
Notes on the Pup Tent

Richard Evan Schwartz ∗

August 22, 2025

Abstract

These notes have material supplementary to my paper Vertex-Minimal Pa-
per Tori .

1 Introduction

These notes give material supplementary to my paper

[S] R. E. Schwartz, Vertex-Minimal Paper Tori
arXiv 2507.14998

In [S] I presented my discovery of an 8-vertex paper torus. This is a piecewise
affine isometric embedding of a flat torus into R3 such that the result has 8 vertices.
Here are the coordinates up to 32-digit precision. I call it the pup tent . There is a
6-parameter family of inequivalent pup tents. Here is the main one from the paper.

+0.755 +0.650 z0
−0.455 +0.345 z1
−0.170 +1.140 z2
+0.455 −0.345 z1
−0.755 −0.650 z0
−0.090 +0.665 0
+0.170 −1.140 z2
+0.090 −0.665 0

z0 = 0.9805 0571 5859 7793 5561 6538 2008 5693

z1 = 0.9902 8162 4334 3054 2934 3176 1585 8328

z2 = 0.9765 3883 4703 1231 7624 1842 4567 2434

(1)

The notes are something of a grab bag. Here is a guide to their contents.

∗ Supported by N.S.F. Research Grant DMS-2505281

1

• §2 extends the work in [S] to give a proof of the Hull Theorem from the 1991
paper of Bokowski and Eggert. This result says that a 7-vertex embedded
polyhedral torus cannot have all its vertices on its convex hull boundary.

• §3 has all the Java code I used for my proof of the non-existence result in the
7-vertex case.

• §4 gives a folding pattern for the pup tent , the 8-vertex paper torus, as well as
instructions on how to reproduce the folding diagram yourself – up to a point.

• §5 gives me original proof that the pup tent given above is 10−30 flat. This proof
is done with purely integer calculations. In the paper I just feed the example
into Mathematica and rely on its ability to compute elementary functions to
high precisuon.

• §6 gives coordinates for other pup tents. At the moment there is just one.

2

2 The Hull Theorem

2.1 Context

The Hull Theorem says that an embedded 7-vertex convex torus cannot have all 7
vertices on its convex hull boundary. In [S] I prove a somewhat weaker result that
is sufficient to prove that there are no 7-vertex paper tori.

Let me state my result in a different way. Given a 7-vertex embedded polyhedral
torus, a flower is a union of all the triangles incident to a given vertex. Thus there
are 7 flowers, each having 6 triangles. What we actually prove in [S] is that any
7-vertex polyhedral torus with all 7-vertices on its convex hull boundary must have
a flower entirely in the boundary as well. I call this the Hull Lemma.

As we remarked in [S] this situation makes it easy to prove the Hull Theorem.
We just have to rule out a very specific kind of example.

Figure 2.1 shows one of the the 6 internal edge patterns associated to such a
polyheral torus.

Figure 2.1: The one remaining pattern

What we are showing here is (part of) the univeral cover of the 7-vertex triangu-
lation of the torus. Of the 21 edges in the triangulation, 6 of them do not lie in the
convex hull boundary. (The convex hull boundary has 10 faces, and 15 edges, and 7
vertices.) These special 6 edges are drawn thickly in Figure 2.1. The white triangles
are on the convex hull boundary and the pink ones are not.

3

2.2 Projective Space

Let me briefly recall projective geometry Projective space P 3 is the space of lines
through the origin in R4. Points in P 3 are usually denoted by homogeneous coor-
dinates [a : b : c : d]. This point names the line through (a, b, c, d). Euclidean space
R3 sits inside P 3 as the affine patch. These are points of the form [a : b : c : 1].

An invertible 4×4 linear transformation naturally acts on P 3 as a diffeomorphism.
These maps are called projective transformations. If we have a polyhedral torus
contained in the the affine patch, then its convex hull will also be contained in the
affine patch. We can apply a projective transformation that keeps the convex hull in
the affine patch. The image of the torus under this map will also be an embedding.
In this way – and in a slightly extended way – we will move our example around by
projective transformations to get a clearer picture of it.

