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Abstract

This is Paper 2 of series of 7 self-contained papers which together
prove the Melnyk-Knopf-Smith phase transition conjecture for 5-point
energy minimization. (Paper 0 has the main argument.) This paper
deals with the big computer assisted part of the proof.

1 Introduction

1.1 Context

During the past decade I have written several versions of a proof that rig-
orously verifies the phase-transition for 5 point energy minimization first
observed in [MKS], in 1977, by T. W. Melnyk, O, Knop, and W. R. Smith.
See [S0] for the latest version. This work implies and extends my solution
[S1] of Thomson’s 1904 5-electron problem [Th]. Unfortunately, after a
number of attempts I have not been able to publish my work on this. Even
though I have taken great pains to make the proof modular and checkable,
the monograph still gives the impression of being too difficult to referee.

Now I am taking a new approach. I have broken down the proof into
a series of 7 independent papers, each of which may be checked without
any reference to the others. The longest of the papers is 20 pages. The
drawback of this approach is twofold. First, there will necessarily be some
redundancy in these papers. Second, none of the papers has a blockbuster
result in itself. To help offset the second drawback, I will state the main
result in full in each paper, and I will try to explain how the small result
proved in each paper relates to the overall goal.
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1.2 The Phase Transition Result

Let S2 be the unit sphere in R3. Given a configuration {pi} ⊂ S2 of N
distinct points and a function F : (0, 2]→ R, define

EF (P ) =
∑

1≤i<j≤N
F (‖pi − pj‖). (1)

This quantity is commonly called the F -potential or the F -energy of P .
A configuration P is a minimizer for F if EF (P ) ≤ EF (P ′) for all other
N -point configurations P ′.

We are interested in the Riesz potentials:

Rs(d) = d−s, s > 0. (2)

Rs is also called a power law potential , and R1 is specially called the Coulomb
potential or the electrostatic potential . The question of finding the N -point
minimizers for R1 is commonly called Thomson’s problem.

We consider the case N = 5. The Triangular Bi-Pyramid (TBP) is the
5 point configuration having one point at the north pole, one point at the
south pole, and 3 points arranged in an equilateral triangle on the equator.
A Four Pyramid (FP) is a 5-point configuration having one point at the
north pole and 4 points arranged in a square equidistant from the north
pole.

Define

15+ = 15 +
25

512
. (3)

Theorem 1.1 (Phase Transition) There exists ש ∈ (15, 15+) such that:

1. For s ∈ (0, (ש the TBP is the unique minimizer for Rs.

2. For s = ש the TBP and some FP are the two minimizers for Rs.

3. For each s ∈ ,ש) 15+) some FP is the unique minimizer for Rs.

The proof has many moving parts. The largest part involves eliminat-
ing all the configurations and energy exponents outside a set of the form
Υ× [13, 15+] using a computer-assisted divide-and-conquer algorithm. This
paper details the divide-and-conquer calculation.
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1.3 The Result in This Paper

In order to state the precise result proved here, I first need to introduce
some background information.

Stereographic Projection: Let S2 ⊂ R3 be the unit 2-sphere. Stere-
ographic projection is the map Σ : S2 → R2 ∪ ∞ given by the following
formula.

Σ(x, y, z) =

(
x

1− z
,

y

1− z

)
. (4)

Here is the inverse map:

Σ−1(x, y) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
, 1− 2

1 + x2 + y2

)
. (5)

Σ−1 maps circles in R2 to circles in S2 and Σ−1(∞) = (0, 0, 1).

Avatars: Stereographic projection gives us a correspondence between 5-
point configurations on S2 having (0, 0, 1) as the last point and planar con-
figurations:

p̂0, p̂1, p̂2, p̂3, (0, 0, 1) ∈ S2 ⇐⇒ p0, p1, p2, p3 ∈ R2, p̂k = Σ−1(pk). (6)

We call the planar configuration the avatar of the corresponding configura-
tion in S2. By a slight abuse of notation we write EF (p1, p2, p3, p4) when we
mean the F -potential of the corresponding 5-point configuration.

Figure 1 shows the two possible avatars (up to rotations) of the triangular
bi-pyramid, first separately and then superimposed. We call the one on the
left the even avatar , and the one in the middle the odd avatar . The points
for the even avatar are (±1, 0) and (0,±

√
3/3). When we superimpose the

two avatars we see some extra geometric structure that is not relevant for
our proof but worth mentioning. The two circles respectively have radii 1/2
and 1 and the 6 segments shown are tangent to the inner one.

