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1 The Main Result

For all these notes, we consider subsets in Euclidean space, R3. Here is a
special case of the Axiom of Choice, which we call the Real Axiom of Choice.
Given a collection of disjoint subsets of R3 there exists a new set which has
one point from each of our subsets. This seems innocent enough but it has
very unsettling consequences.

Two subsets A,B ⊂ R3 are isometric if there is an isometry I of R3 such
that I(A) = B. In this case we call B an isometric copy of A. Say that a
subset A∗ ⊂ R3 is strange if there are disjoint subsets A∗1, A

∗
2 ⊂ A∗ which

are each isometric to A∗. Let ∆r denote the ball of radius r centered at the
origin. Call A∗ substantial if ∆1 is contained in a finite union of isometric
copies of A∗.

Below we deduce the following theorem from the Real Axiom of Choice.

Theorem 1.1 ∆1 contains a set which is both strange and substantial.

Corollary 1.2 Let r > 0. There is some n = n(r) with the following proper-
ties: There are disjoint subsets A1, ..., An ⊂ ∆1 and isometries I1, ..., In such
that the union

⋃
Ik(Ak) contains ∆r.

Proof: Let A∗ be our strange and substantial subset of ∆1. Since A∗ con-
tains 2 disjoint isometric copies of itself, it actually contiains 4 such, and 8
such, etc. Continuing this way, we see that A∗ contains as many disjoint
isometric topics of itself as we like. We first cover ∆r with a finite number
of isometric copies of ∆1 and then we cover each of these isometric topics by
isometric copies of A∗ all taken from our supply contained in A∗. ♠
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Corollary 1.3 Let r > 0. There is some n = n(r) with the following prop-
erties: Any S ⊂ ∆r is the union of disjoint subsets B1, ..., Bn which have
disjoint isometric copies A1, ..., An in ∆1.

Proof: Let A1, ..., An be as in Corollary 1.2. We let Bk ⊂ S to be those
points p such that p ∈ Ik(Ak) but p 6∈ Ij(Aj) for any j < k. Let Jk = I−1k .
By construction S =

⋃
Bk and Jk(Bk) ⊂ Ak. Hence the sets Jk(Bk), for

k = 1, ..., n, are disjoint subsets of ∆1. ♠

Call a subset S ⊂ R3 nice if it contains a ball and is contained in a
(bigger) ball. A piecewise isometry between sets S and T is a bijection
h : S → T together with partitions S = S1 ∪ ... ∪ Sn and T = T1 ∪ ... ∪ Tn
such that, for all i, we have h(Si) = Ti and the restriction of h to Si is an
isometry. If there is a piecewise isometry between sets, we can break one
apart like a puzzle and reassemble it into the other.

Corollary 1.4 (Banach-Tarski) Suppose that S, T are nice sets. Then
there is a piecewise isometry from S to T .

Proof: Using Corollary 1.3 and scaling we can find a piecewise isometry
f : S → T ′ ⊂ T , where T ′ is a subset of T . Likewise, we can find a piecewise
isometry g : T → S ′ ⊂ S, where S ′ is a subset of S. The rest of our proof is
essentially the Schroeder-Bernstein Theorem.

We form a bipartite graph Γ. The white vertices of Γ are the points of S
and the black vertices are the points of T . We draw an edge between each
p ∈ S and f(p) ∈ T , and an edge between each q ∈ T and g(q) ∈ S. Each
connected component γ of Γ is either a cycle of even length, a bi-infinite
path, an infinite ray starting in S or an infinite ray starting in T . For all
the cases except the last one, we use f to give a bijection between the white
vertices of γ and the black ones. In the last case we use g−1 for this purpose.
Call this bijection hγ. The union of all these hγ, taken over all components,
gives a bijection h : S → T . Not only that, h is a piecewise isometry be-
cause h = f on one subset of S and h = g−1 on the complementary subset. ♠

These results are pretty crazy because they seem to violate some principle
of conservation of volume. One explanation is that the sets you use in the
piecewise isometry are so complicated that they don’t have a “volume”. That
is just the kind of crazy stuff you get if you accept the Real Axiom of Choice.
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2 Theorem 1.1 modulo a detail

Let G denote the infinite group consisting of all words in the letters a, b, b2,
subject to the relations that a2 and b3 are the empty word. A typical element
of G would be abab2ababab2. The identity element is the empty word. The
group law is concatenation. This group G is often denoted Z/2 ∗ Z/3, and
called the free product of Z/2 and Z/3. The group G is countable.