2.3 The Hull Theorem

Let Ω be an example which supposedly corresponds to Figure 2.1. We think of Ω as
a subset of projective space P 3. We can apply a projective transformation so that
vertex (2) moves to the point [0 : 0 : 1 : 0] at infinity in P 3. This point is “infinitely
far away” along the Z-axis. We also can arrange that the (now) rays (2j) start at
(j) and move downward (rather than upwards) along the Z-axis, limiting on (2). We
do all this by a projective transformation that maps H − {(2)} into the affine patch
R3.

Now, H − {(2)} is still a convex subset in R3. It is like a hexagonal prism that
has been truncated at one end. Here is the crucial observation: since H is convex,
the projection of the hexagon (603541) into the XY -plane is a convex hexagon. We
can further normalize so that the projections of (15) and (36) into the XY -plane
are parallel line segments. We do this by mapping the line [215] ∩ [236] to a line at
infinity which contains (2). Here [abc] is the plane containing (a) and (b) and (c).

3

06

1

4
5

3

06

1

4
5

3

06

1

4
5

Figure 2.2: Projection of part of ∂H into the XY -plane

4

The only triangles of ∂H not in Ω are (036) and (145). By convexity, these two
triangles are bent downward. What we mean is that the plane containing (036) has
the rest of H beneath it. The same goes for the plane containing (145).

The blue triangle in Figure 2.2 is the internal triangle (346). We can foliate this
triangle by parallel line segments as shown in the figure. These segments are parallel
in space and they project to parallel segments in R2. The red triangle in Figure 2.2
is the internal triangle (015). We make all the same constructions for this triangle.

Say that a special planes R3 whose projections to R2 is a line parallel to the
projections of our red and blue foliations. One special plane contains (15). In this
plane, the red foliation is above the blue foliation. Another special plane contains
(36). In this plane, the blue foliation is above the red foliation. So, by the interme-
diate value theorem, there is a special plane for which these two foliations coincide.
But then (015) and (346) intersect. This contradicts the fact that Ω is embedded.

5

3 Java Code

The code for the proof of the Hull Lemma is distributed in two files. The first file
helps manipulate lists. The second file has the actual tests.

3.1 The ListHelp Class

import java.util.Arrays;

public class ListHelp {

/**prints out an integer list*/

public static void printout(int[] list) {

if(list==null) return;

for(int i=0;i<list.length;++i) System.out.print(list[i]+" ");

System.out.println("");

}

/**checks if two lists match up to permutation*/

public static boolean match(int[] a,int[] b) {

if(a.length!=b.length) return false;

int[] aa=Arrays.copyOf(a,a.length);

int[] bb=Arrays.copyOf(b,b.length);

Arrays.sort(aa);

Arrays.sort(bb);

for(int i=0;i<a.length;++i) {

if(aa[i]!=bb[i]) return false;

}

return true;

}

/**checks if element a is amongst the

first k elements of list b*/

public static boolean onList(int a,int[] b,int k) {

for(int i=0;i<k;++i) {

if(a==b[i]) return true;

}

return false;

}

6

/**take an integer list, sorts it, and removes redundancies*/

public static int[] irredundantSortedList(int[] data) {

Arrays.sort(data);

int n=data.length; int[] temp = new int[n];

int count = 0;

for (int i = 0; i < n; ++i) {

if ((i == 0) ||(data[i] != data[i - 1])) {

temp[count] = data[i];

++count;

}}

return Arrays.copyOf(temp, count);

}

/**Gives all the 6 element subsets of {0,...,20} having

0 as the first element*/

public static int[] subsetGenerator(int index) {

int[] subset = {0,0,0,0,0,0};

int x = 1;

for (int i=1; i<6 ;++i) {

while(choose(20-x,5-i)<=index) {

index = index - choose(20 - x, 5 - i);

++x;

}

subset[i] = x;

++x;

}

return subset;

}

/**This returns n choose k.*/

public static int choose(int n,int k) {

int x=1;int y=1;

for(int i=1;i<=k;++i) {

x=x*(n-i+1);

y=y*i;

}

return x/y;

}

7

/**Gets the kth dihedral permutation of list a*/

public static int[] perDihedral(int[] a,int k) {

int n=a.length;

if(k<n) return cycle(a,k);

return reverse(cycle(a,k));

}

/**reverses list a*/

public static int[] reverse(int[] a) {

int n=a.length;

int[] b=new int[n];

for(int i=0;i<n;++i) b[i]=a[n-i-1];

return b;

