, we can give the elements of N their more traditional
names.

• 0 is a name for ∅.

• 1 is a name for (0)′ or {∅}.

• 2 is a name for (1)′, or {∅, {∅}}.

• 3 is a name for (2)′, or {∅, {∅}, {∅, {∅}}}.

and so on. This definition has a special beauty: A natural number is a set,
with fintely members, each of which is a natural number. Given any two
natural numbers, one is a subset of the other. The natural numbers are
literally built out of nothing!

With the above definition of natural numbers, you can define m < n if
m ⊂ n. Also, you can define n + 1 = n′. From there, you can derive all the
usual rules of arithmetic. Then you can define the integers, the rationals, the
reals, complex numbers, matrices, vector spaces, manifolds, etc.
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6 The Axiom of Choice

The Axiom of Choice is another axiom one can introduce for sets. Say that a
partition is a set S whose members are pairwise disjoint. That is, if A,B ∈ S,
then A ∩B = ∅. We insist that the emptyset is not a member of S.

Here is an example. The set

{{1, 2}, {3, 4}}

is a partition but {{1, 2}, {2, 3}} is not. It is worth pointing that the set S
is usually considered to be a partition of the union set US. For instance, the
partition above is a partition of {1, 2, 3, 4}.

Axiom of Choice: If S is a partition, then there exists a set T such that
T has one member in common with each member of S.

For instance, if S is the partition above, we could take T = {1, 3}.
Sometimes, you can get the result of the Axiom of Choice just using the

ZF axioms. For instance, suppose that S is a partition of N the natural
numbers, and each member of S is a finite set of natural numbers. We could
then define T to be the set consisting of least elements of members of S.
That is, a ∈ T if and only if a is the least element of the member of S which
contains a.

You need to invoke the Axiom of Choice when you do not have a clear
selection process like this. For instance, (jumping back to normal mathemat-
ical usage for a minute) say that two real numbers are equivalent if and only
if their difference is a rational number. The set S of equivalence classes gives
a partition of the set R of real numbers, and here you really need the Axiom
of Choice to get the set T .

You might ask: What is the big deal about the Axiom of Choice? Well,
let Br denote the ball of radius r about the origin in R3. Here is a famous
theorem.

Theorem 6.1 (Banach-Tarski) Assume ZF and also that the Axiom of
Choice holds for all partitions of R. Then there are finitely many subsets
S1, ..., Sn ⊂ B1 and rigid motions T1, ..., Tn of space, so that

B2 = T1(S1) ∪ ... ∪ Tn(Sn).

That is, you can cut apart the unit ball into finitely many pieces, and rear-
range the pieces so that they equal the ball of radius 2.
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7 Zorn’s Lemma

The ZF axioms allow one to define the Cartesian product S × S consisting
of ordered pairs (a, b) with a, b ∈ S. A relation on S is a subset R ⊂ S × S.
One often writes aRb if and only if (a, b) ∈ R. The relation R is called a
partial order if

• aRa for all a.

• aRb and bRa imply a = b.

• aRb and bRc implies aRc.

In this situation one typically writes a ≤ b in place of aRb. This is what we
do. We write a < b if and only if a ≤ b and a 6= b. A set with a partial order
on it is often called a POSET .

Two elements a, b ∈ S are called comparable if either a ≤ b or b ≤ a (or
both.) The partial order on a POSET is called total if every two elements
are comparable. Here are some examples of POSETS.

1. The usual ordering on the integers is a total ordering.

2. On the natural numbers N = {1, 2, 3, ...} define a ≤ b if and only if a
divides b. For instance 6 < 12 in this ordering but 6 and 11 are not
comparable.

3. Given any set T , let S be the set of subsets of T . For two subsets
A,B ⊂ T , we write A ≤ B if and only if A ⊂ B. This makes S a
POSET.

Maximal Elements: An element x ∈ S is dominated if there is some y ∈ S
so that x < y. A maximal element of S is an element which is not dominated.
Of the three examples above, only the third one has a maximal element. In
the third example, the maximal element is the set T itself.

Chained Posets: Suppose that S is a POSET. Any subset T ⊂ S inherits a
partial order from S in the obvious way. A chain in S is a nonempty subset
T ⊂ S which is totally ordered. In Example 2 above, the powers of 2 form a
chain. Given any set T ⊂ S, an upper bound for T is some element s ∈ S so
that t ≤ s for all t ∈ T . Note that s need not belong to T . Say that S is a
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chained POSET if every chain of S has an upper bound. Note that a set with
a maximal element is automatically chained, because this maximal element is
an upper bound for every chain. Zorn’s Lemma says that the converse is true.

