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1 Introduction

The Gauss-Salamin algorithm is a simple algorithm for computing the digits
of π very rapidly. Every step of the algorithm approximately doubles the
number of digits of accuracy! These notes give a proof. Very little in my
notes is original. I took this proof directly from the paper:
Nick Lord, Recent Calculations of π: The Gauss-Salamin Algorithm, The
Mathematical Gazette, Vol 76 No. 476 (1992)
All I did was put Lord’s proof in a more direct order, omitting all the cool
(but extraneous) stuff related to the simple pendulum, lemniscates, etc. Also,
I fill in details about the Γ and β functions, and briefly discuss convergence.

2 The Formula and the Algorithm

Given a0 ≥ b0 ≥ 0 define recursively:

an =
an−1 + bn−1

2
, bn =

√

an−1bn−1, (1)

The arithmetic-geometric mean is:

AGM(a0, b0) = lim
n→∞

an = lim
n→∞

bn. (2)

Define the series:

S(a0, b0) =
1

2

∞
∑

k=0

2k(a2k − b2k). (3)
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The equality behind the algorithm is:

π =

(

AGM(
√
2, 1)

)2

1− S(
√
2, 1)

. (4)

Convergence: Define

πn =
a2n

1− Sn(
√
2, 1)

, Sn(a0, b0) =
1

2

n
∑

k=0

2k(a2k − b2k). (5)

We have, for instance,

|π − πn| < 10−(4/3)2n

provided that n ≥ 6. The convergence is a bit faster, but this is a nice simple
expression. The rapid convergence comes from the fact that

κn =
κ2
n−1

4(an−1 + bn−1)2
<

κ2
n−1

16AGM(
√
2, 1)2

=
κ2
n−1

22.96864...
. (6)

Here κn = a2n − b2n.

Some Mathematica Code:

a[0]:=Sqrt[2]; b[0]:=1; d[0]:=1/2; s[0]:=1/2;

a[n ]:=(a[n-1]+b[n-1])/2; b[n ]:=Sqrt[a[n-1] b[n-1]];

d[n ]:=2 d[n-1]; s[n ]:=s[n-1]+d[n] (a[n] a[n]-b[n] b[n]);

pi[n ]:=a[n] a[n]/(1-s[n]);

As a test, the first 10 iterations compute π to 1395 digits. The command
SetPrecision[pi[10]-Pi,1410] returns 1.90043721× 10−1396.

Remarks:

(1) As Nick Lord explains in his paper, the algorithm above is a variant of
the Gauss-Salamin algorithm. A simple change of variables gives it exactly.
(2) To make this an honest algorithm, from scratch, you would want a good
method for extracting square roots. The iteration

x0 = 1, xn =
1

2

(

xn−1 +
ab

xn−1

)

converges to
√
ab and has the same precision-doubling feature as the algo-

rithm above. This is basically just Newton’s method.
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3 Deriving the Formula

In this section we derive Equation 4 modulo 4 statements. Define the elliptic
integrals:

I(a0, b0) =

∫ π/2

0

dθ
√

a20 cos
2(θ) + b20 sin

2(θ)
. (7)

L(a0, b0) =

∫ π/2

0

cos2(θ)dθ
√

a20 cos
2(θ) + b20 sin

2(θ)
. (8)

Lemma 3.1 The following is true.

1. L(a0, b0) + L(b0, a0) = I(a0, b0).

2. I(a0, b0) =
π

2AGM(a0,b0)
.

3. (a20 − b20)L(b0, a0) = S(a0, b0)I(a0, b0).

4. π
4
= L(

√
2, 1)I(

√
2, 1).

Set I = I(
√
2, 1) and L = L(

√
2, 1), etc. When a0 =

√
2 and b0 = 1 we

have a20 − b20 = 1. So, Statements 1 and 3 give L = (1 − S)I. Statements 2
and 4 now give

π

4
= (1− S)I2 = (1− S)

π2

4AGM2 .

Dividing both sides by π/4 and rearranging gives Equation 4. Now we prove
the 4 statements above.

4 Proof of Statement 1

Set a = a0 and b = b0. Making the substitution ϑ = π/2− θ, we see that

L(b, a) =

∫ π/2

0

sin2(ϑ)dϑ
√

a2 cos2(ϑ) + b2 sin2(ϑ)
.

Therefore

L(a, b) + L(b, a) =

∫ π/2

0

cos2(ϑ) + sin2(ϑ)
√

a cos2(ϑ) + b2 sin2(ϑ)
dϑ = I(a, b).
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5 Proof of Statement 2

It is convenient to write

I(a, b) =

∫ π/2

0

dθ/ cos2(θ)
√

a2 + (b tan(θ))2 × (1/ cos(θ))
.

The substitutions

u = b tan(θ), du = b dθ/ cos2(θ), 1/ cos(θ) =

√
u2 + b2

b

lead to

I(a, b) =

∫

∞

0

du
√

(a2 + u2)(b2 + u2)
=

1

2

∫

∞

−∞

du
√

(a2 + u2)(b2 + u2)
.

The second integral is the same as the first, by symmetry.
If we start with the integral

I(a1, b1) =
1

2

∫

∞

−∞

du
√

(a21 + u2)(b21 + u2)
,

and make the substitutions

a1 =
a0 + b0

2
, b1 =

√

a0b0, u =
1

2

(

v− a0b0
v

)

, du =
1

2

(

1+
a0b0
v2

)

, (9)

then simplify the mess, we get

I(a1, b1) =

∫

∞

0

dv
√

(a20 + v2)(b20 + v2)
= I(a0, b0).