0

1

2

3

02

3

1

02

even odd both

Figure 1: Even and odd avatars of the TBP.
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Even and Odd Avatars: We call a pair of points p̂, q̂ ∈ S2 far if ‖p̂− q̂‖ ≥
4/
√

5. Note that (p̂, q̂) is a far pair if and only if (q̂, p̂) is a far pair. Our
rather strange definition has a more natural interpretation in terms of the
avatars. If we rotate S2 so that p̂ = (0, 0, 1) then q = Σ(q̂) lies in the disk
of radius 1/2 centered at the origin if and only if (p̂, q̂) is a far pair.

We say that a point in a 5-point configuration is odd or even according
to the parity of the number of far pairs it makes with the other points in
the configuration. Correspondingly, define the parity of the avatar to be
the parity of the number of points which are contained in the closed disk
of radius 1/2 about the origin. This extends our definition for the TBP
avatars.

We call 2 avatars isomorphic if the corresponding 5-point configurations
on S2 are isometric. Every avatar is isomorphic to an even avatar. To see
this, we form a graph by joining two points in a 5-point configuration by
an edge if and only if they make a far pair. As for any graph, the sum of
the degrees is even. Hence there is some vertex having even degree. When
we rotate so that this vertex is (0, 0, 1), the corresponding avatar is even.
By focusing on the even avatars, and further using symmetry, we arrive at
a configuration space where there is just one TBP avatar.

The Big Domain: Given an avatar ξ = (p0, p1, p2, p3), we write pk =
(pk1, pk2). We define a domain Ω ⊂ R7 to be the set of avatars ξ satisfying
the following conditions.

1. ξ is even.

2. ‖p0‖ ≥ max(‖p1‖, ‖p2‖, ‖p3‖).

3. p12 ≤ p22 ≤ p32 and p22 ≥ 0.

4. p01 ∈ [0, 2] and p01 = 0.

5. pj ∈ [−3/2, 3/2]2 for j = 1, 2, 3.

6. min(p1k, p2k, p3k) ≤ 0 for k = 1, 2.

We define Ω[ to be the same domain except that we leave off Condition 6.

The Definite Neighborhood: We specially treat avatars very near the
TBP. When we string out the points of ξ0, we get (1, 0,−u,−1, 0, 0, u) where
u =

√
3/3. The space indicates that we do not record p02 = 0. We let Ω0

denote the cube of side-length 2−17 centered at ξ0.
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The Special Domain: We let Υ ⊂ (R2)4 denote those avatars p0, p1, p2, p3
such that

1. ‖p0‖ ≥ ‖pk‖ for k = 1, 2, 3.

2. 512p0 ∈ [433, 498]× [0, 0]. (That is, p0 ∈ [433/512, 498/512]× {0}.)

3. 512p1 ∈ [−16, 16]× [−464,−349].

4. 512p2 ∈ [−498,−400]× [0, 24].

5. 512p3 ∈ [−16, 16]× [349, 464].

As we discussed above, Υ contains the avatars that compete with the TBP
near the exponent .ש

p0

p1

p2

p3

Figure 2: The sets defining Υ compared with two TBP avatars.

The Special Potentials: Rather than work with the Riesz potentials, we
work with potentials that have a more polynomial flavor.

Gk(r) = (4− r2)k. (7)

Also define

G[
5 = G5− 25G1, G]]

10 = G10 + 28G5 + 102G2, G]
10 = G10 + 13G5 + 68G2

Here is our first result. This one has a pretty short proof.
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Theorem 1.2 (Containment) The following is true:

1. Let F = G4, G6, G
]
10. If ξ is not isomorphic to any avatar in Ω then

then ξ does not minimize EF .

2. Let F = G[
5. If ξ is not isomorphic to any avatar in Ω[ then then ξ

does not minimize EF .

Here is the main result of this paper. We state it in a conditional way.

Theorem 1.3 (Calculation) Assume the truth of Lemma E, described in
§3. Then the following is true

1. The TBP is the unique minimizer for G4, G
[
5, G6 amongst 5-point con-

figurations which have avatars in Ω− Ω0.

2. The TBP is the unique minimizer for G]
10 among 5-point configura-

tions which have avatars in Ω− Ω0 −Υ.

3. The TBP is the unique minimizer for G]]
10 among 5-point configura-

tions which have avatars in Υ.

