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Let M be the flat Moebius band

M = [0, a]× [0, b]/ ∼, (t, 0) ∼ (a− t, b). (1)

We are taking a rectangle and identifying opposite sides by the usual orien-
tation reversing map. We suppress a, b from the notation. A paper Moebius
band is a smooth isometric embedding I : M → R3. That is, I is infinitely
differentiable and the differential dI is an isometry. Let Ω = I(M).

A bend on Ω is a line segment that lies in the interior of Ω except for its
endpoints, which lie in the boundary. The purpose of these notes, which I
also include as an appendix in the latest version of [S] is to give an elementary
and self-contained proof of the following classical result.

Theorem 0.1 There is a continuous partition of Ω into bends.

Let Ωo be the interior of Ω. Let S2 be the unit 2-sphere. The Gauss
map, which is well defined and smooth on any simply-connected subset Ωo,
associates to each point p ∈ Ωo a unit normal vector np ∈ S2. Let dnp be the
differential of the Gauss map at p. Since the curvature Ωo is 0 everywhere,
dnp has a nontrivial kernel. The point p has nonzero mean curvature if
and only if dnp has nontrivial image. Let U ⊂ Ωo denote the subset having
nonzero mean curvature. Theorem 0.1 is a quick consequence of the following
result in differential geometry.

Lemma 0.2 Each p ∈ U lies in a unique bend γ. Furthermore, the interior
of γ lies in U .
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On the bottom of p. 46 of [HW], Halpern and Weaver say that the result
of Lemma 0.2 is well known. They cite the references [CL], [HN], and [St].
More precisely, Lemma 0.2 is a special case of the two essentially identical
results, [CL, p. 314, Lemma 2] and [HN, §3, Lemma 2]. These results
and proofs are done in a general multi-dimensional setting. Below I give an
elementary and geometric proof tailored to the 2-dimensional case.

It follows immediately from Lemma 0.2 that U has a continuous partition
into bends. The uniqueness implies the continuity. Let τ be a component of
Ω−U . If τ has empty interior then τ is a line segment, the limit of a sequence
of bends. In this case τ is also a bend. Suppose τ has non-empty interior.
The Gauss map is constant on τ and hence τ lies in a single plane. Two sides
of τ , opposite sides, lie in ∂Ω and are straight line segments. The other two
sides of τ , the other opposite sides, are bends. Thus τ is a planar trapezoid.
But then we can extend our bend partition across τ by simply choosing any
continuous family of segments on τ that interpolates between the two bends
in its boundary. Doing this construction on all such components, we get our
continuous partition of Ω into bends.

Now we turn to the proof of Lemma 0.2. Let U ⊂ Ωo as above. Let
p → np be a local choice of the Gauss map. We can rotate and translate so
that near the origin U is the graph of a function

F (x, y) = Cy2 + higher order terms. (2)

Here C > 0 is some constant. The normal vector at the origin is n0 = (0, 0, 1).
The vector v0 = (1, 0, 0) lies in the kernel of dn0. Let w0 = v0×n0 = (0, 1, 0).
Let Π0 be the plane spanned by w0 and n0. The image of Π0 ∩ U under the
Gauss map is (near n0) a smooth regular curve tangent to w0 at n0.

Working locally, we have three smooth vectorfields:

v → np, p→ vp, v → wp = vp × np. (3)

Here vp is the kernel of dnp and × denote the cross product. Let Πp be the
plane through p and spanned by wp and np. From our analysis of the special
case, and from symmetry, the image of Πp∩U under the Gauss map is (near
np) a smooth regular curve tangent to wp at np. The asymptotic curves are
the smooth curves everywhere tangent to the v vector field.

Lemma 0.3 The asymptotic curves are line segments.
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Proof: Let γ be an asymptotic curve. By construction, the Gauss map is
constant along γ. About each point in γ there is a small neighborhood V
which is partitioned into asymptotic curves that transversely intersect each
plane Πp when p ∈ γ∩V . Hence the image of V under the Gauss map equals
the image of Πp ∩ V under the Gauss map. This latter image is a smooth
regular curve tangent to wp at np. Since this is true for all p ∈ γ ∩ V and
since np is constant along γ we see that wp is constant along γ. Hence vp is
constant along γ. Hence γ is a line segment. ♠

The nonzero mean curvature implies that γ is the unique line segment
through any of its interior points. We just have to rule out the possibility
that γ reaches ∂U before it reaches ∂Ω. Assume for the sake of contradiction
that this happens. We normalize as in Equation 2.

We now allow ourselves the liberty of dilating our surface. This dilation
preserves all the properties we have discussed above. By focusing on a point
of γ sufficiently close to ∂U and dilating, we arrange the following:

• A neighborhood V of Ωo is the graph of a function over the disk of
radius 3 centered at the origin.

• Given p ∈ V let p′ be the projection of p to the XY -plane. We have
|p′1 − p′2| > (2/3)|p1 − p2| for all p1, p2 ∈ V .

• γ ⊂ U contains the arc connecting (0, 0, 0) to (3, 0, 0), but (0, 0, 0) 6∈ U .

Let a ∈ (0, 3). At (a, 0, 0) we have va = (1, 0, 0) and wa = (0, 1, 0) and
na = (0, 0, 1). Let Πa be the plane {X = a}. Near (a, 0, 0), the intersection
Ua = U ∩ Πa is a smooth curve tangent to wa at (a, 0, 0).

Let ζ = (1, 0, 0). Fix δ > 0. By continuity and compactness, the asymp-
totic curves through points of U1 sufficiently near ζ contain line segments
connecting points on U2 to points on Uδ. Call these connectors . There exists
a canonical map Φδ : U1 → Uδ defined in a neighborhood of ζ: The points
q ∈ U1 and Φδ(q) ∈ Uδ lie in the same connector.

Lemma 0.4 Φδ expands distances by less than a factor of 3.

Proof: Let `1 and `2 be two connectors. Let aj = `j ∩ U1. Let bj = `j ∩ Uδ.
For any set S let S ′ be the projection of S to R2. We have the bounds

|a′1 − a′2|
|a1 − a2|

,
|b′1 − b′2|
|b1 − b2|

∈
[
2

3
, 1

]
,

|a′j − b′j|
length(`′j)

< 2.
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Geometrically, a′j is very nearly the midpoint of `′j and b′j is the closer of the
two endpoints. Since `′1 and `′2 are planar and disjoint, our last inequality
(and essentially a similar-triangles argument) gives |b′1 − b′2|/|a′1 − a′2| < 2.
Putting everything together, we have |b1 − b2|/|a1 − a2| < 3. ♠

Fix ε > 0. The mean curvature along Uδ tends to 0 as δ → 0. If we
choose δ sufficiently small then the Gauss map expands distances along Uδ in
a neighborhood of (δ, 0, 0) by a factor of less than ε. Combining Lemma 0.4
and the fact that nq = nΦδ(q), we see that the Gauss map expands distances
by at most a factor of 3ε along U1 in a small neighborhood of ζ. Since ε is
arbitrary, w1 ∈ ker(dnζ). But v1 ∈ ker(dnζ) by definition. Hence dnζ is the
trivial map. The contradicts the fact that ζ ∈ U .

This completes the proof of Lemma 0.2.
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