Let SO(3) denote the group of rotations of R3. Here is the detail that I
will take care of below.

Lemma 2.1 There is an injective homomorphism ρ : G→ SO(3).

Each nontrivial g ∈ G defines a line `g through the origin in R3, namely
the axis of ρ(g). Let ∆∗1 denote what we get by starting with ∆1 and removing
all these axes. So, ∆∗1 is the unit ball with countably many line segments
through the origin removed.

We define a group action of G on ∆∗1. The rule is that

g · p = ρ(g)(p). (1)

Lemma 2.2 The stabilizer of each point is the trivial subgroup of G.

Proof: Suppose that g · p = p. Then p is fixed by the nontrivial rotation
ρ(g). But then p lies in the axis `g. But then p 6∈ ∆∗1. ♠

Thanks to this lemma and the Orbit Stabilizer Theorem, there is a bijec-
tion between G and any orbit. The Real Axiom of Choice lets us choose
one element in each orbit. Thus, we can specify a particular bijection G↔ O
between G and each orbit O.

We introduce 3 subsets of G:

• A consists of words starting with a, and the empty word.

• B1 consists of words starting with b.

• B2 consists of words starting with b2.

This is a partition of G. For each orbit O we let OA and OB1 and OB2 be the
subsets of O corresponding to our partition under the bijection G ↔ O we
have chosen. Let A∗ denote the union of OA taken over all orbits. Likewise
define B∗1 and B∗2 . We have a partition ∆∗1 = A∗ ∪B∗1 ∪B∗2 .
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Lemma 2.3 b · A∗ = B∗1 and b ·B∗1 = B∗2 and b ·B∗2 = A∗.

Proof: It suffices to prove that this happens in each orbit. That is, we have
to show for each orbit O that the action of b permutes OA and OB1 and
OB2 . We have chosen some p ∈ O so that the bijection G ↔ O is given by
g → g · p. The set OA consists of points of the form g · p when p ∈ A. By
the group action property, b · g · p = (bg) · p. Since bg ∈ B1 we see that
b · g · p ∈ OB1 . This proves that b · OA ⊂ OB1 . Now, a similar argument
shows that b ·OB1 ⊂ OB2 and b ·OB2 ⊂ OA. But then, since b3 is the identity,
we must have the stronger result that b · OA = OB1 and b · OB1 = OB2 and
b ·OB2 = OA. ♠

Lemma 2.4 a ·B∗k ⊂ A∗.

Proof: Same proof as the previous result. It suffices to prove this for each
orbit. For each orbit, this boils down to the fact that left multiplication by
a maps B1 and B2 both into A. ♠

The next two results finish the proof of Theorem 1.1.

Lemma 2.5 A∗ is strange.

Proof: We let A∗k = a · B∗k. The disjoint sets A∗1, A
∗
2 ⊂ A∗ respectively are

isometric to B∗1 , B
∗
2 because our group action is by isometries. Note that the

three sets A∗ and B∗1 and B∗2 are all isometric to each other, by Lemma 2.3.
Hence A∗1 and A∗2 are each isometric to A∗. ♠

Lemma 2.6 A∗ is substantial.

Proof: Since ∆∗1 is the union of 3 sets isometric to A∗, it suffices to prove
that ∆∗1 is substantial. Since we only have countably many line segments
to worry about, we can rotate ∆∗1 so that the missing segments of ∆∗1 are
contained in the rotated copy and vice versa – except for the origin. Hence
∆1 minus the origin is contained in the union of two isometric copies of ∆∗1.
Now we throw in a third (translated) one which contains the origin. ♠
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3 Proof of Lemma 2.1

Strategy: Our proof is related to what physicists call Wick rotation. We
consider objects indexed by a parameter u ∈ C. When u ∈ R, the objects
correspond to homomorphisms G→ SO(3) in disguise. When u ∈ iR is very
near i, the corresponding object is another kind of homomorphism which we
will easily see is injective. Then we use the miracle of polynomials to convert
information about the imaginary case to information about the real case. We
finish up using the Baire Category Theorem.