We give the proof of Lemma E in a separate paper.
Combining these results we get the following corollary.

Corollary 1.4 Assume the truth of Lemma E. Then the following true

1. The TBP is the unique minimizer for G4, G
[
5, G6, G

]]
10 amongst config-

urations which are not represented by avatars in Ω0.

2. The TBP is the unique minimizer for G]
10 among 5-point configura-

tions which have are not represented by avatars in Υ ∪ Ω0.

Proof: The only non-obvious point is the statement about G]]
10. Since the

TBP is a global minimizer for G1 and (uniquely so) for G[
5 on Ω − Ω0, we

see that the TBP is the unique minimizer for G5 on Ω−Ω0. Since the TBP
is the unique minimizer for G]

10 and G5 and (by Tumanov’s result [T]) G2

on Ω − Ω0 − Υ we see that the TBP is the unique minimizer for G]]
10 on

Ω − Ω0 − Υ. This combines with Statement 3 of the Calculation Theorem
to show that the TBP is the unique minimizer for G]]

10 on Ω− Ω0. ♠
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1.4 How This Fits In

In Paper 4 we prove the following result.

Theorem 1.5 (Interpolation) Let T0 be the TBP. Then

1. Suppose s ∈ (0, 13] and T is any 5-point configuration. If we have

F (T0) < F (T ) for all F = G4, G5, G6, G
]]
10 then ERs(T0) < ERs(T ).

2. Suppose s ∈ [13, 15+] and T is any 5-point configuration. If we have

F (T0) < F (T ) for all F = G[
5, G

]
10 then ERs(T0) < ERs(T ).

The Interpolation Theorem and Corollary 1.4 combine to prove the fol-
lowing result.

Theorem 1.6 Assume the truth of Lemma E. Let T0 be the TBP. Then

1. Suppose s ∈ (0, 13] and T is any 5-point configuration not represented
by an avatar in Ω0. Then ERs(T0) < ERs(T ).

2. Suppose s ∈ [13, 15+] and T is any 5-point configuration not repre-
sented by an avatar in Ω0 ∪Υ. Then ERs(T0) < ERs(T ).

To be clear, what we mean in these results is that when a configuration is
not represented by an avatar in a certain set, no isomorphic configuration is
so represented.

1.5 Paper Organization

In §2 we prove the Containment Theorem. In §3 we describe Lemma E.
In §4 we describe our calculation modulo Lemma E and thereby prove the
Calculation Theorem. The end of §3 has the details of our calculation.

The Calculation Theorem is a massive computer-assisted calculation,
the main one in the monograph. We will explain carefully how we do the
calculation and then give a record of it.
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2 Proof of the Containment Theorem

Let ξ0 be an avatar of the TBP. Let [F ] = EF (ξ0). Since the TBP has 6
bonds of length

√
2, and 3 of length

√
3, and 1 of length

√
4, we have

[Gk] = 6× 2k + 3. (8)

Using this result, and the formulas for our energy functions, we compute

[G4] = 99, [G6] = 387, [G[
5] = −180, [G]

10] = 10518. (9)

Let ξ = p0, p1, p2, p3 some other avatar.

Lemma 2.1 Let F = G6, G
[
5, G

]
10. If ‖p0‖ > 3/2 then ξ does not minimize

EF . If F = G4 then ξ does not minimize EF provided that either ‖p0‖ > 2
or ‖p0‖, ‖pj‖ > 3/2 for some j = 1, 2, 3.

Proof: Let τj be the term in EF corresponding to the pair (pj , p4). Rather
than work with G[

5 we work with G∗5 = G[
5 + 30 so that all our functions are

non-negative on (0, 2]. We have [G∗5] = 120. When ‖p0‖ > 3/2 we check that

τ0 > 450, 123, 26909, which respectively exceeds [G6], [G
∗
5], [G

]
10]. (We check

this by computing that the distance involved is at most d0 = 4/
√

13 and that
F is monotone decreasing on [0, d0]. Then we evaluate F (d0) in each case.)
Now we treat the case F = G4. When ‖p0‖ > 2 we have τ0 > 104 > [G4].
When ‖p0‖, ‖pi‖ > 3/2 we have τ0 + τj > 58 + 58 > [G4]. ♠

Lemma 2.2 If min(p1k, p2k, p3k) > 0 and F is strictly monotone decreasing,
then ξ does not minimize EF .