Zorn’s Lemma: A chained POSET has a maximal element.

We will see at the end of these notes that Zorn’s Lemma is a consequence
of ZF and the Axiom of Choice. However, we’ll need some more machinery
before proving this. The converse direction is much easier, and perhaps that
is what makes Zorn’s Lemma such a nice formulation of the Axiom of Choice.

Zorn Implies Choice: Let’s first use Zorn’s Lemma (and the ZF axioms)
to prove the Axiom of Choice. Let S be a partition. Σ denote the set of all
sets T such that T has at most one member in common with each element of
S. Σ is nonempty because it contains sets of the form {a} where a is some
member of some member of S. By definition. T ∈ Σ.

We put a partial ordering on Σ by inclusion: T1 ≤ T2 if and only if
T1 ⊂ T2. This makes Σ into a POSET.

Lemma 7.1 Σ is chained.

Proof: Suppose that C is some chain. So for every two elements A,B ∈ C
we have either A ⊂ B or B ⊂ A. Let TC denote the union of all the members
of T . We claim that TC ∈ Σ. To see this, suppose that TC ∩ A contains at
least 2 elements a, b, for some s ∈ S. Then there are two elements A,B ∈ C
so that a ∈ A and b ∈ B. Say that A ⊂ B. Then a, b ⊂ B and B ∩ s
contains two elements. This contradicts B ∈ Σ. This contradiction shows
that TC ∈ Σ. But then TC is an upper bound for C. Hence Σ is a chained
POSET. ♠

By Zorn’s Lemma, Σ has some maximal element T . We claim that T has
one member in common with each member of S. If this is false, then there
is some member A ∈ S which is disjoint from T . But then T ∪ {a} is also a
member of Σ and is larger than T . This is a contradiction. Hence T has one
element in common with each member of S.
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8 Common Applications

Here are some common applications of Zorn’s Lemma.

Theorem 8.1 Suppose that S and T are two sets. Then either there is an
injective map from S into T or an injective map from T into S.

Proof: Let Σ denote the set of injective maps f : A → T where A ⊂ S.
We make Σ into a POSET by saying that (f, A) ≤ (g,B) if A ⊂ B and the
restriction of g to A equals f . An argument very much like the one given in
Lemma 7.1 shows that Σ is chained. By Zorn’s Lemma, Σ has a maximal
element (f, A). If A 6= S then there are two cases to consider.

• If f(A) = T then the inverse map f−1 : T → A gives an injective map
from T into S.

• If f(A) 6= T there is some t ∈ T −F (A). But then we can choose some
s ∈ S − A and extend f by defining f(s) = t. This gives a new pair
(g, A ∪ {s}) ∈ Σ, contradicting the maximality of (f, A).

So, either A = S and f : S → T is an injective map or else f(A) = T and
f−1 : T → S is an injective map. ♠

The next result assumes some basic knowledge of linear algebra.

Theorem 8.2 Every vector space has a basis.

Proof: Let Σ denote the set of linearly independent subsets of V . The el-
ements of Σ are ordered by inclusion. {v1, ..., vn} ⊂ {v1, ..., vn, w1, ..., wm}.
An argument similar to Lemma 7.1 shows that Σ is a chained POSET. Hence
Σ has a maximal element β. If β is not a basis for Σ, then there is some
v ∈ V − span(β). But then β ∪ {v} is an element of Σ which is larger than
β. This is a contradiction. Hence β is a basis for V . ♠

Theorem 8.2 is a prototype of many similar kinds of results. For instance,
Zorn’s Lemma also implies that every field has an algebraic closure and every
ring-with-1 has a maximal ideal. In practice, if you don’t want to use Zorn’s
Lemma, you can usually work with subspaces (or subrings or subfields) on
which the existence of the desired object does not require it.
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9 Well Ordering

Let S be a totally ordered set. We say that the ordering on S is a well
ordering if every nonempty subset T ⊂ S has a least element. That is, there
is some t ∈ T so that t ≤ u for all u ∈ T . The prototypical example is N ,
with the usual ordering, but I’ll give many other examples below.

