# Existence of Bends on Paper Moebius Bands 

Rich Schwartz

December 29, 2023

Let $M$ be the flat Moebius band

$$
\begin{equation*}
M=[0, a] \times[0, b] / \sim, \quad(t, 0) \sim(a-t, b) . \tag{1}
\end{equation*}
$$

We are taking a rectangle and identifying opposite sides by the usual orientation reversing map. We suppress $a, b$ from the notation. A paper Moebius band is a smooth isometric embedding $I: M \rightarrow \boldsymbol{R}^{3}$. That is, $I$ is infinitely differentiable and the differential $d I$ is an isometry. Let $\Omega=I(M)$.

A bend on $\Omega$ is a line segment that lies in the interior of $\Omega$ except for its endpoints, which lie in the boundary. The purpose of these notes, which I also include as an appendix in the latest version of [ $\mathbf{S}$ ] is to give an elementary and self-contained proof of the following classical result.

Theorem 0.1 There is a continuous partition of $\Omega$ into bends.
Let $\Omega^{o}$ be the interior of $\Omega$. Let $S^{2}$ be the unit 2-sphere. The Gauss map, which is well defined and smooth on any simply-connected subset $\Omega^{\circ}$, associates to each point $p \in \Omega^{o}$ a unit normal vector $n_{p} \in S^{2}$. Let $d n_{p}$ be the differential of the Gauss map at $p$. Since the curvature $\Omega^{o}$ is 0 everywhere, $d n_{p}$ has a nontrivial kernel. The point $p$ has nonzero mean curvature if and only if $d n_{p}$ has nontrivial image. Let $U \subset \Omega^{o}$ denote the subset having nonzero mean curvature. Theorem 0.1 is a quick consequence of the following result in differential geometry.

Lemma 0.2 Each $p \in U$ lies in a unique bend $\gamma$. Furthermore, the interior of $\gamma$ lies in $U$.

On the bottom of p. 46 of [HW], Halpern and Weaver say that the result of Lemma 0.2 is well known. They cite the references $[\mathbf{C L}],[\mathbf{H N}]$, and $[\mathbf{S t}]$. More precisely, Lemma 0.2 is a special case of the two essentially identical results, [CL, p. 314, Lemma 2] and [HN, §3, Lemma 2]. These results and proofs are done in a general multi-dimensional setting. Below I give an elementary and geometric proof tailored to the 2-dimensional case.

It follows immediately from Lemma 0.2 that $U$ has a continuous partition into bends. The uniqueness implies the continuity. Let $\tau$ be a component of $\Omega-U$. If $\tau$ has empty interior then $\tau$ is a line segment, the limit of a sequence of bends. In this case $\tau$ is also a bend. Suppose $\tau$ has non-empty interior. The Gauss map is constant on $\tau$ and hence $\tau$ lies in a single plane. Two sides of $\tau$, opposite sides, lie in $\partial \Omega$ and are straight line segments. The other two sides of $\tau$, the other opposite sides, are bends. Thus $\tau$ is a planar trapezoid. But then we can extend our bend partition across $\tau$ by simply choosing any continuous family of segments on $\tau$ that interpolates between the two bends in its boundary. Doing this construction on all such components, we get our continuous partition of $\Omega$ into bends.

Now we turn to the proof of Lemma 0.2. Let $U \subset \Omega^{\circ}$ as above. Let $p \rightarrow n_{p}$ be a local choice of the Gauss map. We can rotate and translate so that near the origin $U$ is the graph of a function

$$
\begin{equation*}
F(x, y)=C y^{2}+\text { higher order terms } . \tag{2}
\end{equation*}
$$

Here $C>0$ is some constant. The normal vector at the origin is $n_{0}=(0,0,1)$. The vector $v_{0}=(1,0,0)$ lies in the kernel of $d n_{0}$. Let $w_{0}=v_{0} \times n_{0}=(0,1,0)$. Let $\Pi_{0}$ be the plane spanned by $w_{0}$ and $n_{0}$. The image of $\Pi_{0} \cap U$ under the Gauss map is (near $n_{0}$ ) a smooth regular curve tangent to $w_{0}$ at $n_{0}$.

Working locally, we have three smooth vectorfields:

$$
\begin{equation*}
v \rightarrow n_{p}, \quad p \rightarrow v_{p}, \quad v \rightarrow w_{p}=v_{p} \times n_{p} \tag{3}
\end{equation*}
$$

Here $v_{p}$ is the kernel of $d n_{p}$ and $\times$ denote the cross product. Let $\Pi_{p}$ be the plane through $p$ and spanned by $w_{p}$ and $n_{p}$. From our analysis of the special case, and from symmetry, the image of $\Pi_{p} \cap U$ under the Gauss map is (near $n_{p}$ ) a smooth regular curve tangent to $w_{p}$ at $n_{p}$. The asymptotic curves are the smooth curves everywhere tangent to the $v$ vector field.

Lemma 0.3 The asymptotic curves are line segments.

Proof: Let $\gamma$ be an asymptotic curve. By construction, the Gauss map is constant along $\gamma$. About each point in $\gamma$ there is a small neighborhood $V$ which is partitioned into asymptotic curves that transversely intersect each plane $\Pi_{p}$ when $p \in \gamma \cap V$. Hence the image of $V$ under the Gauss map equals the image of $\Pi_{p} \cap V$ under the Gauss map. This latter image is a smooth regular curve tangent to $w_{p}$ at $n_{p}$. Since this is true for all $p \in \gamma \cap V$ and since $n_{p}$ is constant along $\gamma$ we see that $w_{p}$ is constant along $\gamma$. Hence $v_{p}$ is constant along $\gamma$. Hence $\gamma$ is a line segment.