Proof: The corresponding 5-point configuration in S2 is contained in a
hemisphere H, and at least 3 of the points are in the interior of H. If we
reflect one of the interior points across ∂H then we increase at least 2 of the
distances in the configuration and keep the rest the same. ♠

Assume ξ is a minimizer for EF . As we have already discussed in the
definition of even and odd avatars, we normalize so that ξ is even. Reordering
p0, p1, p2, p3 and rotating, about the origin, we make ‖p0‖ ≥ ‖pi‖ for i =
1, 2, 3 and we move p0 into the positive x-axis. Reflecting in the x-axis if
necessary and reordering the points p1, p2, p3 if necessary, we arrange that
p12 ≤ p22 ≤ p32 and p22 ≥ 0. Lemma 2.1 tells us that, in all cases, p01 ∈ [0, 2]
and pj ∈ [−3/2, 3/2]2 for j = 1, 2, 3. We have also arranged that p02 = 0.
For F = G[

5 we have nothing left to check. Otherwise, Lemma 2.2 shows
that ξ satisfies min(p1k, p2k, p3k) ≤ 0 for k = 1, 2, 3.
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3 Statement of Lemma E

3.1 Preliminary Definitions

Energy Hybrids: Recall that Gk(r) = (4 − r2)k. We say that an energy
hybrid is a potential of the form

F =
m∑
k=1

ckGk, Gk(r) = (4− r2)k, c1 ∈ Q, c2, ..., ck ∈ Q+. (10)

We normalize our avatars so that p0 lies on the positive X-axis. In this way,
and by stringing out the coordinates, we identify an avatar with a point in
R7 = R × (R2)3. Thus we think of the potential EF as a function on R7.
It will turn out that we only need to consider points in the cube �3/2 where

�r := [0, r]× [−r, r]r × [−r, r]r × [−r, r]2. (11)

Dyadic Subdivision: The dyadic subdivision of a D-dimensional cube is
the list of 2D cubes obtained by cutting the cube in half in all directions. We
sometimes blur this terminology and say that any one of these 2D smaller
cubes is a dyadic subdivision of the big cube.

Blocks: We define a block to be a product of the form

B = Q0 ×Q1 ×Q2 ×Q3 ⊂ �3/2, (12)

where Q0 is a segment and Q1, Q2, Q3 are squares, each obtained by iterated
dyadic subdivision respectively of [0, 2] and [−2, 2]2.

We call B acceptable if Q0 has length at most 1 and Q1, Q2, Q3 have
sidelength at most 2. If B is not acceptable we let the offending index be
the lowest index where the condition fails.

The kth subdivision of a block amounts to performing dyadic subdivision
to the kth factor and leaving the others alone. We call these operations
S0, S1, S2, S3. Thus S0 cuts B into two pieces and each other Sk cuts B into
4 pieces for k = 1, 2, 3. We let Sk(B) denote the list of the blocks obtained
by performing Sk on B. All the blocks our algorithm produces come from
iterated subdivision of �2. (We toss out those which do not lie in �3/2.)

3.2 The Main Calculation

We only work with acceptable blocks. We letQ denote the set of components
of acceptable blocks. The elements ofQ are either dyadic seqments in [0, 3/2]
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or dyadic squares in [−3/2, 3/2]2. Thanks to the subdivision process, each
of these squares lies on one of the quadrants of the plane - it does not cross
the coordinate axes. We also let {∞} be a member of Q.

We first define 4 basic measurements we take of members in Q.

0. The Flat Approximation: Let Σ−1 be inverse stereographic pro-
jection, as in Equation 5. Given Q ∈ Q we define

Q• = Convex Hull(Σ−1(v(Q)). (13)

Q• is either the point (0, 0, 1), a chord of S2 or else a convex planar quadri-
lateral with vertices in S2 that is inscribed in a circle. We let d• be the
diameter of Q•. The quantity d2• is a rational function of the vertices of Q.

1. The Hull Approximation Constant: We think of Q• as the lin-
ear approximation to

Q̂ = Σ−1(Q). (14)

The constant we define here turns out to measure the distance between Q̂
and Q•. When Q = {∞} we define δ(Q) = 0. Otherwise, let

χ(D, d) =
d2

4D
+

(d2)2

4D3
. (15)

This wierd function turns out to be an upper bound to a more geometrically
meaningful non-rational function that computes the distance between an
chord of length d of a circle of radius D and the arc of the circle it subtends.