Well Ordering Principle: Every set has a well ordering.

Zorn Implies Well Ordering: Let Σ denote the set of pairs (T,≤), where
T ⊂ S and ≤ is a well ordering on T . Note that Σ is nonempty because we
can just take T to be a single element of S with the only possible ordering.
We make Σ into a POSET by writing A ≤ B if A ⊂ B and the ordering on B
is compatible with the ordering on A, and a < b for all a ∈ A and b ∈ B−A.

Lemma 9.1 Σ is chained.

Proof: Let C be a chain of Σ. Let TC be the union of all the members of
C. Given a, b ∈ C there are sets A,B ∈ C so that a ∈ A and b ∈ B. Say
that A ⊂ B. Then a, b ∈ B. We use the ordering on B to compare a and b.
This definition is independent of all choices. Thus TC has a total ordering.
By construction, the ordering on TC extends the ordering on each member
of C.

To show that TC ⊂ Σ, we just have to show that our ordering on TC is a
well ordering. Let τ ⊂ TC be any nonempty subset. There is some A ∈ C so
that τ ∩ A is nonempty. Since A is well ordered, there is a least element a
of τ ∩ A. Suppose a is not a least element of τ . Then b < a for some b ∈ τ .
Note that b cannot belong to A, by definition of a. But then there exists
B ∈ C such that b ∈ B − A. But then a < b, by definition of our ordering
on Σ. This contradiction shows that a is a least element for τ . Hence TC is
well ordered. Hence TC ⊂ Σ. Hence Σ is chained. ♠

By Zorn’s Lemma, Σ has some maximal element T , which is well ordered.
If T is a proper subset of S, then there is some a ∈ S − T and we can well
order T ∪{a} by using the ordering already on T and declaring that t < afor
all t ∈ T . But then T ∪ {a} ⊂ Σ and T ≤ T ∪ {a}. This contradicts the
maximality of T . Hence T = S. Hence S has a well ordering.
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Well Ordering Implies Choice: Suppose that S is a partition. We can
put a well ordering on each member of S. We then define T so that t ∈ T if
and only if t is the least element of some member of S. The set T then has
one member in common with each member of S.

Transfinite Recursion: Suppose that S and T are nonempty sets with
S being well ordered. Let s0 be the least element of S and let t0 be some
element T . Let 2T be the set of subsets of T . Suppose that g : 2T → T is a
function. One version of the Principle of Transfinite Recursion asserts that
there exists a unique function f : S → T so that f(s0) = t0 and

f(a) = g(f({b|b < a})), ∀a ∈ S. (3)

First, let’s parse this sentence. The set {b|b < a} is the set of elements b ∈ S
with b < a. The set f({b|b < a}) is a subset of T and hence a member of 2T ,
so we may apply g to it and this gives us a specific element of T which we
declare to be the value of f(a).

To establish the Transfinite Recursion Principle, we call an element c ∈ S
good if there exists a function fc : Sc → T satisfying the above relations on
the set

Sc = {d ∈ S : d ≤ c}.

We call c excellent if such a function is unique. Suppose c is good, and fc,1
and fc,2 are two such functions. If these functions do not agree, then there
is some smallest a ∈ Sc on which they disagree. But then Equation 3 says
that they also agree at a. This is a contradiction. So, if c is good, then c is
excellent.

Suppose all c ∈ S are good. Then all c ∈ S are excellent. We define
f(c) = fd(c), where d ∈ S is any element such that c ≤ d. This well defined
because the restrictions of fd1 and dd2 to Sc agree. But then our function f
has the desired properties.

Alternatively, suppose that some c ∈ S is not good. Then there is some
smallest bad element, a. But then we can use Equation 3 to extend our
function to a. This is a contradiction. Hence, all c ∈ S are good, and we
have our map.

In short, once we have a well ordering on S, we can also use transfinite
recursion.
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Well Ordering Implies Zorn: Let S be a chained POSET. We’re go-
ing to assume that S can be well ordered, and we will deduce that S has a
maximal element. Since the Well Ordering Principle implies the Axiom of
Choice, we can also use the Axiom of Choice.

Lemma 9.2 If S does not have a maximal element, then there exists a func-
tion h : S → S such that h(x) > x for all x ∈ S.