The nonzero mean curvature implies that $\gamma$ is the unique line segment through any of its interior points. We just have to rule out the possibility that $\gamma$ reaches $\partial U$ before it reaches $\partial \Omega$. Assume for the sake of contradiction that this happens. We normalize as in Equation 2.

We now allow ourselves the liberty of dilating our surface. This dilation preserves all the properties we have discussed above. By focusing on a point of $\gamma$ sufficiently close to $\partial U$ and dilating, we arrange the following:

- A neighborhood $\mathcal{V}$ of $\Omega^{o}$ is the graph of a function over the disk of radius 3 centered at the origin.
- Given $p \in \mathcal{V}$ let $p^{\prime}$ be the projection of $p$ to the $X Y$-plane. We have $\left|p_{1}^{\prime}-p_{2}^{\prime}\right|>(2 / 3)\left|p_{1}-p_{2}\right|$ for all $p_{1}, p_{2} \in \mathcal{V}$.
- $\gamma \subset U$ contains the arc connecting $(0,0,0)$ to $(3,0,0)$, but $(0,0,0) \notin U$.

Let $a \in(0,3)$. At $(a, 0,0)$ we have $v_{a}=(1,0,0)$ and $w_{a}=(0,1,0)$ and $n_{a}=(0,0,1)$. Let $\Pi_{a}$ be the plane $\{X=a\}$. Near $(a, 0,0)$, the intersection $U_{a}=U \cap \Pi_{a}$ is a smooth curve tangent to $w_{a}$ at $(a, 0,0)$.

Let $\zeta=(1,0,0)$. Fix $\delta>0$. By continuity and compactness, the asymptotic curves through points of $U_{1}$ sufficiently near $\zeta$ contain line segments connecting points on $U_{2}$ to points on $U_{\delta}$. Call these connectors. There exists a canonical map $\Phi_{\delta}: U_{1} \rightarrow U_{\delta}$ defined in a neighborhood of $\zeta$ : The points $q \in U_{1}$ and $\Phi_{\delta}(q) \in U_{\delta}$ lie in the same connector.

Lemma $0.4 \Phi_{\delta}$ expands distances by less than a factor of 3 .
Proof: Let $\ell_{1}$ and $\ell_{2}$ be two connectors. Let $a_{j}=\ell_{j} \cap U_{1}$. Let $b_{j}=\ell_{j} \cap U_{\delta}$. For any set $S$ let $S^{\prime}$ be the projection of $S$ to $\boldsymbol{R}^{2}$. We have the bounds

$$
\frac{\left|a_{1}^{\prime}-a_{2}^{\prime}\right|}{\left|a_{1}-a_{2}\right|}, \frac{\left|b_{1}^{\prime}-b_{2}^{\prime}\right|}{\left|b_{1}-b_{2}\right|} \in\left[\frac{2}{3}, 1\right], \quad \frac{\left|a_{j}^{\prime}-b_{j}^{\prime}\right|}{\operatorname{length}\left(\ell_{j}^{\prime}\right)}<2 .
$$

Geometrically, $a_{j}^{\prime}$ is very nearly the midpoint of $\ell_{j}^{\prime}$ and $b_{j}^{\prime}$ is the closer of the two endpoints. Since $\ell_{1}^{\prime}$ and $\ell_{2}^{\prime}$ are planar and disjoint, our last inequality (and essentially a similar-triangles argument) gives $\left|b_{1}^{\prime}-b_{2}^{\prime}\right| /\left|a_{1}^{\prime}-a_{2}^{\prime}\right|<2$. Putting everything together, we have $\left|b_{1}-b_{2}\right| /\left|a_{1}-a_{2}\right|<3$.

Fix $\epsilon>0$. The mean curvature along $U_{\delta}$ tends to 0 as $\delta \rightarrow 0$. If we choose $\delta$ sufficiently small then the Gauss map expands distances along $U_{\delta}$ in a neighborhood of $(\delta, 0,0)$ by a factor of less than $\epsilon$. Combining Lemma 0.4 and the fact that $n_{q}=n_{\Phi_{\delta}(q)}$, we see that the Gauss map expands distances by at most a factor of $3 \epsilon$ along $U_{1}$ in a small neighborhood of $\zeta$. Since $\epsilon$ is arbitrary, $w_{1} \in \operatorname{ker}\left(d n_{\zeta}\right)$. But $v_{1} \in \operatorname{ker}\left(d n_{\zeta}\right)$ by definition. Hence $d n_{\zeta}$ is the trivial map. The contradicts the fact that $\zeta \in U$.

This completes the proof of Lemma 0.2.

## References:

[CL], S.-S. Chern and R. K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957) pp 306-318
[HL], P. Hartman and L. Nirenberg, On spherical maps whose Jacobians do not change sign, Amer. J. Math. 81 (1959) pp 901-920
[HW], B. Halpern and C. Weaver, Inverting a cylinder through isometric immersions and embeddings, Trans. Am. Math. Soc 230, pp 41-70 (1977)
[S], R. E. Schwartz, The Optimal Paper Moebius Band, preprint 2023, arXiv 2308.12641
[St], J. J. Stoker Jr., Differential Geometry, Interscience, New York, 1969.