When Q is a dyadic segment we define

δ(Q) = χ(2, ‖q̂1 − q̂2‖). (16)

Here q1, q2 are the endpoints of Q. When Q is a dyadic square we define

δ(Q) = max(s0, s2) + max(s1, s3), sj = χ(1, ‖qj − qj+1‖). (17)

Here q1, q2, q3, q4 are the vertices of Q and the indices are taken cyclically.
These are rational computations because χ(2, d) is a polynomial in d2.

2. The Dot Product Estimator: By way of motivation, we point out
that if V1, V2 ∈ S2 then

Gk(‖V1 − V2‖) = (2 + 2V1 · V2)k.
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Now suppose that Q1 and Q2 are two dyadic squares. We set δj = δ(Qj).
Given any p ∈ R2 ∪∞ let p̂ = Σ−1(p). Define

Q1 ·Q2 = max
i,j

(q̂1i · q̂2j) + (τ)× (δ1 + δ2 + δ1δ2). (18)

Here {q1i} and {q2j} respectively are the vertices ofQ1 andQ2. The constant
τ is 0 if one of Q1 or Q2 is {∞} and otherwise τ = 1. Finally, we define

T (Q1, Q2) = 2 + 2(Q1 ·Q2). (19)

3. The Local Error Term: For Q1, Q2 ∈ Q and k ≥ 1 we define

εk(Q1, Q2) =
1

2
k(k − 1)T k−2d21 + 2kT k−1δ1, (20)

where
d1 = d•(Q1), δ1 = δ(Q1), T = T (Q1, Q2).

One of the terms in the error estimate comes from the analysis of the flat
approximation and the second term comes from the analysis of the difference
between the flat approximation and the actual subset of the sphere. The
quantity is not symmetric in the arguments and εk({∞}, Q2) = 0.

4. The Global Error Estimate: Given a block Q0 × Q1 × Q2 × Q3

we define

ERRk(B) =

N∑
i=0

ERRk(B, i), ERRk(B, i) =
∑
j 6=i

ε(Qi, Qj). (21)

More generally, when F =
∑
ckGk is as in Equation 10, we define

ERRF (B) =

N∑
k=0

ERRF (B, i), ERRF (B, i) =
∑
|ck| ERRk(B, i)

(22)
Here is the main result.

Lemma 3.1 (E) Let B be a acceptable block. Let F = Gk for any k ≥ 1
or F = −G1. Then

min
p∈B
EF (v) ≥ min

p∈v(B)
Ek(v)−ERRk(B)
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4 Proof of the Calculation Theorem

4.1 The Four Calculation Ingredients

We say that a rational block computation is a finite calculation, only involv-
ing the arithmetic operations and min and max. The output of a rational
block computation will be one of two things: yes, or an integer. A return of
an integer is a statement that the computation does not definitively answer
to the question asked of it. If the integer is −1 then there is no more in-
formation to be learned. If the integer lies in {0, 1, 2, 3} we use this integer
as a guide in our algorithm. Let Ω0 and Υ be as in the Calculation Theorem.

Ingredient 1: We describe a rational block computation C1 such that
an output of yes for a block B implies that B ⊂ Ω0.

Define intervals I0, I1, I√3/3 such that

I0 = [−2−17, 2−17], I1 = [1− 2−17, 1 + 2−17] 230I√3/3 = [619916940, 619933323] (23)

I√3/3 is a rational interval that is just barely contained inside the interval

of length 2−17 centered at
√

3/3. Define

Ω00 = (I1 × {0})× (I0 ×−I√3/3)× (−I1 × I0)× (I0 × I√3/3). (24)

We have Ω00 ⊂ Ω0, though just barely. There are 128 vertices of B. We
simply check whether each of these vertices is contained in Ω00. If so then
we return yes. In practice our program scales up all the coordinates by 230

so that this test just involves integer comparisons.

Ingredient 2: We describe a rational block computation C3 such that
an output of yes for an acceptable block B implies that B is disjoint from
the interior of Ω. The same goes for Ω[.

Let B = Q0 × Q1 × Q2 × Q3 be an acceptable block. These blocks
are such that the squares Q1, Q2, Q3 do not cross the coordinate axes. For
such squares, the minimum and maximum norm of a point in the square is
realized at a vertex. Thus, we check that a square lies inside (respectively
outside) a disk of radius r centered at the origin by checking that the square
norms of each vertex is at most (respectively at least) r2.

