Moebius Maps Preserve Circles

Rich Schwartz

December 3, 2023

Moebius transformations are maps of the form

$$z \to \frac{az+b}{cz+d}$$

where $a, b, c, d \in \mathbb{C}$ are complex numbers such that $ad - cb \neq 0$. These form a group G and act on the Riemann sphere $\mathbb{C} \cup \infty$ as homeomorphisms. A *circle* in $\mathbb{C} \cup \infty$ is either a circle of \mathbb{C} or else the union of a line with ∞ . We call the latter *extended lines*. In particular, $C_0 = \mathbb{R} \cup \infty$ is an extended line. In these notes I'll give a strange proof that Moebius transformations map circles to circles. The proof is based on 4 properties.

- 1. If γ is a loop in $C \cup \infty$ which is not an extended line, then there is some circle D such that $\gamma \cap D$ contains at least 3 points.
- 2. For any circle C, there is some $T_C \in G$ such that $T(C_0) = C$.
- 3. If (a_1, a_2, a_3) and (b_1, b_2, b_3) are two triples of distinct points on C_0 , then $\exists R \in G$ such that $R(C_0) = C_0$ and $R(a_i) = b_i$ for i = 1, 2, 3.
- 4. $R \in G$ is determined by where it takes 3 distinct points of C_0 .

Main Argument: Let $M \in G$ and let C be a circle. Let $\gamma = M(C)$. If γ is an extended line, we are done. Otherwise let D be the circle from Property 1. Let $L = T_D \circ M \circ T_C^{-1}$. By construction, $L(C_0) \cap C_0$ contains 3 points b_1, b_2, b_3 . Let $a_i = L^{-1}(b_i)$ for i = 1, 2, 3. Let $R \in G$ be given by Property 2. Then R and L agree on a_1, a_2, a_3 . But then, by Property 3, R = L, which forces $L(C_0) = C_0$. but then $\gamma = D$ and γ is a circle. **Property 1:** γ has 3 non-collinear points. Every 3 non-collinear points $a, b, c \in \gamma$ lie in the circle D of radius |x - a| centered at x, where x is the intersection of the perpendicular bisectors of the segments \overline{ab} and \overline{bc} .

Property 2: Using similarities, we reduce to the case when C is the unit circle. The Moebius transformation T(z) = (z+i)/(z-i) evidently maps C_0 into C, and the upper halfplane outside the unit disk, and the lower halfplane inside the unit disk. Since T is a homeomorphism, we must have $T(C_0) = C$.

Property 3: By the group property, it suffices to consider the case when $(b_1, b_2, b_3) = (0, 1, \infty)$. The map

$$T(z) = \frac{-(a_2 - a_3)(a_1 - z)}{(a_1 - a_2)(a_3 - z)}$$

is a Moebius transformation and has all the properties.

Property 4: Using Property 3, and the group property, it suffices to show that a Moebius transformation is the identity provided that it fixes $(0, 1, \infty)$. Starting with T(z) = (az + b)/(cz + d), and plugging T(0) = 0 gives b = 0. Plugging in T(1) = 1 gives a = c + d. Plugging in $T(\infty) = \infty$ gives c = 0. We're left with T(z) = z.