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Abstract

This is Paper 5 of series of 7 self-contained papers which together
prove the Melnyk-Knopf-Smith phase transition conjecture for 5-point
energy minimization. (Paper 0 has the main argument.) This paper
deals with symmetrization in the critical region of moduli space.

1 Introduction

1.1 Context

During the past decade I have written several versions of a proof that rig-
orously verifies the phase-transition for 5 point energy minimization first
observed in [MKS], in 1977, by T. W. Melnyk, O, Knop, and W. R. Smith.
See [S0] for the latest version. This work implies and extends my solution
[S1] of Thomson’s 1904 5-electron problem [Th]. Unfortunately, after a
number of attempts I have not been able to publish my work on this. Even
though I have taken great pains to make the proof modular and checkable,
the monograph still gives the impression of being too difficult to referee.

Now I am taking a new approach. I have broken down the proof into
a series of 7 independent papers, each of which may be checked without
any reference to the others. The longest of the papers is 20 pages. The
drawback of this approach is twofold. First, there will necessarily be some
redundancy in these papers. Second, none of the papers has a blockbuster
result in itself. To help offset the second drawback, I will state the main
result in full in each paper, and I will try to explain how the small result
proved in each paper relates to the overall goal.
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1.2 The Phase Transition Result

Let S2 be the unit sphere in R3. Given a configuration {pi} ⊂ S2 of N
distinct points and a function F : (0, 2]→ R, define

EF (P ) =
∑

1≤i<j≤N
F (‖pi − pj‖). (1)

This quantity is commonly called the F -potential or the F -energy of P .
A configuration P is a minimizer for F if EF (P ) ≤ EF (P ′) for all other
N -point configurations P ′.

We are interested in the Riesz potentials:

Rs(d) = d−s, s > 0. (2)

Rs is also called a power law potential , and R1 is specially called the Coulomb
potential or the electrostatic potential . The question of finding the N -point
minimizers for R1 is commonly called Thomson’s problem.

We consider the case N = 5. The Triangular Bi-Pyramid (TBP) is the
5 point configuration having one point at the north pole, one point at the
south pole, and 3 points arranged in an equilateral triangle on the equator.
A Four Pyramid (FP) is a 5-point configuration having one point at the
north pole and 4 points arranged in a square equidistant from the north
pole.

Define

15+ = 15 +
25

512
. (3)

Theorem 1.1 (Phase Transition) There exists ש ∈ (15, 15+) such that:

1. For s ∈ (0, (ש the TBP is the unique minimizer for Rs.

2. For s = ש the TBP and some FP are the two minimizers for Rs.

3. For each s ∈ ,ש) 15+) some FP is the unique minimizer for Rs.

The proof has many moving parts. The largest part involves eliminat-
ing all the configurations and energy exponents outside a set of the form
Υ× [13, 15+] using a computer-assisted divide-and-conquer algorithm. This
paper discusses the region Υ× [12,∞). This region, which looks somewhat
contrived, contains those FPs which compete with the TPB for energy ex-
ponents s reasonably near .ש
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1.3 Results

We begin with some background definitions.

Stereographic Projection: Let S2 ⊂ R3 be the unit 2-sphere. Stere-
ographic projection is the map Σ : S2 → R2 ∪ ∞ given by the following
formula.

Σ(x, y, z) =

(
x

1− z
,

y

1− z

)
. (4)

Here is the inverse map:

Σ−1(x, y) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
, 1− 2

1 + x2 + y2

)
. (5)

Σ−1 maps circles in R2 to circles in S2 and Σ−1(∞) = (0, 0, 1).

Avatars: Stereographic projection gives us a correspondence between 5-
point configurations on S2 having (0, 0, 1) as the last point and planar con-
figurations:

p̂0, p̂1, p̂2, p̂3, (0, 0, 1) ∈ S2 ⇐⇒ p0, p1, p2, p3 ∈ R2, p̂k = Σ−1(pk). (6)

We call the planar configuration the avatar of the corresponding configura-
tion in S2. By a slight abuse of notation we write EF (p0, p1, p2, p3) when we
mean the F -potential of the corresponding 5-point configuration.

First Domain: We let Υ ⊂ (R2)4 denote those avatars such that

1. ‖p0‖ ≥ ‖pk‖ for k = 1, 2, 3.

2. 512p0 ∈ [433, 498]× [0, 0]. (That is, p0 ∈ [433/512, 498/512]× {0}.)

3. 512p1 ∈ [−16, 16]× [−464,−349].

4. 512p2 ∈ [−498,−400]× [0, 24].

5. 512p3 ∈ [−16, 16]× [349, 464].

As we discussed above, Υ contains the avatars that compete with the TBP
near the exponent .ש The two rhombi in Figure 1 indicate avatars associated
to the TBP.
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Figure 1: The sets defining Υ compared with two TBP avatars.

