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1 Introduction

The Gauss-Salamin algorithm is a simple algorithm for computing the digits
of m very rapidly. Every step of the algorithm approximately doubles the
number of digits of accuracy! These notes give a proof. Very little in my
notes is original. I took this proof directly from the paper:

Nick Lord, Recent Calculations of w: The Gauss-Salamin Algorithm, The
Mathematical Gazette, Vol 76 No. 476 (1992)

All T did was put Lord’s proof in a more direct order, omitting all the cool
(but extraneous) stuff related to the simple pendulum, lemniscates, etc. Also,
I fill in details about the I" and g functions, and briefly discuss convergence.

2 The Formula and the Algorithm

Given ag > by > 0 define recursively:

e by, —
ap = alT—f—lu bn =V an—lbn—lu (]->

The arithmetic-geometric mean is:

AGM(ag, by) = lim a, = lim b,. (2)

n—o0 n—oo

Define the series:

S(ag, by) = Z 2k (a2 — b2). (3)



The equality behind the algorithm is:

__ (AGM(v/2, 1))’ n
1-5(v2,1)

Convergence: Define

2 n

a 1
=" Sn(ao, bo) = 5> 2"(aj — 7). 5
TSV ) (40, o) 2 (@i = b) (5)

We have, for instance,

| — | < 1073

provided that n > 6. The convergence is a bit faster, but this is a nice simple
expression. The rapid convergence comes from the fact that

K%fl ’?72171 "fifl (6)

< = .
Aan-1+bo1)? T 16AGM(v2,1)2  22.96864...

— a2 2
Here k,, = a;, — 0.

Rp =

Some Mathematica Code:

al0]:=Sqrt[2]; b[0]:=1; d[0]:=1/2; s[0]:=1/2;
aln_]:=(aln-1]+b[n-11)/2; bln_]:=Sqrtlaln-1] b[n-1]];
d[n_]:=2 d[n-1]; s[n.]:=s[n-1]+d[n] (al[n] alnl-b[n] blnl);
piln_]:=a[n] a[n]/(1-s[nl);

As a test, the first 10 iterations compute 7w to 1395 digits. The command
SetPrecision[pi[10]-Pi,1410] returns 1.90043721 x 10~13%,

Remarks:

(1) As Nick Lord explains in his paper, the algorithm above is a variant of
the Gauss-Salamin algorithm. A simple change of variables gives it exactly.
(2) To make this an honest algorithm, from scratch, you would want a good
method for extracting square roots. The iteration

1< ab)
'TOZL Tp = 7| Tp-1+

2 Tn—1

converges to vVab and has the same precision-doubling feature as the algo-
rithm above. This is basically just Newton’s method.
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3 Deriving the Formula

In this section we derive Equation 4 modulo 4 statements. Define the elliptic
integrals:

do
(ag, bo) . 7
o \/ao cos2(0) + b2 sin?(0) ")
/2 cos?(0)d0

0 \/aZcos?(0) + b2 sin®(0)

L(CL(), bo) =

Lemma 3.1 The following is true.
1. L(ao, bo) + L(bo, (10) = I(ao, b())

2. I(ao, bo) = sxanitanso-

3. (CL(Q) - bg)L(bo, CL()) = S(CL[), bo)](ao, bo)
4. T=L(V2,1)I(vV2,1).

Set I = I(+v/2,1) and L = L(v/2,1), etc. When ag = /2 and by = 1 we
have aj — b = 1. So, Statements 1 and 3 give L = (1 — S)I. Statements 2

and 4 now give

™ 7T2

—=1-9r=(1-8)——s.
g = =9 =0-5 =0

Dividing both sides by 7/4 and rearranging gives Equation 4. Now we prove
the 4 statements above.

4 Proof of Statement 1

Set a = ag and b = by. Making the substitution ¢ = 7/2 — 6, we see that

L(b, a) / sin? ﬁ)dﬁ
Va2 cos?(9) + b2 sin?(¥)

Therefore

™2 cos?(19) 4 sin? ()
0 \acos2(¥) + b2 sin*(V)

L(a,b) + L(b,a) = dv = I(a,b).
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5 Proof of Statement 2

It is convenient to write

d@/ cos ( )
I(a,b) = .
/ Va® + (btan(6))2 x (1/ cos(6))

The substitutions

N
u = btan(6), du = b df/ cos*(), 1/ cos(f) = %
lead to
du 1= du

V@) B +w?) 2] @) B+ )

The second integral is the same as the first, by symmetry.
If we start with the integral

du
\/a + u?) b2+u2)

a17b1

and make the substitutions

a; = a0—2|—bo’ by = M, u= %(U—CLOTI)O), du = %(1—1—@2—20), (9)
then simplify the mess, we get
Har,b) = / \/a0+v (b3 + v?) = 1(a0. bo).
[terating, we see that
I(ao,by) = I{ar,by) = I{ag, by) = ... — (A, A) = /Oﬂ/2 /A=

Here A = AGM(ay, by).



