Some Symplectic Geometry

1 The Goal

The purpose of these notes is to explain (to myself) the three basic facts about
symplectic manifolds, Hamiltonian vector fields, and the Poisson bracket. I
wrote these notes by filling in the proofs of the claims made on the Lie
derivatives page of Wikipedia.

Let M be a smooth (2n)-dimensional manifold and let w be a symplectic
form on M. This means that w is a closed nondegenerate 2-form. For any
function f : M — R we introduce the Hamiltonian Hy. It has the property
that

w(Hy, W) = W1 = df(W); &

for any vector field W. You need the nondegeneracy of w to guarantee the
existence of Hy. We also define the Poisson bracket

{f,9} =w(Hy, Hy) (2)
Here are the three basic facts.

1. The flow generated by Hy preserves f. That is, Hy is tangent to the
level sets of f. This fact is easy: df(Hy) = w(Hy, Hf) = 0. That’s it.

2. The flow generatd by Hj preserves w. That is, the flow is a symplec-
tomorphism for each time value.

3. If {f,¢g} = 0 then Hf and H, generate commuting flows.

These three basic facts are all you need to understand the miracle of
completely integrable systems. A completely integrable system on M is a
collection fi, ..., f,, of functions such that {f;, f;} = 0 for all 4,5 and such
that the vector fields {Hq, ..., H,} are linearly independent.

The generic common level set L of { f1, ..., f,,} is an n-dimensional compact
smooth manifold, and the vectors Hy, ..., H, generate pairwise commuting
flows tangent to L. But then these flows give coordinate charts from L to
R" in which the overlap functions are translations. This forces L to be a
torus, and each flow to be an isometric motion in the given coordinates.

The rest of the notes are devoted to proving Fact 2 and Fact 3.



2 The Lie Derivative

Let M be a smooth manifold and let V' be a vector field on M. Suppose that
M generates the flow ¢, : M — M. For a function f, we have

Lvf=S(fos)=Vi=di(V) g

Here V f is the directional derivative of f along V.
If W is another vector field, we define

Lo = 5 ((67).00)) = V1w )

So, if we are interested at the derivative at the point p, we evaluate the vector
field W at ¢;(p) and map the vector back to the tangent plane at p using the
tangent map of ¢; *.

If w is a differential form, we define

Lyw = = (67 @), 9

Suppose that w is a 2-form and X, Y are vector fields. Then w(X,Y) is
a function. From the product rule

Ly (w(X,Y)) = (Lyw)(X,Y) + w([V, X],Y) + w(X, [V, Y]). (6)

Equation 6 is one of the key equations we will use when establishing Fact 3
about symplectic geometry.

We introduce the contraction operator iy, which maps (n + 1)-forms to
n-forms. Here is the formula

(iVﬁ)(Xla---an> :5(V7X17~-~7Xn)- <7>
We have Cartan’s formula
Ly =iv(dB) + d(iv3). (8)

This holds for any differential form 3. We wil prove Cartan’s formula below,
in the case we need. Cartan’s formula is the key equation we need to establish
Fact 2 about symplectic geometry.



3 Some Cases of Cartan’s Formula

We need Cartan’s formula for 1-forms and for closed 2-forms. Here we prove
these 2 cases. For closed 2-forms, Cartan’s formula reduces to

va = d(va) (9)

Lemma 3.1 If Cartan’s formula holds for 1-forms, then Cartan’s formula
holds for closed 2-forms.

Proof: Let w be a closed 2-form. Cartan’s formula is a local calculation,
and so we may assume that w = da where « is a closed 1-form. The pullback
map commutes with the d-operator. Hence L and d commute. This gives us

Lyw = Ly(da) = d(Lya) = d(iyda) + d(d(iva)) = d(Iyw),  (10)

since 2 =10. #

Lemma 3.2 Cartan’s formula holds for 1-forms.

Proof: Any 1-form can be expressed as a finite sum Y, f;dg; for smooth
functions f; and g;. So, it suffices to prove Cartan’s formula for fdg. Using
the fact that d and L commute, we have

Ly (fdg) = fLy(dg) + (V f)dg = fd(Lvg) + (V f)dg = fd(Vg) + (Vf)c<l9~>
11
On the other hand

ivd(fdg) = iv(df Ndg) =iv(df @ dg —dg @ df) = (V f)dg — (Vg)df, (12)

and
d(iv(fdg)) = d(fVg) = fd(Vg) + (Vg)df. (13)
Adding the last two equations, we get that
ivd(fdg) +d(Iy(fdg)) = fd(Vg) + (Vf)dg = Ly (fdg), (14)

so it works. &



4 Proof of the Facts

Fact 2: We first prove Fact 2. This amounts to showing that Ly w = 0 when
V' = H;. Using the special case of Cartan’s formula, we have

The point here is that iz, (w)(X) = w(Hy, X) = df (X), by definition. That’s
the proof.

Fact 3: We will show that Hysg = [Hy, Hy|, the Lie bracket of Hy and
H,. When {f, g} = 0 it means that [H;, Hj] = 0, and this means that Hy
and H, generate commuting flows.

Let V = Hf and W = H,. Below we will derive the identity.

i[v’w}w = d(lvlww) (15)
Assuming this identity, we get the following for any vector field X:
w([Hﬁ Hg]? X) = w([V, W]a X) = Z'[V,W]W(X> -

d(iviww)(X) = Xw(V,W) = X{f, 9} = w(Hsg, X). (16)

This proves what we want. It only remains to prove Equation 15. Choose X
to be a vector field which commutes with V. We have the identity

Ly(wW, X)) = (Lyw)(W, X) + w(LyW, X) + w(W, Ly X ) = w([V, W], X).

(17)
Here we have used the fact that Lyw = 0 and LyW = [V, W] and Ly X = 0.
Since Equation 17 is true for any choice of commuting X, and we can arrange
for such a vector field to be arbitrary at a point of interest to us, we get

Let a@ = iy (w). Note that a = dg. Hence dao = 0. Applying Cartan’s
formula to «, we have

Lv(Zw(W)) = Lva = d(@vO&) = d(ZvZWw) (19)

Equation 15 comes from putting together Equations 18 and 19.