First Symmetrization: Let (p0, p1, p2, p3) be an avatar with p0 6= p2.
Define

−p∗2 = p∗0 = (x, 0), −p∗1 = p∗3 = (0, y), x =
‖p0 − p2‖

2
, y =

‖π02(p1 − p3)‖
2

.

(7)

Here π02 is the projection onto the subspace perpendicular to p0− p2. The
avatar (p∗1, p

∗
2, p
∗
3, p
∗
4) lies in K4, the set of avatars which are invariant under

reflections in the coordinate axes.

Theorem 1.2 (Symmetrization I) Let s ≥ 12 and (p0, p1, p2, p3) ∈ Υ.
Then

ERs(p
∗
0, p
∗
1, p
∗
2, p
∗
3) ≤ ERs(p0, p1, p2, p3)

with equality if and only if the two avatars are equal.

Second Domain: Let Ψ]
4 denote the set (p0, p1, p2, p3) ∈K4 with

−p2 = p0 = (x, 0), −p1 = p3 = (0, y), 512(x, y) ∈ [440, 448]. (8)

Ψ]
4 contains the avatar representing the FP which ties with the TBP at s = .ש
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Second Symmetrization: We define

σ(x, y) = (z, z), z =
x+ y + (x− y)2

2
. (9)

Theorem 1.3 (Symmetrization II) If s ∈ [14, 16] and p ∈ Ψ]
4 then we

have Es(σ(p)) ≤ Es(p) with equality if and only if σ(p) = p.

Symmetrization operations like those above will in general surely fail,
due to the vast range of possible configurations. However, certain operations
might work well in very specific parts of the configuration space and for
limited ranges of exponents. For example, the operation σ is extremely
delicate. If we take the exponent s = 13, the operation actually seems to
increase the energy. I tested various symmetrization schemes experimentally
until I found ones adapted to the critical regimes defined above.

Proving that the first symmetrization lowers the energy seems to involve
studying what happens on the tiny but still 7-dimensional moduli space Υ.
The secret to the proof is that, within Υ, the symmetrization operation is
so good that it reduces the energy in pieces. What I mean is that the 10
term sum for the energy can be written as

e1 + ....+ e10 = (e1 + e2) + (e3 + e4) + (e5 + e6 + e7) + (e8 + e9 + e10)

so that the symmetrization operation decreases each bracketed sum sep-
arately. This reduces us to establishing some lower-dimensional inequali-
ties. Proving that the second symmetrization lowers energy is a delicate
2-dimensional problem. The proof relies on an algebraic miracle.

Some experts in this problem might get excited that the Symmetrization
Theorem I works for all exponents s ≥ 12. Might this shed light on high
energy minimizers? Alas, no. When s is very large, the domain Υ does not
contain the candidate minimizers.

1.4 Paper Organization

In §2 I will present some computational tools which will help with the anal-
ysis. In §3 I will prove the Symmetrization Theorem II, because this is
shorter. In §4 I will prove the Symmetrization Theorem I.

The proofs in this paper are computer-assisted. All calculations are
done using exact arithmetic in Mathematica. The reader can download and
inspect the files I wrote for this.
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2 Preliminaries

2.1 Exponential Sums

We begin with two easy and well-known lemmas about exponential sums.

Lemma 2.1 (Convexity) Suppose that α, β, γ ≥ 0 have the property that
α+ β ≥ 2γ. Then αs + βs ≥ 2γs for all s > 1, with equality iff α = β = γ.

Proof: This is an exercise with Lagrange multipliers. ♠

Given a real single-variable polynomial f(x), the number of positive
roots of f (counted with multiplicity) is at most the number of changes in
the signs of the coefficients. This statement is included in a more precise
result known as Descartes’ Rule of Signs.

Lemma 2.2 (Descartes) Let 0 < r1 ≤ ... ≤ rn < 1 be a sequence of
positive numbers. Let c1, ..., cn be a sequence of nonzero numbers and let
σ1, ..., σn be the corresponding sequence of signs of these numbers. Define

E(s) =
n∑
i=1

ci r
s
i . (10)

Let K denote the number of sign changes in the sign sequence. Then E
changes sign at most K times on R.

Proof: Suppose we have a counterexample. By continuity, perturbation,
and taking mth roots, it suffices to consider a counterexample of the form∑
cit

ei where t = rs and r ∈ (0, 1) and e1 > ... > en ∈N . As s ranges in r,
the variable t ranges in (0,∞). But P (t) changes sign at most K times on
(0,∞) by Descartes’ Rule of Signs. This gives us a contradiction. ♠

2.2 Polynomial Operations

1. Positive Dominance: The works [S2] and [S3] give more details about
positive dominance. Here I explain the basics. Let G ∈ R[x1, ..., xn] be a
multivariable polynomial:

G =
∑
I

cIX
I , XI =

n∏
i=1

xIii . (11)
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Given two multi-indices I and J , we write I � J if Ii ≤ Ji for all i. Define

GJ =
∑
I�J

cI , G∞ =
∑
I

cI . (12)

We call G weak positive dominant (WPD) if GJ ≥ 0 for all J and G∞ > 0.
We call G positive dominant if GJ > 0 for all J .