We check whether there is an index j ∈ {1, 2, 3} such that all vertices of
Qj have norm at least maxQ0. We return yes if this happens, because then
all avatars in the interior of B will have some pj with ‖pj‖ > ‖p0‖.

We check whether there is an index j ∈ {1, 2, 3} such that all vertices
of Qj have norm at least 3/2. If so, we return yes. If this happens then
‖p0‖, ‖pj‖ > 3/2 for all avatars in the interior of B.
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We count the number a of indices j such that the vertices of Qj all have
norm at most 1/2. We then count the number b of indices j such that all
vertices of Qj have norm at least 1/2. We return yes if a is odd and a+b = 4.
In this case, every avatar in the interior of B is odd.

We write I ≤ J to indicate that all values in an interval I are less or
equal to all values in an interval J . We also allow I and J to be single points
in this notation. For each j = 0, 1, 2, 3 we let Qjk be the projection of Qj

onto the kth factor. Thus Qj1 and Qj2 are both line segments in R.
We return yes for any of the following reasons.

• If Qjk ≤ −3/2 or Qjk ≥ 3/2 for any j = 1, 2, 3 and k = 1, 2.

• Q12 ≥ Q22 or Q12 ≥ Q32 or Q22 ≥ Q32 or Q22 ≤ 0.

• Qj1 ≥ 0 for j = 1, 2, 3 or Qj2 ≥ 0 for j = 1, 2, 3.

If any of these things happens, all avatars in Q violate some condition for
membership in the interior of Ω. We don’t check the last item for Ω[.

Ingredient 3: We describe a rational block computation C]
3 such that

an output of yes for a block B implies that B ⊂ Υ. Likewise, there exists
a rational block computation C]]

3 such that an output of yes for a block B
implies that B is disjoint from Υ.

For C]
3 we return yes if all the vertices of B lie in Υ. For C]]

3 we re-
turn yes if one of the factors of B is disjoint from the corresponding factor
of Υ. This amounts to checking whether a pair of rational squares in the
plane are disjoint. We do this using the projections defined for Lemma A132.

Ingredient 4: For any function F given by Equation 10, we describe a
rational block computation C4,F such that an output of yes for an accept-
able block B implies that the minimum of EF on B is at least EF (ξ0)+2−50.
Otherwise C4,F (B) is an integer in {0, 1, 2, 3}. Our calculation refers to
Lemma E, described in the previous chapter.

Let B be an acceptable block. Let F be an energy hybrid. Let [F ] denote
the F -potential of the TBP. If

min
p∈v(B)

EF (v)−ERRk(B) ≥ [F ] + 2−50 (25)

we return yes. Otherwise we return the index i such that ERRF (B, i) is
the largest. In case of a tie, which probably never happens, we pick the
lowest such index. ♠
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4.2 The Computational Algorithm

Here is the main calculation.

1. We start with the list L = {�}.

2. If L = ∅ then HALT. Otherwise let B = Q0 × Q1 × Q2 × Q3 be the
last block of L.

3. If B is not acceptable we delete B from L and append to L the subdi-
vision of B along the offending index. We then return to Step 2. Any
blocks considered beyond this step are acceptable.

4. If C1(B) = yes or C2(B) = yes we remove B from L and go to Step
2. Here we are eliminating blocks disjoint from the interior of Ω or
else contained in Ω0.

5. If F = G]
10 and C]

3(B) = yes we remove B from L and go to Step 2.

If F = G]]
10 and C]]

3 (B) = yes we remove B from L and go to Step 2.

6. If C4,F (B) = yes then we remove B from L and go to Step 2. Here we
have verified that the F -energy of any avatar in B exceeds [F ] + 2−50.

7. If C4,F (B) = k ∈ {0, 1, 2, 3} then we delete B from L and append to
L the blocks of the subdivision Sk(B) and return to step 2.

Remark: There is one fine point of our calculation. We eliminate blocks
which are disjoint from the interior of Ω or Ω[. This is not a problem
because any point in the boundary is also contained in a block that is not
disjoint from the interior of our domain.

4.3 Discussion of the Implementation

Representing Blocks: We represent the coordinates of blocks by longs,
which have 31 digits of accuracy. What we list are 230 times the coordi-
nates. Our algorithm never does so many subdivisions that it defeats this
method of representation. In all but the main step (Lemma A134) in the al-
gorithm below we compute with exact integers. When the calculation (such
as squaring a long) could cause an overflow error, we first recast the longs

as a BigIntegers in Java and then do the calculations.