}

/**cycles list a by k clicks*/

public static int[] cycle(int[] a,int k) {

int n=a.length;

int[] b=new int[n];

for(int i=0;i<n;++i) b[i]=a[(i+k)%n];

return b;

}

8

3.2 The LinkAnalyzer Class

import java.util.Arrays;

public class LinkAnalyzer {

/**This class performs all the tests for the proof of the

Hull Theorem in our paper. The file works with ListHelp.java

to manipulate lists*/

/**Returns kth edge of the complete graph K7. This is also the

1-skeleton of the 7-vertex triangulation of the torus*/

public static int[] edge(int k) {

int[][] f={{0,1},{0,2},{0,3},{0,4},{0,5},{0,6},

{1,2},{1,3},{1,4},{1,5},{1,6},

{2,3},{2,4},{2,5},{2,6},

{3,4},{3,5},{3,6},

{4,5},{4,6},{5,6}};

return f[k];

}

/**Returns kth face in the 7-vertex triangulation of the torus.*/

public static int[] face(int k) {

int[][] f={{0,1,3},{0,5,1},{0,3,2},{0,2,6},{0,4,5},{0,6,4},

{1,2,4},{1,4,3},{1,6,2},{1,5,6},{2,3,5},{2,5,4},

{3,4,6},{3,6,5}};

return f[k];

}

/**This gets the links of each vertex in the torus*/

public static int[] torusLink(int k) {

int[][] L={{1,3,2,6,4,5},{0,5,6,2,4,3},{0,3,5,4,1,6},

{0,1,4,6,5,2},{0,6,3,1,2,5},{0,4,2,3,6,1},{0,2,1,5,3,4}};

return L[k];

}

9

/**This gets the kth choice of 6 element subset of the edges and

then returns the corresponding edges.*/

public static int[][] internalEdges(int k) {

int[] t=ListHelp.subsetGenerator(k);

int[][] list=new int[6][2];

for(int i=0;i<6;++i) {

list[i]=edge(t[i]);

}

return list;

}

/**This gets the triangles incident to the edge

list from the previous routine.*/

public static int[][] internalFaces(int k) {

int[] t=ListHelp.subsetGenerator(k);

int[] list1=new int[12];

int count=0;

for(int i=0;i<6;++i) {

int[] ee=edge(t[i]);

for(int j=0;j<14;++j) {

if(incident(ee,face(j))==true) {

list1[count]=j;

++count;

}

}

}

list1=ListHelp.irredundantSortedList(list1);

int[][] list2=new int[list1.length][3];

for(int i=0;i<list1.length;++i) list2[i]=face(list1[i]);

return list2;}

/**Returns true if edge e is incident to face f.*/

public static boolean incident(int[] e,int[] f) {

if(ListHelp.onList(e[0],f,3)==false) return false;

if(ListHelp.onList(e[1],f,3)==false) return false;

return true;}

10

/**This routine picks a vertex k and returns all the

external edges that are incident to it. We are

careful to maintain the correct cyclic order*/

public static int[] convexLink(int[][] e,int k) {

int[] L=torusLink(k);

int[] list=new int[6];

int count=0;

for(int i=0;i<6;++i) {

int[] ee={k,L[i]};

boolean test=false;

for(int j=0;j<6;++j) {

if(ListHelp.match(ee,e[j])==true) {

test=true;

break;

}

}

if(test==false) {

list[count]=L[i];

++count;

}

}

return Arrays.copyOf(list,count);

}

/**Make sure that consecutive elements are not internal edges.*/

public static boolean onlyAllowedConnections(int[][] e,int[] cycle) {

for(int i=0;i<cycle.length;++i) {

int ii=(i+1)%cycle.length;

int[] L={cycle[i],cycle[ii]};

for(int j=0;j<6;++j) {

if(ListHelp.match(L,e[j])==true) return false;

}

}

return true;}

11

/**This returns the link if it is viable

and otherwise returns null*/

public static int[] getViableCycle(int k,int i) {

int[][] edge=internalEdges(k);

int count=0;

int[] link=LinkAnalyzer.convexLink(edge,i);

if(link.length<3) return null;

if(onlyAllowedConnections(edge,link)==false) return null;

return link;}

/**Tests all the cycles associated to the kth internal

edge pattern. Returns true if they are all viable. */

public static boolean mainTest(int[] filter,int k) {

for(int i=0;i<7;++i) {

int[] cyc=getViableCycle(k,i);

if((filter[i]==1)&&(cyc==null)) return false;