6 Proof of Statement 3

Write ¢ = /a2 — b2. The key step is showing that
QCgL(bo, ao) — 40%[1(()1, al) = C(Q)I(CL(), bo) (10)

Setting I = I(ag,bo) = I(ai,by)..., we iterate Equation 10, multiplying the
relation by 2 each time:

2c2L(bo, ag) — 4ciL(by, a1) = 2¢21(ag, bo) = col.
4¢3 L(by, ar) — 8¢5 L(by.ag) = 4cil(ay, by) = 2¢51.
8caL(by, az) — 16¢3L(bs.az) = 8cal(ag, by) = 4cil.
. (11)

The bound in Equation 6 implies that the infinite series made from the terms

on the right side of Equation 11 converges. Summing these terms, we get
22 L(ag, bo) = 25 (ag, bo)I. Dividing by 2 we get Statement 3.

Now for Equation 10. The substitution u = btan  used above gives
o0 2
L(a,b) = / brdu .
o (w2 + )+ )+ B

Just as in the proof of Statement 1, we write out

00 2
L(bl,al) :/ aldu ’
0 (w2 +02)\/(u? + af)(u? +b7)

and make the substitutions from Equation 9. This gives

ap +b
Lby,ay) = —=—2(L(by, ap) — L(ao, bo)). (12)
ag — bg
Combining this the fact that L(a,b) + L(b,a) = I(a,b), we have
ag +b
L(by, a1) = —~"2(2L(by, ag) — I(ao, bo))

ag — bo
Multiplying through by (ag — by)? and rearranging, we have
2(@3 — bg)L(bo, (1,0) — (CLO — b0)2L(bl, Cll) = (ag — bg)[

Now we observe that ¢ = a3 — b3 and 4¢3 = (ag — by)?. Once we make these
substitutions, we get Equation 10.



7 Proof of Statement 4

We have the I'-function and the S-function:

e’} 1
[(z) = / e ' dt, Blx,y) = / N1 -t tdt. (13)
0 0
To establish Statement 4 we establish the following facts.
I(V2,1) = 1B(1/4,1/2) and L(v/2,1) = 13(3/4,1/2).

2. B(x,y) = @)

I(z+y)
3. I'(x 4+ 1) = 2I'(x) when z > 0. In particular, I'(5/4) = I'(1/4) /4.
['(1/2) = /.

These facts give

I(\/§, 1)1/(\/57 1) _1 5(1/4’ 1/2)&(3/4, 1/2) _2

16
MA/49rE/49ra/2)ri/2) ; ra/9rE/4ra/2ra/2) 4«
16T(5/4)T(3/4) B AT(1/4)T(3/4) o
7.1 Fact 1
We have

12,1 / V2 cos2(0) - ) + sin®( / \/W / m'

The last equality comes from the subst. u = cos(f) and du = —sin(6)d6.
Substituting v = u* and dv = 4u3du we see that

1(v2,1) = i/o ﬁ = 2801/2,3/4)

The same substitution for L gives us

bould I d 1
L(\/il):/o \/%_1/0 Wiv)m_zﬁ(l/ll/‘l)-
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7.2 Fact 2
Making the substitution

t = cos*(f), 1 —t = sin*(h), dt = —2cos(#) sin(6)do,
we see that

/2
Blx,y) = 2/ cos(6)* 1 sin()*~db.
0

Making the substition t = u? and dt = udu, we have

[(x) = 2/ e du.
0

y) = 4/ / e~ 2 120 .
0o Jo

Integrating this in polar coordinates, with u = r cos(f) and v = rsin(6), we
have

w/2 ) )
I(x)(y) = /0 [2/0 rAEty)=le=r dr} cos(0)* ' sin(0)*1dg =

Bz, y)l'(z +y).

But then

7.3 Fact 3
This is integration by parts. Define

u=-e", dv = t*"tdt, du = —e ™, v=1t"/x.

Since u(0)v(0) = 0 and lim,,_,o u(n)v(n) = 0, we have
o0 [e.e] 1
I'(z) = / udv = / vdu = =I'(x + 1).
0 0 z

7.4 Fact 4
We have I'(1) = 1. Hence, by Fact 2,

/2
T(1/2)T(1/2) = B(1/2,1/2) = /\/ﬁ /0 o = .

The starred equality comes from ¢ = sin?(#) and dt = 2sin(6) cos(6)d6.
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