Interval Arithmetic: For the main step of the algorithm we use inter-
val arithmetic. We use the same implementation as we did in [S1], where
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we explain it in detail. Here is how it works in brief. If we have a calculation
involving numbers r1, ..., rn, and we produce intervals I1, ..., In with dyadic
rational numbers represented exactly by the computer such that ri ∈ Ii for
i = 1, ..., n. We then perform the usual arithmetic operations on the inter-
vals, rounding outward at each step. The final output of the calculation, an
interval, contains the result of the actual calculation.

In our situation here, the numbers r1, ..., rn are, with one exception,
dyadic rationals. (The exception is that the coordinates of the point rep-
resenting the TBP are quadratic irrationals.) In principle we could do the
entire computation, save for this one small exception, with expicit integer
arithmetic. However, the complexity of the rationals involved, meaning the
sizes of their numerators and denominators, qets quite large this way and
the calculation is too slow.

One way to think about the difference between our explicitly defined ex-
act integer arithmetic and interval arithmetic is that the integer arithmetic
interrupts the calculation at each step and rounds outward so as to keep the
complexity of the rational numbers from growing too large.

Guess and Check: Here is how we speed up the calculation. When we do
Steps 6-7, we first do the calculation C4,F using floating point operations. If
the floating version returns an integer, we use this integer to subdivide the
box and return to step 2. If C4,F says yes then we retest the box using the
interval arithmetic. In this way, we only pass a box for which the interval
version says yes. This way of doing things keeps the calculation rigorous
but speeds it up by using the interval arithmetic as sparingly as possible.

Parallelization: We also make our calculation more flexible using some
parallelization. We classify each block B = Q0 × Q1 × Q2 × Q3 with a
number in {0, ..., 7} according to the formula

type(B) = σ(c01 − 1) + 2σ(c11) + 4σ(c31) ∈ {0, ..., 7}.

Here cj1 is the first coordinate of the center of Bj and σ(x) is 0 if x < 0 and
1 if x > 0. Step 3 of our algorithm guarantees that σ(·) is always applied to
nonzero numbers.

We wrote our program so that we can select any subset S ⊂ {0, ..., 7}
we like and then (after Step 3) automatically pass any block whose type
is not in S. Running the algorithm in parallel over sets which partition
{0, ..., 7} is logically the same as running the basic algorithm without any
parallelization. To be able to do the big calculations in pieces, we run the
program for various subsets of {0, ..., j}, sometimes in parallel.
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4.4 Record of the Calculation

If the algorithm reaches the HALT state for a given choice of F , this consti-
tutes a proof that the corresponding statement of the Computation Theorem
is true. In fact this happens in all cases.

Here I give an account of one time I ran the computations to completion
during January 2023. I used a 2017 iMac Pro with a 3.2 GHz Intel Zeon
W processor, running the Mojave operating system. I ran the programs
using Java 8 Update 201. (The Java version I use is not the latest one.
The graphical parts of my program use some methods in the Applet class
in a very minor but somehow essential way that I find hard to eliminate.)
In listing the calculations I will give the approximate time and the exact
number of blocks passed. Since we use floating point calculations to guide
the algorithm, the sizes of the partitions can vary slightly with each run.

For G4 : 2 hrs 14 min, 10848537 blocks.

For G6: 5 hr 11 min, 25159337 blocks.

For G[
5 types 1&2: 2 hr 31 min, 6668864 blocks.

For G[
5 types 3&4: 1 hr 55 min, 4787489 blocks.

For G[
5 types 5&6: 5 hr 33 min, 14160332 blocks.

For G[
5 types 7&8: 3 hr 49 min, 9219550 blocks.

For G]
10 type 1: 4 hr 23 min, 6885912 blocks.

For G]
10 type 2: 9 hr 47 min, 15982122 blocks.

For G]
10 type 3: 3 hr 47 min, 5872029 blocks.

For G]
10 type 4: 7 hr 59 min, 13475260 blocks.

For G]
10 type 5: 8 hr 30 min, 13313492 blocks.

For G]
10 type 6: 15 hr 16 min, 24110457 blocks.

For G]
10 type 7: 5 hr 19 min, 7862780 blocks.

For G]
10 type 8: 8 hr 33 min, 13478467 blocks.

For G]]
10 (on the domain Υ): 28 minutes, 805242 blocks.
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