}

return true;}

/**This final test. This is what we run.*/

public void bigTest() {

int count=0;

int[] f={1,1,1,1,1,1,1};

for(int i=0;i<15504;++i) {

if(mainTest(f,i)==true) ++count;

}

System.out.println("count (should be 0) "+count);}

}

12

4 Folding Pattern

4.1 The Triangulation

Here is the triangulation on which the pup tent is based on the following triangula-
tion. The dark blue polygon gives a fundamental domain. The 6 blue triangles are
the ones on the convex hull boundary.

Figure 3.1: The universal cover of the best 8 vertex triangulation

Here is the list of triangles, all oriented counterclockwise.

{0, 1, 2} {0, 3, 1} {0, 2, 4} {0, 5, 3}
{0, 4, 6} {0, 6, 5} {1, 5, 2} {1, 3, 4}
{1, 4, 7} {1, 7, 5} {2, 7, 4} {2, 5, 6}
{2, 6, 7} {3, 6, 4} {3, 5, 7} {3, 7, 6}

Figure 3.2 shows a plot of the intrinsic structure of the pup tent, the flat torus
on which it is based.

13

Figure 3.2: The intrinsic structure.

You can generate your own version of Figure 3.2 using the following 8 vertices
and the two generators λ1, λ2 of the deck group.

Vertices
0 +0.3364 3064 6031, +4.5292 0435 4142

1 -1.2385 1945 0198, +2.7553 7307 2854

2 -1.7092 8291 8080, +3.4566 7231 1107

3 +0.8705 9028 3280, +3.6376 9212 7462

4 -0.7043 5981 2948, +1.8638 6084 6174

5 -0.6445 2775 0478, +3.6845 9670 3719

6 +1.3413 5375 1162, +2.9363 9288 9208

7 +0.2765 9858 3560, +2.7084 6849 6596

Lattice generators
λ1 +2.8228 3653 6730, +1.7738 3128 1287

λ2 -2.4864 0589 0699, +2.7553 7307 2854

(2)

Next, here is a folding pattern based in Figure 3.2. I made this after consulting
with Noah Montgomery and Alba Malaga. Expert folders like them are able to put
this thing together. I have to admit that I can’t actually do it myself.

14

mountain valley

gentle

moderatefold guide

Alba told me that it was important to have a file containing the edges of this
pattern. So, here is a listing of all the edges, without their explicit names. I derived
this list painstakingly from Equation 2.

(0.3364306460, 4.5292043541) − (1.5843170865, 4.5292043541)

(0.3364306460, 4.5292043541) − (1.1135536186, 5.2305035924)

(0.3364306460, 4.5292043541) − (−0.3679291669, 6.3930652003)
(0.3364306460, 4.5292043541) − (−1.1450521395, 5.6917659621)
(0.3364306460, 4.5292043541) − (−0.6445277505, 3.6845967037)
(0.3364306460, 4.5292043541) − (0.8705902833, 3.6376921275)

(1.5843170865, 4.5292043541) − (1.1135536186, 5.2305035924)

(1.1135536186, 5.2305035924) − (−0.3679291669, 6.3930652003)
(−0.3679291669, 6.3930652003) − (−1.1450521395, 5.6917659621)
(−1.1450521395, 5.6917659621) − (−0.6445277505, 3.6845967037)
(−0.6445277505, 3.6845967037) − (0.8705902833, 3.6376921275)

(0.8705902833, 3.6376921275) − (1.5843170865, 4.5292043541)

(−0.6445277505, 3.6845967037) − (0.2765985836, 2.7084684966)

(0.8705902833, 3.6376921275) − (0.2765985836, 2.7084684966)

(0.2765985836, 2.7084684966) − (1.3413537512, 2.9363928892)

(0.8705902833, 3.6376921275) − (1.3413537512, 2.9363928892)

(0.8705902833, 3.6376921275) − (2.1184767238, 3.6376921275)

(1.3413537512, 2.9363928892) − (2.1184767238, 3.6376921275)

(1.5843170865, 4.5292043541) − (2.1184767238, 3.6376921275)