Proof: Let a ∈ S. Since S has no maximal element, the element a is not
a maximal element. This means that there exists an element b such that
a < b. We can simply define h(a) = b. That is the end of the proof, but
let’s reveal the argument more directly to be an application of the Axiom of
Choice. Consider the subset of P ⊂ S × S consisting of pairs (a, b) where
a < b. We get a partition of P into members, each of the form {a} × S. By
the Axiom of choice, we can choose one element from each member of this
partition, and this defines the function h. ♠

Now we well order S, and call this well ordering ≺. Let s0 denote the
least element of S in the well ordering. We define g : 2S → S as follows.

• If C ∈ 2S is a chain, we let g(C) = h(b) where b is an upper bound
relative to the POSET order. So c < f(C) for all c ∈ C.

• If C ∈ 2S is not a chain we define g(C) = s0. In fact, we never will
consider non-chains in our application of transfinite recursion below.

By transfinite recursion, there is a unique function f : S → S so that
f(s0) = s0 and f(b) = g(f({b ≺ a})). We claim that

b ≺ a =⇒ f(b) < f(a).

Say that a ∈ S is bad if this implication fails for some b ≺ a. Suppose that
some elements are bad. Let a be the least bad element in the well ordering.
By definition C = f({b|b ≺ a}) is a chain in S. Hence f(a) = g(C) is larger
than all c ∈ C. This is a contradiction. Hence, there are no bad elements of
S. This proves the claim. The same argument shows that a ≤ f(a) for all
a ∈ S.

Since f(S) is a chain, there is some upper bound b such that f(a) ≤ b
for all a ∈ S. But then a ≤ f(a) ≤ b for all a ∈ S. Hence b is a maximal
element. This establishes Zorn’s Lemma.
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10 Comparing Well Ordered Sets

Two well ordered sets are equivalent if there is a bijection between them
which respects the orders. Given a well ordered set S, a subset T ⊂ S is
initial if a < b for all a ∈ S and b ∈ T − S. Note that S is an initial subset
of itself.

Lemma 10.1 Suppose that S and T are well ordered sets. Then either S is
equivalent to an initial subset of T or T is equivalent to an initial subset of
S,

Proof: It suffices to consider the case when both sets are nonempty. Let s0
and t0 be the least elements of S and T respectively. Let ξ be some element
not in T and consider the new set U = T ∪ ξ. We well order T ∗ by making
ξ greater than all other element of T . We define a function g : 2T

∗ → T ∗ as
follows:

• If C is a proper subset of T then g(C) is the least element of T − C.

• If C = T then g(T ) = ξ.

• If ξ ∈ C then g(C) = ξ.

By transfinite recursion, there is a function f : S → T ∗ which satisfies Equa-
tion 3. By construction f maps initial subsets of S to initial subsets of T ∗. If
ξ 6∈ f(S) then either f(S) = T or f(S) is an initial subset of T . In this case,
f gives an equivalence between S and an initial subset of T . If ξ ∈ f(S),
there is some least element a ∈ S so that f(a) = ξ. But then f gives equiv-
alence between the initial subset {b|b < a} ⊂ S and T . ♠

Lemma 10.2 It is impossible for a well ordered set to be equivalent to a
proper initial subset.

Proof: Suppose that S is equivalent to a proper subset T ⊂ S. Note that
T = {b|b < a} for some a ∈ S. Call the element a ∈ S bad if {b|b < a}
is isomorphic to S. Let a be the least bad element and let T = {b|b < a}.
f : T → S be the order isomorphism. Note that f−1(T ) is equivalent to T
which is equivalent to S. But then f−1(a) is bad and f−1(a) < a. This is a
contradiction. ♠
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11 Von Neumann Ordinals

A set S is a Von Neumann Ordinal if

1. The inclusion ordering on the elements of S is a well ordering.

2. Every member of S is an initial subset of S.

3. Every initial subset of S is a member of S.

The first condition requires some explanation. Any two elements s, t ∈ S are
sets in themselves, and we write s ≤ t if and only if s ⊂ t. We are saying
that this ordering is a well ordering of S.

Every natural number is a Von Neumann ordinal. Below we will show
that there are many more Von Neumann ordinals. First we prove some
preliminary results.

Lemma 11.1 Two equivalent Von Neumann Ordinals are identical.