Iterating, we see that

I(a0, b0) = I(a1, b1) = I(a2, b2) = ... = I(A,A) =

∫ π/2

0

dθ/A =
π

2A
.

Here A = AGM(a0, b0).
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6 Proof of Statement 3

Write ck =
√

a2k − b2k. The key step is showing that

2c20L(b0, a0)− 4c21L(b1, a1) = c20I(a0, b0). (10)

Setting I = I(a0, b0) = I(a1, b1)..., we iterate Equation 10, multiplying the
relation by 2 each time:

2c20L(b0, a0)− 4c21L(b1, a1) = 2c20I(a0, b0) = c20I.

4c21L(b1, a1)− 8c22L(b2.a2) = 4c21I(a1, b1) = 2c20I.

8c22L(b2, a2)− 16c23L(b3.a3) = 8c22I(a2, b2) = 4c20I.

· · · (11)

The bound in Equation 6 implies that the infinite series made from the terms
on the right side of Equation 11 converges. Summing these terms, we get
2c20L(a0, b0) = 2S(a0, b0)I. Dividing by 2 we get Statement 3.

Now for Equation 10. The substitution u = b tan θ used above gives

L(a, b) =

∫

∞

0

b2du

(u2 + b2)
√

(u2 + a2)(u2 + b2)
.

Just as in the proof of Statement 1, we write out

L(b1, a1) =

∫

∞

0

a21du

(u2 + b2)
√

(u2 + a21)(u
2 + b21)

,

and make the substitutions from Equation 9. This gives

L(b1, a1) =
a0 + b0
a0 − b0

(L(b0, a0)− L(a0, b0)). (12)

Combining this the fact that L(a, b) + L(b, a) = I(a, b), we have

L(b1, a1) =
a0 + b0
a0 − b0

(2L(b0, a0)− I(a0, b0))

Multiplying through by (a0 − b0)
2 and rearranging, we have

2(a20 − b20)L(b0, a0)− (a0 − b0)
2L(b1, a1) = (a20 − b20)I.

Now we observe that c20 = a20 − b20 and 4c21 = (a0 − b0)
2. Once we make these

substitutions, we get Equation 10.
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7 Proof of Statement 4

We have the Γ-function and the β-function:

Γ(x) =

∫

∞

0

e−ttx−1 dt, β(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt. (13)

To establish Statement 4 we establish the following facts.

1. I(
√
2, 1) = 1

4
β(1/4, 1/2) and L(

√
2, 1) = 1

4
β(3/4, 1/2).

2. β(x, y) = Γ(x)(Γ(y)
Γ(x+y)

.

3. Γ(x+ 1) = xΓ(x) when x > 0. In particular, Γ(5/4) = Γ(1/4)/4.

4. Γ(1/2) =
√
π.

These facts give

I(
√
2, 1)L(

√
2, 1) =1 β(1/4, 1/2)β(3/4, 1/2)

16
=2

Γ(1/4)Γ(3/4)Γ(1/2)Γ(1/2)

16Γ(5/4)Γ(3/4)
=3 Γ(1/4)Γ(3/4)Γ(1/2)Γ(1/2)

4Γ(1/4)Γ(3/4)
=4 π

4
.

7.1 Fact 1

We have

I(
√
2, 1) =

∫ π/2

0

dθ
√

2 cos2(θ) + sin2(θ)
=

∫ π/2

0

dθ
√

1 + cos2(θ)
=

∫ 1

0

du√
1− u4

.

The last equality comes from the subst. u = cos(θ) and du = − sin(θ)dθ.
Substituting v = u4 and dv = 4u3du we see that

I(
√
2, 1) =

1

4

∫ 1

0

dv

v3/4(1− v)1/2
=

1

4
β(1/2, 3/4).

The same substitution for L gives us

L(
√
2, 1) =

∫ 1

0

u2du√
1− u4

=
1

4

∫ 1

0

dv

v1/4(1− v)1/2
=

1

4
β(1/2, 1/4).
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7.2 Fact 2

Making the substitution

t = cos2(θ), 1− t = sin2(θ), dt = −2 cos(θ) sin(θ)dθ,

we see that

β(x, y) = 2

∫ π/2

0

cos(θ)2x−1 sin(θ)2y−1dθ.

Making the substition t = u2 and dt = udu, we have

Γ(x) = 2

∫

∞

0

u2x−1e−u2

du.

But then

Γ(x)Γ(y) = 4

∫

∞

0

∫

∞

0

e−u2+v2u2x−1v2y−1dudv.

Integrating this in polar coordinates, with u = r cos(θ) and v = r sin(θ), we
have

Γ(x)Γ(y) = 2

∫ π/2

0

[

2

∫

∞

0

r2(x+y)−1e−r2dr

]

cos(θ)2x−1 sin(θ)2y−1dθ =

β(x, y)Γ(x+ y).

7.3 Fact 3

This is integration by parts. Define

u = e−t, dv = tx−1dt, du = −e−t, v = tx/x.

Since u(0)v(0) = 0 and limn→∞ u(n)v(n) = 0, we have

Γ(x) =

∫

∞

0

udv =

∫

∞

0

vdu =
1

x
Γ(x+ 1).

7.4 Fact 4

We have Γ(1) = 1. Hence, by Fact 2,

Γ(1/2)Γ(1/2) = β(1/2, 1/2) =

∫ 1

0

dt
√

t(1− t)
=∗ 2

∫ π/2

0

dθ = π.

The starred equality comes from t = sin2(θ) and dt = 2 sin(θ) cos(θ)dθ.
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