(2.1184767238, 3.6376921275) − (3.0994351203, 4.4822997779)

(1.5843170865, 4.5292043541) − (3.0994351203, 4.4822997779)

(1.5843170865, 4.5292043541) − (2.1783087863, 5.4584279850)

(3.0994351203, 4.4822997779) − (2.1783087863, 5.4584279850)

(1.1135536186, 5.2305035924) − (2.1783087863, 5.4584279850)

(2.1783087863, 5.4584279850) − (1.6777843972, 7.4655972434)

(1.1135536186, 5.2305035924) − (1.6777843972, 7.4655972434)

(1.1135536186, 5.2305035924) − (0.6130292296, 7.2376728507)

(1.6777843972, 7.4655972434) − (0.6130292296, 7.2376728507)

(0.6130292296, 7.2376728507) − (−0.3679291669, 6.3930652003)

16

5 Near Flatness

5.1 The Main Result

Let T be the torus from Equation 1. We say that T is ε-flat if maxa |θa − 2π| < ε.
The maximum is taken over all 8 cone angles. In this chapter we prove the following
result using rational arithmetic.

Lemma 5.1 (Near Flat) T is 10−30-flat.

Let Ω be the integer torus we get by scaling T up by 1032. It suffices to prove
that Ω is 10−30-flat. Again, in [S] I used Mathematica to establish 10−32-flatness.
The proof on [S] only uses 10−16-flatness.

Let θi denote the cone angle of Ω at the (i)th vertex. Here we discuss the idea
behind the rational arithmetic proof of the Near Flat Lemma. Figure 1.3 shows
a plot of the intrinsic flat structure on Ω up to an error of about 10−16. Around
each vertex Vi we have 6 triangles Ti0, ..., Ti5. These triangles do not necessarily fit
perfectly in the plane, but the error is so small that you cannot tell from the naked
eye. Call the union of these 6 triangles a flower . The (i)th flower corresponds to the
(i)th star in Ω, though only approximately.

For our proof below, we compute high precision versions of the flowers, then scale
the coordinates up by 1032, then round down all the coordinate to integers. This
gives us integer models which approximate the geometry of the 8 stars in Ω. Now
something very nice happens. For our scaled-up models, these big integer triangles
fit together perfectly around a vertex. Put another way, for each flower F there are 6
integer vectors V0, ..., V5 such that each of the 6 triangles in F is defined by 2 cyclically
consecutive vectors on the list. We then compute the mismatch between the various
dot products associated to Ω and the corresponding dot products associated to the
integer flowers, and this gives us the Near Flat Lemma. We list the coordinates for
our flowers at the end of the chapter.

Rather than compare the angles, we compare the dot products which go into the
calculation of the angles. We finish off the argument by using the Lipschitz properties
of the function that converts between the relevant dot product ratio and the angle.
We perform exact integer arithmetic calculations using the BigInteger class. Out of
a slight laziness, and a desire for a transparent argument over a tedious exercise that
anyone can perform, we will avail ourselves of the BigDecimal class in Java, which
is perfectly capable of computing the ratios of 64 digit integers up to 100 digits of
precision.

17

5.2 The Proof

Let τab be the (b)th triangle in the (a)th star of Ω and let τ ∗ab be the (b)th triangle in
the (a)th integer flower. Let Vab and Wab be the two vectors that τab defines. By this
we mean that Vab points from vertex a to the first other vertex of τab and Wab points
from vertex a to the second other vertex of τab. (The torus is oriented, so we have
no trouble defining “first” and “second” here.) We define V ∗

ab and W ∗
ab with respect

to τ ∗ab in a similar manner. Let θab and θ∗ab respectively denote the angles of τab and
τ ∗ab at vertex (a).

When r > 0 we have

θ = φ(r), φ(·) = arccos(
√

(·)), r =
(V ·W)(V ·W)

(V · V)(W ·W)
, (3)

We take the positive branch of the square root function here.
We have 48 = 8 × 6 pairs of triangles to check. We get the following bounds

which work uniformly for all these pairs:

1. r, r∗ ∈ I := [.00112, .77714] for all a, b.

2. |r − r∗| < 1.07× 10−32.

3. V ·W > 0 and V ∗ ·W ∗ > 0.

Lemma 5.2 φ is 15-lipschitz on I.

