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1 Introduction

The purpose of these notes is to give a self-contained proof that Rm and Rn

are not homeomorphic when m > n. The proof bypasses homology entirely,
and uses Sperner’s Lemma instead. The main thing you have to know about
is higher dimensional triangulations both of a simplex and of a sphere. In
the spherical case, the simplices in the triangulation are made of pieces of
lower-dimensional spheres.

2 Sperner’s Lemma

2.1 Statement of Result

Sperner’s Lemma works in any dimension but I’m going to concentrate on
the 2-dimensional case. I’ll indicate how to generalize as I go along.

An example of a cleanly triangulated triangle is shown on the left hand
side of Figure 1.
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Figure 1: Two good triangulations and a bad one in action.

The drawing on the right shows the kind of junk we want to avoid. The
main things you want from the triangulation are that the small triangles
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meet edge to edge and pairwise have disjoint interiors. In general, a cleanly
divided n-simplex would be a subdivision of an n-simplex into smaller n-
simplices which meet face to face.

Let T be the triangle, and suppose it is cleanly triangulated into n smaller
triangles T1, ..., Tn. Suppose also that the vertices of the triangulation are
labeled by integers {1, 2, 3} so that the kth side of T has no k label. Sperner’s
Lemma says that some Tj gets all 3 labels. In general you would have an n-
dimensional simplex cleanly subdivided into smaller n-dimensional simplices,
and the labeling on the boundary would be such that the kth face gets no
k labels. Sperner’s Lemma would then say that some sub-simple gets every
label.

2.2 The Genius Proof

Here is the reference for the amazing proof to follow.

A. McLennan and R. Tourkey, Using volume to prove Sperner’s lemma Econ.
Theory 35 (2008) pp 593-597

We’re going to assume that we have a labeling in which no triangle sees
all three labels and derive a contradiction. We normalize so that T has area
1. Let’s call the vertices of the triangulation V1, ..., Vm. Let L1, ..., Lm be the
labels of these vertices. Let W (1), W (2), W (3) be the vertices of the big
triangle T . For each t ∈ [0, 1], define the new point

Vk(t) = (1− t)Vk + tW (Lk). (1)

In other words, we think of t as time and we think of a the curve t→ Vk(t)
as a path which starts at Vk and ends at W (Lk) and moves in a straight line
at constant speed. Supposing that the triangle Tk has vertices A,B,C, let
Tk(t) be the triangle with vertices A(t), B(t), C(t). As the points move with
t these triangles change shape.

Consider the function

f(t) =
n∑
j=1

area(Tj(t)). (2)

First of all, this function is a polynomial, thanks to the simple formulas –
e.g. determinants – one can use to compute the areas of the triangles. Second
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of all, f(t) = 1 for all t sufficiently close to 0. The point is that, for small
t, we still have a triangulation even though the points have moved a little.
Since f is a polynomial, we must have f(t) = 1 for all t ∈ [0, 1]. However,
suppose that no triangle Tk sees all three labels. Then Tk(t) converges either
a single vertex or to an edge of T as t→ 1. Hence

lim
t→1

area((Tk(t)) = 0. (3)

Since this is true for all triangles, and there are only finitely many of them
in the triangulation, we see that f(t)→ 0 as t→ 1. This is a contradiction.
That’s the end of the proof. In the general case you’d use n-volume rather
than area.

2.3 The Traditional Proof

Say that a flag is a pair (Tk, e), where Tk is one of the triangles of the
triangulation and e is an edge of Tk. Each triangle participates in 3 flags and
each edge either participates in 1 or 2 flags, depending on whether the edge
is in the boundary of T . Say that (1, 2)-flag is a flag which has the labels 1
and 2 on its edge. We’re going to count the (1, 2)-flags in two ways.

Let’s first count these flags going edge by edge. Each interior edge con-
tributes an even number of (1, 2)-flags to the total, because it participates
in two flags and these two flags are either simultaneously (1, 2)-flags or not
(1, 2)-flags. The only boundary edges which contribute a (1, 2)-flag are the
ones on the side which has the 1 and 2 labels. This side is divided into
finitely many edges. One endpoint of the side is labeled 1 and the other one
is labeled 2. So, as we go from one endpoint to the other, we have to switch
labels an odd number of times. Hence, there are an odd number of (1, 2)-flags
coming from the boundary edges. But that means there is an odd number
of (1, 2)-flags overall.

On the other hand, let’s count the (1, 2)-flags triangle by triangle. As
I mentioned above, each triangle participates in 3 flags. Just list out the
possibilities and you can see that a triangle contributes an odd number of
(1, 2)-flags to the count if and only if it gets all 3 labels. The triangles
labeled (1, 2, 2) (1, 1, 2) each contribute two (1, 2) flags to the count and the
rest contribute zero. Hence, there must be an odd number of triangles which
are labeled (1, 2, 3). That completes the proof.

In general, you would count (1, 2, ..., n − 1)-flags in two ways and use
induction on the dimension.
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3 Applications

3.1 A Topological Interlude

Before going further, we need a foundational result from topology.

Lemma 3.1 (Uniform Continuity) Let ∆ be a simplex in Rn and sup-
pose f : ∆ → Rn is a continuous map. There is some δ > 0 so that
‖f(a)− f(b)‖ < 1 as long as ‖a− b‖ < δ.