Proof: Let S and T be VNOs. Let f : S → T be the isomorphism con-
structed in the proof of Lemma 10.1. Note that ∅, the empty set, must be
the least element of both S and T , and f(∅) = ∅. Let a ∈ S be the smallest
element such that f(a) 6= a. The set {b|b < a} contains all proper initial
subsets of a (considered as a well ordered set) and so {b|b < a} is just a.
Since f(b) = b for all b < a, we have f({b|b < a}) = {b|b < a}. But then
f(a) = g({b|b < a}) = a. This is a contradiction. ♠

Lemma 11.2 If S and T are Von Neumann ordinals, then either S ⊂ T or
T ⊂ S.

Proof: An immediate consequence of the definition is that every member of
a VNO is another VNO. Since S and T are both well ordered, we can swap
these sets if necessary to guarantee that S is isomorphic to some initial subset
of T . An initial subset of T is also a VNO. So, without loss of generality, it
suffices to consider the case when S and T are equivalent. We have already
treated this case. ♠

Now we can make a statement about well ordered sets which perhaps are
not VNOs.
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Lemma 11.3 Any well ordered set is equivalent to a Von Neumann ordinal.

Proof: Let S be a well ordered set. Suppose that this lemma is false. Then,
for each Von Neumann ordinal T , there is some proper initial subset ST which
is equivalent to T . The set ST has the form {b|b < a} for some a ∈ S. The
choice of a is unique, by Lemma 10.2.

There are two cases to consider. Either there is some a ∈ S such that
a 6∈ ST for any such T or else there is not. In the former case, we can replace
S by the set {b|b < a}. That is, it suffices to consider the case when every
a ∈ S corresponds to some VNO.

So we have a set valued function f(a) is the VNO such that {b|b < a} is
equivlent to f(a). The Axiom of Replacement now allows us to construct a
set Ŝ whose members are precisely the Von Neumann Ordinals. Essentially,
we are replacing each a ∈ S by f(a).

The contradiction is the the collection of all VNOs is a class, not a set.
The way to see the problem is that Ŝ satisfies all the properties needed to
be a VNO. So Ŝ is also a VNO. But then Ŝ is a member of itself. This
contradicts the Axiom of Foundation. ♠

One definition of an ordinal number is that it is an equivalence class of
well ordered sets. This definition is somewhat problematic because ZF does
not all one to take “collections of all sets” in an unrestricted manner. A
better definition is that an ordinal number is a Von Neumann Ordinal, and
then one could say that a well ordered set represents the VNO to which it
is equivalent. It is sometimes nice to work with well ordered sets other than
VNOs because sometimes they are easier to specify.

N with its usual ordering represents a VNO. However, there are many
other well orderings of a countable set. For instance N is bijective with
N × {1, 2}, and we define a well ordering on N × {1, 2} with the rules

• (m, 1) ≤ (j, 2) for all n,m.

• (m, j) ≤ (n, j) if and only if m ≤ n.

This new well ordering is not equivalent to the first one, and thus represents
a different (larger) ordinal.

Indeed, the set of countable ordinals is uncountable; otherwise we could
get the same contradiction as in Lemma 11.3. The set of countable ordinals
is a beautiful thing. It is, itself, a well ordered set, and it represents the least
uncountable ordinal.
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12 Choice implies Zorn

Finally, we deduce Zorn’s Lemma from the Axiom of Choice. Let S be a
chained POSET. Suppose for the sake of contradiction that S does not have
a maximal element. Lemma 9.2, which only uses the Axiom of Choice, gives
us a function h : S → S such that a < h(a) for all a ∈ S.

Let α be some Von Neumann Ordinal. Note that α is well ordered. The
same argument as in “Well Ordering implies Zorn”, namely a transfinite
recursion argument based on the function h, gives us a function fα : α → S
with the property that a < b ∈ α implies that fα(a) < fα(b) ∈ S. The
function is unique in the following sense. If α, β, γ are VNOs with α < β and
α < γ then fβ(α) = fγ(α). For this reason, we can simply write f(α) = fβ(α)
where β is any VNO with α < β.

Let T ⊂ S denote those elements s such that s = f(α) for some ordinal
α. Given that α < β implies that f(α) < f(β), there is at most one VNO
α such that f(α) = a. This means that we have set valued function f−1

defined on T , so that f−1(T ) is a VNO, and every VNO arises in this way.
But now we have the same contradiction as in the proof of Lemma 11.3. The
only way out of the contradiction is that S has a maximal element.