A Moebius transformation is a map of the form

g∗(z) =
Az +B

Cz +D
, AD −BC 6= 0. (2)

These act on the Riemann sphere C ∪∞. They form a group which we call
Γ. When A + D = 0 the map has order 2, and has 2 fixed points. We call
such maps involutions .

Given any u ∈ C − {0} let Iu denote the involution whose fixed points
are u and −1/u. Let R be the map given by R(z) = exp(2πi/3)z. This map
has order 3. Let ρ∗u : G→ Γ be the homomorphism such that ρ∗u(a) = Iu and
ρ∗u(b) = R. Here is the imaginary part of the story.

Lemma 3.1 (Ping Pong) ρ∗u is injective if u ∈ iR is very close to i.

Proof: It is convenient to just write a = Iu and b = R. When u is imaginary,
a fixes points z, w with w = 1/z. From this it follows that a commutes with
the map z → 1/z, a map whose fixed point set is the unit circle S1. But
then a preserves the unit circle. So does b.

Let β ⊂ S1 be the complement of the arc of length (say) 1/10 centered
about 1. Let α ⊂ S1 be an intervel of length 1/100 centered at 1. By con-
struction b and b2 map S1 − β into β. If u is sufficiently close to 1 then a
maps S1−α into α. Also α ⊂ S1− β and β ⊂ S2−α. If we have any g ∈ G
then µ(g) maps any point in S1 − α − β into α ∪ β and hence is nontrivial.
To see this in action, consider bab2. Starting with p ∈ S1 − α − β we get
b2(p) ∈ β and ab2(p) ∈ α and bab2(p) ∈ β. ♠

Here is the real part of the story. Let S2 denote the unit sphere in R3.
Stereographic projection is a homeomorphism from S2 to C ∪∞ given by

Σ(x1, x2, x3) =
x1 + ix2
1− x3

. (3)
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Lemma 3.2 When u ∈ R the homomorphism, ρ∗u has the form Σ ◦ ρu ◦Σ−1

for some homomorphism ρu : G → SO(3). In particular, ρu is injective if
and only if ρ∗u is injective.

Proof: Any element of g ∈ SO(3) fixes antipodal points ±p. Moreover,
z = Σ(p) and w = Σ(−p) satisfy zw = −1. This is exactly the relation
satisfied by z = u and w = −1/u when u ∈ R. These facts are the main
reasons why the conjugate map g∗ = Σ ◦ g ◦ Σ−1 ∈ Γ is an involution fixing
points z, w with zw = −1. So, whenever u ∈ R the map Iu equals g∗ for
some g ∈ SO(3). At the same time, the map R equals g∗ for one of the two
g ∈ SO(3) which have order 3 and fix ±(0, 0, 1). In short, when u ∈ R the
homomorphism ρ∗u is conjugate to a homomorphism ρu : G→ SO(3). ♠

To prove Lemma 2.1 it suffices to prove ρ∗u is injective for some u ∈ R.
Now fix a nontrivial g ∈ G. Let Sg ⊂ R denote those u for which ρ∗u(g) is
nontrivial. We just need to show that the total intersection

⋂
Sg is nonempty.

Lemma 3.3 Sg is open and dense in R.

Proof: The set Sg is open by continuity. Each matrix entry of ρ∗u(g) is a
polynomial in u. Any polynomial that is constant on an open set of R is
constant on C. Hence, if Sg contains an open set then ρ∗u(g) is the identity
for all u ∈ C. But if we choose suitable u ∈ iR we get the injective ho-
momorphisms from the Ping Pong Lemma. This is a contradiction. Hence
R− Sg contains no open set. This shows that Sg is dense in R. ♠

Lemma 3.4 (Baire Category) The intersection of a countable collection
of open dense subsets of R is dense in R.

Proof: Here is a sketch that is adapted to our situation. Choose any p ∈ R.
Since Sg1 is dense we can move p slightly so that p ∈ Sg1 . Since Sg2 is dense
and Sg1 is open we can move p a tiny bit so that now it belongs to Sg1 ∩Sg2 .
We move again so that p belongs too Sg1 ∩Sg2 ∩Sg3 . Etc. Taking care about
the limit, we finally move to a point in the whole intersection. ♠

By the Baire Category Theorem, there is some nonzero u ∈ R contained
in the intersection

⋂
Sg taken over all nontrivial g ∈ G. But then ρ∗u is

injective. This completes the proof of Lemma 2.1.

6


