Moebius Maps Preserve Circles

Rich Schwartz

December 3, 2023

Moebius transformations are maps of the form

$$
z \rightarrow \frac{a z+b}{c z+d}
$$

where $a, b, c, d \in \boldsymbol{C}$ are complex numbers such that $a d-c b \neq 0$. These form a group G and act on the Riemann sphere $\boldsymbol{C} \cup \infty$ as homeomorphisms. A circle in $\boldsymbol{C} \cup \infty$ is either a circle of \boldsymbol{C} or else the union of a line with ∞. We call the latter extended lines. In particular, $C_{0}=\boldsymbol{R} \cup \infty$ is an extended line. In these notes I'll give a strange proof that Moebius transformations map circles to circles. The proof is based on 4 properties.

1. If γ is a loop in $\boldsymbol{C} \cup \infty$ which is not an extended line, then there is some circle D such that $\gamma \cap D$ contains at least 3 points.
2. For any circle C, there is some $T_{C} \in G$ such that $T\left(C_{0}\right)=C$.
3. If $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$ are two triples of distinct points on C_{0}, then $\exists R \in G$ such that $R\left(C_{0}\right)=C_{0}$ and $R\left(a_{i}\right)=b_{i}$ for $i=1,2,3$.
4. $R \in G$ is determined by where it takes 3 distinct points of C_{0}.

Main Argument: Let $M \in G$ and let C be a circle. Let $\gamma=M(C)$. If γ is an extended line, we are done. Otherwise let D be the circle from Property 1. Let $L=T_{D} \circ M \circ T_{C}^{-1}$. By construction, $L\left(C_{0}\right) \cap C_{0}$ contains 3 points b_{1}, b_{2}, b_{3}. Let $a_{i}=L^{-1}\left(b_{i}\right)$ for $i=1,2,3$. Let $R \in G$ be given by Property 2 . Then R and L agree on a_{1}, a_{2}, a_{3}. But then, by Property $3, R=L$, which forces $L\left(C_{0}\right)=C_{0}$. but then $\gamma=D$ and γ is a circle.

Property 1: γ has 3 non-collinear points. Every 3 non-collinear points $a, b, c \in \gamma$ lie in the circle D of radius $|x-a|$ centered at x, where x is the intersection of the perpendicular bisectors of the segments $\overline{a b}$ and $\overline{b c}$.

Property 2: Using similarities, we reduce to the case when C is the unit circle. The Moebius transformation $T(z)=(z+i) /(z-i)$ evidently maps C_{0} into C, and the upper halfplane outside the unit disk, and the lower halfplane inside the unit disk. Since T is a homeomorphism, we must have $T\left(C_{0}\right)=C$.

Property 3: By the group property, it suffices to consider the case when $\left(b_{1}, b_{2}, b_{3}\right)=(0,1, \infty)$. The map

$$
T(z)=\frac{-\left(a_{2}-a_{3}\right)\left(a_{1}-z\right)}{\left(a_{1}-a_{2}\right)\left(a_{3}-z\right)}
$$

is a Moebius transformation and has all the properties.

Property 4: Using Property 3, and the group property, it suffices to show that a Moebius transformation is the identity provided that it fixes $(0,1, \infty)$. Starting with $T(z)=(a z+b) /(c z+d)$, and plugging $T(0)=0$ gives $b=0$. Plugging in $T(1)=1$ gives $a=c+d$. Plugging in $T(\infty)=\infty$ gives $c=0$. We're left with $T(z)=z$.