13 Ultrafilters

Basic Definition: An ultrafilter on a set S is a map F : S → {0, 1} with
the following properties:

1. F (∅) = 0 and F (S) = 1.

2. If A ⊂ B ⊂ S and F (B) = 0 then F (A) = 0.

3. If A = B1∪B2 and B1∩B2 = ∅ and F (A) = 1, then F (B1)+F (B2) = 1.

Call these properties U1,U2,U3. Intuitively, a “ghost” is hiding somewhere
in the set S and the ultrafilter tells you whether or not that ghost is hiding
inside one of the sets. If F (A) = 1, then the ghost is hiding inside A.

An ultrafilter F is called principle if there is some s ∈ S so that F (A) = 1
if and only if s ∈ A. If F is not a principle ultrafilter, then F is a called a
nonpriciple ultrafilter . When F is a nonprinciple ultrafilter, there is no set
A ⊂ S such that F (B) = 1 if and only if A ⊂ B. This situation is ruled out
by the third condition above.
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Reformulation: Let 2S be the set of subsets of S. Given an ultrafilter
F one can define a subset F̂ ⊂ 2S by the rule that A ∈ F̂ if and only if
F (A) = 1. The set F̂ has the following properties.

1. ∅ 6∈ F̂ and S ∈ F̂ .

2. If A ∈ F̂ and A ⊂ B then B ∈ F̂ .

3. If A,B ∈ F̂ then A ∩B ∈ F̂ .

4. For any A ⊂ S, exactly one of the two sets A and S −A belongs to F̂ .

Call the properties above P1,P2,P3,P4. Properties P1 and P2 follow im-
mediately from Conditions U1 and U2. Property P4 follows Condition U3,
applied to the triple (S,A, S − A). Here is a proof of P3: If A,B ∈ F̂ then
F (A) = F (B) = 1. Suppose F (A∩B) = 0. Since A−B and A∩B partition
A, we must have f(A−B) = 1. Likewise f(B−A) = 1. But then consider the
set C = (A−B)∪(B−A). We have f(C) = 1 but F (A−B)+F (B−A) = 2,
which violates U3.

Conversely, given F̂ which satisfies P1-P4 above. We define a function
F : S → {0, 1} by the rule that F (A) = 1 if and only if A ∈ F̂ .

Lemma 13.1 The function F is an ultrafilter.

Proof: Conditions U1 and U2 are immediate from Properties P1 and P2.
Finally, let’s verify U3. Suppose A = B1 ∪B2 and B1 ∪B2 = ∅ and F (A) =
1. Suppose F (B1) + F (B2) = 2. Then B1, B2 ∈ F̂ , which means that
∅ = B1 ∩B2 ∈ F̂ . This is a contradiction.

Suppose that F (B1) + F (B2) = 0. For any set X let Xc = S −X. Since
Bj 6∈ F̂ we have Bc

j ∈ F̂ for j = 1, 2, by P3. But then

Ac = (B1 ∪B2)
c = Bc

1 ∩Bc
2 ∈ F̂

by P4. But then both A and Ac belong to F̂ , which contradicts P3. The
only option left is that F (B1) + F (B2) = 1, as desired. ♠

So, function on S satisfying U1,U2,U3 is equivalent to a subset of 2S

satisfying P1,P2,P3,P4. This turns out to be a useful reformulation.
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Filters: A filter is a subset F ⊂ 2S satisfying P1, P2, P3, but not necessarily
P4. (For ease of notation we use F in place of F̂ .) F is called maximal if
there is no other filter G such that F ⊂ G and F 6= G.

Lemma 13.2 A maximal filter is an ultrafilter.

Proof: Let F be a maximal filter. If F is not ultrafilter than there is some
D ⊂ S so that neither D nor Dc belongs to F . In this case we augment F
by adding in all sets T such that D ∩ A ⊂ T and A ∈ F . Call the resulting
subset G. Since we never add in the emptyset G satisfies P1.

To show that G satisfies P2, suppose that T ∈ G and T ⊂ U . If T ∈ F
then we have U ∈ F ⊂ G. If T ⊃ A ∩D for some A ∈ F , then U ⊃ A ∩D
as well, and U ∈ G. Hence G satisfies P2.

Now we show that G satisfies P3. Let T, U ∈ G. If T, U ∈ F , than the
T ∩ U ∈ F because F is a filter. There are two remaining cases.