Proof: Suppose not. Then we can find a two sequence {an} and {bn} such
that ‖an − bn‖ → 0 and ‖f(an) − f(bn)‖ ≥ 1. But we can pass to a subse-
quence so that an → p. Evidently bn → p as well. But then our conditions
violate the continuity of f at p. ♠

3.2 No Retractions

Here is how to use Sperner’s Lemma to prove a classic result from algebraic
topology. Usually you use homology for this.

Theorem 3.2 Let B be the unit ball in Rn. There is no map f : B → ∂B
which is the identity on ∂B.

Proof: I’ll give the 2 dimensional proof. You can think about how to gener-
alize the proof to higher dimensions. Suppose f exists. We choose a home-
omorphism h from B to ∆, the equilateral triangle having side length 100.
It suffices to prove result for the map h ◦ f ◦ h−1. In other words, we can
replace the disk B by the big triangle ∆.

We will suppose that f exists and derive a contradiction. By the Uniform
Continuity Lemma, we can find some δ so that ‖f(a)− f(b)‖ < 1 for all a, b
in the triangle with ‖a − b‖ < δ. Choose a triangulation of ∆ where each
triangle in the triangulation has side length less than δ.

Label a vertex v of the triangulation by the name of the vertex of ∆
closest to f(k). In case of a tie, choose the lower label. f maps the vertices
of each small triangle so that they are each within 1 of each other. But then
no triangle can be labeled (1, 2, 3) because the three vertices of ∆ are spread
far apart. On the boundary, the labeling is more or less as in Figure 1. So,
this labeling contradicts Sperner’s Lemma. ♠
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Corollary 3.3 Let B be the unit ball in Rn and suppose I : ∂B → Rn is
the identity map. There is no way to extend I to a map Ψ : B → Rn − O,
where O is the origin.

Proof: Let ρ : Rn − O → ∂B be the radial retraction map. In polar co-
ordinates we have ρ(r, θ) = (1, θ). This map is continuous. If Ψ exists then
the map ρ ◦ Ψ would give us a continuous map from B → ∂B which is the
identity on ∂B. This contradicts the previous result. ♠

4 Continuous Extension

4.1 The End of the Proof

Again let B be the unit ball in Rn. Suppose now that f0 : ∂B → Rm − O
with m > n. Below, we construct a continuous extension F : B → Rm −O.

Suppose h : Rn → Rm is a homeomorphism, with m > n. We normalize
so that h(O) = O. Then h also gives a homeomorphism from Rn − O to
Rm − O. Let I : ∂B → Rn be the identity map. Let f0 = h ◦ I. Let
F : B → Rm − O be the extension map. Then Ψ = h−1 ◦ F : B → Rn − O
is a continuous extension of the identity map. This contradicts the corollary
above. Hence h does not exist.

Now we construct the extension.

4.2 Linear Interpolation

Let B be the unit ball in Rn and suppose f0, f1 : ∂B → Rm are 2 continuous
maps. Here m might equal n or it might not. We define

ft(p) = (1− t)f0(p) + tf1(p). (4)

The map ft is a continuous interpolation from f0 to f1. If f0(∂B) and f1(∂B)
both miss the ball of radius 10 about O, and if the distance from f0(p) to
f1(p) is at most 1, then ft(p) ∈ Rm−O for all t. This is a criterion we apply
to all p ∈ ∂B.
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4.3 Simplicial Approximation

Now suppose we have f0 : ∂B → Rm − O. We scale the picture so that
the ball of radius 11 is disjoint from f0(∂B). Next, we pick a very fine
triangulation on ∂B. Here is a recipe for the map f1:

1. We let f1 = f0 on the vertices of the triangulation.

2. Given a simplex τ of the triangulation, let v(τ) be the vertex set of τ .

3. Let Πτ denote projection onto the convex hull of f0(v(τ)).

4. The restriction of f1 to τ equals Πτ ◦ f0.

The map f1 is continuous because the definitions agree on adjacent sim-
plices in the triangulation. If the triangulation is fine enough, then f1(∂B)
misses the ball of radius 10 about the origin and ‖f0(p)− f1(p)‖ < 1 for all
p ∈ ∂B. Hence the interpolation ft maps ∂B into Rm −O for all t ∈ [0, 1].

Here is the beauty of the map f1. The image f1(∂B) is contained in a
finite union of (n− 1)-dimensional simplices in Rm − O. All these simpices
are outside the unit ball.

4.4 Dimensionality

If we have an (n− 1)-simplex ∆ ⊂ Rm and some point q ∈ Rm then we let
(∆, q) denote the n-simplex we get by just adding q as a vertex. Equivalently,
(∆, q) is the convex hull of ∆ ∪ q. Here is the punchline: For almost every
choice of q ∈ Rm the simplex (∆, q) is disjoint from O. This uses m > n.

If we have a finite union of (n− 1)-simplices ∆1, ...,∆k then we can find
q ∈ Rm such that (∆i, q) ∈ Rm −O for all i = 1, ..., k. In particular, we can
apply this to the simplices comprising the image f1(∂B). We choose such a
q and we define f2 : ∂B → Rm −O to be the constant map f2(∂B) = q. By
construction, the interpolating map ft, for t ∈ [1, 2], maps ∂B into Rm −O.

4.5 The Final Extension

We put polar coordinates (r, θ) on our ball B. Here r ∈ [0, 1] and θ is a
parameter for ∂B. Define F (r, θ) = f2−2r(θ). We have F (1, θ) = f0(θ).
So, our map F is a continuous extension of f0 to B. Also, by construction
F (B) ⊂ Rm −O.

We’re done.
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