Proof: We compute that ∣∣∣∣dφdt
∣∣∣∣ =

1

2
√
t(1− t)

.

Establishing our bound is the same as establishing that

225− 1

4t(1− t)
> 0, ∀t ∈ I

Establishing this bound is a routine exercise in algebra (or calculus) which we omit. ♠

Combining Lemma 5.2 with our calculations, and remembering that our flowers
have 6 triangles in them, we see that Ω is ε-flat when

ε = 6× 15× 1.07× 10−32 < 10−30.

This completes the proof of the Near Flat Lemma.

18

5.3 The Integer Flowers


124788644050109876602825361295674 0 0
77712297261878079581593486900079 70129923825301614779354253224291 0
−70435981294870011898311359845207 186386084617464728269924163644524 0
−148148278556748091479904846745286 116256160792163113490569910420232 0
−98095839650912348417428186459704 −84460765042234115458262663828023 0
53415963724939232100166950154753 −89151222668009434223254123690615 0




84465310291672221527450441188266 0 0
69550368811175622953657281341642 103609612884589392577024128236871 0
−34241316280724259280029981722340 108947382985381561571026048979621 0
−103791685091899882233687263063983 5337770100792168994001920742749 0
−88338793860668172702704004953884 −123183133805664642986337651698562 0
44045801850979783812535215764631 −101107834979521394561120290119996 0




104677635440723967179988723412878 0 0
12034998257537687883214969911430 83603513440581754781321562053477 0
−94317081172076477932017348008492 54413409707656384418499405421507 0
−191630826036432582723537220778797 −128131286236400952463466737043786 0
−97313744864356104791519872770305 −182544695944057336881966142465293 0
32097662001199218957367514938600 −185561707945141208999189687748482 0




151584388889297911866446233050267 0 0
56495441368939829023723230650622 94715849040541184436182819641071 0
−49223826337965360195502746428317 68639664650392174112843586146043 0
−124728889560435721214027036255644 −3861320096243261090662872882149 0
−68579908206882346371371696550992 −91317009315546418606880471182019 0
56148981353553374842655339704651 −87455689219303157516217598299871 0




199251097863976649156276288186992 0 0
161120818626134715906111075736407 97485840852430004244786950552576 0
−44330167652533400164597159444753 121619286399136814961872050344316 0
−102277745880424119662590582022408 −18451785319703080875434679167189 0
−44113235471988020751569542690915 −116731435954750256516337414942322 0
38130279237841933250165212450584 −97485840852430004244786950552577 0




206863556376741568622946129706945 0 0
3647481315941312863078263678069 108826590670126188269802629065616 0

−75789172382575842209671187858145 80117590481155307070115264260041 0
−116999860561305386939755847152992 −65757376990228984547591251604189 0
−41210688178729544730084659294848 −145874967471384291617706515864231 0
58216001420386574195913238485630 −115617091154199741307099293537955 0



188317304997339823174158679929020 0 0
17841734520938330693404444524334 103145915434133734843279705318812 0
−80328865359490685097501135729666 26108658194654254413402678301333 0
−69693027059078945150953187346448 −83662494202455064363150318793564 0
93593941525210768327841471388803 −210666025048595406864753841069280 0
163286968584289713478794658735251 −127003530846140342501603522275717 0




151584388889297911866446233050267 0 0
95435407535744537023790893345615 87455689219303157516217598299870 0
−56239231360498057885401519560362 199072046789130364493850160222280 0
−105719267706905189219225977078940 −26076184390149010323339233495028 0
−56495441368939829023723230650623 −94715849040541184436182819641072 0
95088947520358082842723002399644 −94715849040541184436182819641072 0



19

6 Other Pup Tents

I imagine that this section will grow as I learn more about the parameter space of
pup tents. Here is the best example I have found.

+0.78 −0.62 z0
+0.25 +0.51 z1
+1.09 +0.38 z2
−0.25 −0.51 z1
−0.78 +0.62 z0
+0.64 +0.20 0
−1.09 −0.38 z2
−0.64 −0.20 0

z0 = 0.9917 7247 8544 3862 8354 4208 7452 1339

z1 = 0.9951 4687 2293 4807 1279 5909 2520 3831

z2 = 0.9793 3367 3330 1556 3840 1007 6628 1139

(4)

20