1. If T ∈ F and A ∩D ⊂ U for some A ∈ F , then T ∩ U = (A ∩ T ) ∩D.
Since A, T ∈ F , we have A ∩ T ∈ F . Hence T ∩ U ∈ G.

2. Suppose A1 ∩D ⊂ T and A2 ∩D ⊂ U for some A1, A2 ∈ F . Then

(A1 ∩ A2) ∩D ⊂ T ∩ U.
Since A1 ∩ A2 ∈ F we have T ∩ U ∈ G by definition.

Hence G is a filter which properly contains F . This is a contradiction. ♠

Theorem 13.3 Let S be any set and let F̂ be a filter on S. Then there exists
an ultrafilter µ̂ such that F̂ ⊂ µ̂.

Proof: Let Σ denote the set of filters which contain F̂ . We order the ele-
ments of Σ by inclusion. Given any chain in Σ, we simply take the union of
all the filters in the chain. This is again a filter containing F̂ . Hence Σ is a
chained POSET. By Zorn’s Lemma, Σ has a maximal element. By Lemma
13.2, a maximal element of Σ is an ultrafilter. ♠

Corollary 13.4 An infinite set S has a nonprinciple ultrafilter.

Proof: Let F̂ denote the filter which contains precisely the sets whose com-
plements are finite. F̂ is easily checked to be a filter. Now apply the theorem.
♠
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14 Ultralimits

Now I’ll give an example of what a nonprinciple ultrafilter can do for you.
Let X be a compact metric space. We call an ultrafilter µ on X focused if
there is some x ∈ X such that µ(U) = 1 for every open set U ⊂ X which
contains x. We call x the focal point of µ.

Lemma 14.1 Let X be a compact metric space. Any ultrafilter on X is
focused, and the focal point is unique.

Proof: Let F be the ultrafilter. For any n, we can partition X into finitely
sets which have diameter at most 1/n. Exactly one of the sets, say Sn, is
such that F (Sn) = 1. For different indices m and n, the two sets Sn and Sm
cannot be disjoint. Therefore, there is a unique point x ∈ X, such that every
neighborhood of x contains infinitely many of the sets Sn. In particular,
µ(U) = 1 for every open neighborhood U of x. This shows that x is a focal
point of µ.

Suppose that y is a different focal point. Then we can find disjoint open
sets Ux and Uy such that x ∈ Ux and y ∈ Uy, and µ(Ux) = µ(Uy) = 1. This
contradicts the definition of an ultrafilter. ♠

Suppose now that µ is an ultrafilter on N and f : N → X is any map.
That is, f defines a sequence in X. We define the push-forward ultrafilter
f∗µ on X as follows:

f∗µ(S) = µ(f−1(S)), ∀S ⊂ X. (4)

This defines an ultrafilter on X. The ultrafilter f∗µ is focused at some point
x ∈ X, and we write x = limµ(f). We call this point the ultralimit of f . In
this way, an ultrafilter picks out a limit to any sequence in a compact metric
space.

When µ is a principle ultrafilter, the ultralimit is kind of silly. Say µ = 10.
In this case, the ultralimit of f is just f(10). When µ is a non-principle
ultrafilter, the limit is much nicer.

Lemma 14.2 Suppose f : N → X is a convergent sequence. Then

lim
n→∞

f(n) = lim
µ
f

for any non-principle ultrafilter µ.
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Proof: Let x = limn→∞ f(n). Let U be any open set containing x. The set
f−1(U) is cofinite. Hence µ assigns 1 to this set. This shows that f∗µ focuses
at x. ♠

We can apply this to the case of ordinary bounded sequences. In this
case, we take X = [−N,N ], where N is chosen large enough so that it X
contains all the sequences of interest to us. In this case, the ultralimit obeys
all the usual limit laws:

lim
F

(an ∗ bn) = lim
F
an ∗ lim

F
bn, ∗ ∈ {+,−,×,÷}.

In the last case we require (as usual) that limF bn is nonzero.
On the other hand, there is something a bit crazy about the ultralimit,

because it picks out a limit for the sequence 0, 1, 0, 1, 0, 1, .... Also, for general
sequences, {an} the ultralimit is not “shift invariant”. If {bn} is the sequence
with bn = an+1, then limF bn need not equal limF an.

15 The Space of Ultrafilters

Now I’m going to explain what is often called the Stone-Cech compactification
of the natural numbers. Let N denote the set of natural numbers, as usual.
The set N is equipped with the discrete topology: every subset of N is open.

Let βN denote the set of ultrafilters on N . The set βN has a topology,
which we’ll now describe. We first define some distinguished subsets of βN .
For any subset S ⊂N , we define US to be the set of ultrafilters F such that
F (S) = 1.

Lemma 15.1 The sets US form a basis for a topology.

Proof: We need to check two properties. First, we need to check that βN
is covered by these sets. Each F ∈ βN is contained in some US, because we
just take S to be any set where F (S) = 1. This takes care of the covering
property.

Now we need to check the following: For any F ∈ US ∩ UT , there is
some UR ⊂ US ∩ UT such that F ∈ UR. For this, we note that F (S) = 1
and F (T ) = 1, so that F (S∩T ) = 1. We take R = S∩T , and we are done. ♠
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A set X ⊂ βN is declared to be open if and only if, for each x ∈ X,
there is some UF such that x ∈ UF ⊂ X. Given that our sets form a basis,
this definition gives us a topology on βN .

Lemma 15.2 βN is compact.

Proof: We want to prove that any covering of βN has a finite subcovering.
Suppose that we have a covering of βN which has no finite subcovering. Let
F̂ denote the set of subsets S ⊂N such that USc has a finite covering. Here
Sc = N − S.

We claim that F̂ is a filter. First, ∅ 6∈ F̂ by assumption and obviously
N ∈ F̂ . Next, if A ∈ F̂ and A ⊂ B, then UAc has a finite cover. Since
Bc ⊂ Ac, we see that UBc has a finite cover. Hence B ∈ F̂ . Finally, suppose
that S, T ∈ F̂ . Then USc and UT c have finite covers. But USc∪T c ⊂ USc∪UT c ,
so USc∪T c has a finite cover. Since Sc ∪ T c = (S ∩ T )c, we get S ∩ T ∈ F̂ .
This proves the claim.

By Theorem 13.3, there is some ultrafilter µ̂ which contains F̂ . We claim
that if S ∈ µ̂ then US does not have a finite cover. To see this, note that
Sc 6∈ µ̂. Hence Sc 6∈ F̂ . Hence US has no finite subcover. This proves the
claim. Now we think of µ̂ as a point in βN , and we call this point µ. Since
we have a covering, we have µ ∈ V for some element V of our covering.
Hence, there is some set S such that µ ∈ US ⊂ V . But then S ∈ µ̂. But then
US has no finite cover. This contradicts the fact that US ⊂ V . ♠

Lemma 15.3 βN is Hausdorff and totally disconnected.

Proof: Choose two ultrafilters µ1 and µ2. Since these ultrafilters do not
coincide, there is some set S such that µ1(S) = 0 and µ2(S) = 1. But then
µ1(S

c) = 1. Hence µ1 ⊂ USc and µ2 ⊂ US. We have placed our two points
in disjoint open sets. Therefore, points in βN may be separated by open
sets. Since βN is compact, this means that disjoint closed sets can also be
separated by open sets.

Notice that, during the course of our proof, we showed that any two dis-
tinct points of βN can be placed in disjoint open sets whose union of βN .
This proves that βN is totally disconnected. ♠

We think of N as a subset of βN : The number n is identified with the
principle ultrafilter associated with n.
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Lemma 15.4 N is a dense subset of βN and the subset topology on N is
just the discrete topology.

Proof: Let F be any ultrafilter. We just need to show that every basis
neighborhood of F contains a principle ultrafilter. Let US be such a neigh-
borhood. We simply choose some n ∈ S and then the principle ultrafilter
associated to n is contained in US.

By construction, the set U{n} just consists of the single ultrafilter associ-
ated to n. Thus, these principle ultrafilters are open sets in the topology on
βN . ♠

Lemma 15.5 Let Y be a compact metric space and let f : N → Y be any
map. Then f extends uniquely to a continuous map from βN to Y .

Proof: Let µ be any ultrafilter. We simply define βf(µ) = limµ f , the ul-
tralimit of the map. To see that this is continuous, let U ⊂ Y be open and
consider the set βf−1(U). Choose any ultrafilter µ in this set. So, βf(µ) ∈ U .
But then there is some subset S ⊂N such that µ(S) = 1 and f(S) ⊂ U . By
construction US ⊂ βf−1(U). ♠
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