Lemma 2.3 (Weak Positive Dominance) If G is weak positive domi-
nant then G > 0 on (0, 1]n. If G is positive dominant then G > 0 on [0, 1]n.

Proof: We prove the first statement. The second one has almost the same
proof. Suppose n = 1. Let P (x) = a0 + a1x + .... Let Ai = a0 + ... + ai.
The proof goes by induction on the degree of P . The case deg(P ) = 0 is
obvious. Let x ∈ (0, 1]. We have

P (x) = a0 + a1x+ x2x
2 + · · ·+ anx

n ≥

x(A1 + a2x+ a3x
2 + · · · anxn−1) = xQ(x) > 0

Here Q(x) is WPD and has degree n− 1.
Now we consider the general case. We write

P = f0 + f1xk + ...+ fmx
m
k , fj ∈ R[x1, ..., xn−1]. (13)

Since P is WBP so are the functions Pj = f0 + ...+ fj . By induction on the
number of variables, Pj > 0 on (0, 1]n−1. But then, when we arbitrarily set
the first n− 1 variables to values in (0, 1), the resulting polynomial in xn is
WPD. By the n = 1 case, this polynomial is positive for all xn ∈ (0, 1]. ♠

2. Subdivision: Let P ∈ R[x1, ..., xn] as above. For any xj and k ∈ {0, 1}
we define

Sxj ,k(P )(x1, ..., xn) = P (x1, ..., xj−1, x
∗
j , xj+1, ..., xn), x∗j =

k

2
+
xj
2
. (14)

If Sxj ,k(P ) > 0 on (0, 1]n for k = 0, 1 then we also have P > 0 on (0, 1]n.

3. Numerator selection: If f = f1/f2 is a bounded rational function on
[0, 1]n, written in so that f1, f2 have no common factors, we always choose
f2 so that f2(1, ..., 1) > 0. If we then show, one way or another, that f1 > 0
on (0, 1]n we can conclude that f2 > 0 on (0, 1]n as well. The point is that
f2 cannot change sign because then f blows up. But then we can conclude
that f > 0 on (0, 1]n. We write num+(f) = f1.
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3 The Symmetrization Theorem II

Our symmetrization is the map σ from Equation 9, and we always write
(z, z) = σ(x, y). Let φ : [0, 1]2 → Ψ]

4 be the affine isomorphism whose linear
part is a positive diagonal matrix. We use variables (a, b) ∈ [0, 1]2 so that

(x, y) = φ(a, b) ∈ Ψ]
4. For any rational function F : Ψ]

4 → R we define

NF =
num+((F − F ◦ σ) ◦ φ)

q
, q(a, b) = (a− b)2. (15)

For all the choices of F we make, NF will be a polynomial.
Recall that Σ−1(p4) = (0, 0, 1), and define

rij =
1

‖Σ−1(p′i)− Σ−1(p′j)‖
. (16)

We write Es(x, y) = Gs(x, y) +Hs(x, y), where

Gs = rs02 + rs13, Hs = 2ps04 + 2ps14 + 4ps01. (17)

The file LemmaC1.m computes thatNG2 is a WPD polynomial. This combines

with the Convexity Lemma to show Gs − Gs ◦ σ > 0 on Ψ]
4 × (2,∞). To

finish the proof, we need to show Hs −Hs ◦ σ ≥ 0 on Ψ]
4 × [14, 16].

Suppose that there is some (x, y) ∈ Ψ]
4 and some s ∈ [14, 16] such that

h(s) = Hs(x, y) −Hs(z, z) < 0. The file LemmaC21.m computes that −NH2

and NH14 and NH16 are all WPD polynomials. Hence h(2) < 0 and h(14) > 0
and h(16) > 0. Hence h has at least 3 roots in [2, 16].

Let (p0, p1, p2, p3) and (p′0, p
′
1, p
′
2, p
′
3) respectively be the configurations

corresponding to (x, y) and (z, z) = σ(x, y). Without claiming to have the
terms in order, we have

h(s) = +2rs04 − 4(r′04)
s + 2rs14 + 4rs01 − 4(r′01)

s. (18)

By Descartes Lemma, the sign sequence for h changes sign at least 3 times.
Looking at the signs above (two minuses and three pluses) we see that there
must be exactly 3 sign changes (when the terms are put in the correct
order) and moreover the largest sign in the sequence must (+). Otherwise h
eventually goes negative and thus would have a large positive root. Noting
that x ∈ (0, 1) we compute

r201 − r204 =
1− x4

4(x2 + y2)
> 0.

Hence r04 < r01. Likewise r14 < r01. We conclude that r01 must contribute
the final (+) to the sign sequence. But the file LemmaC22.m computes that
−Nr201

is a WPD polynomial. Hence r′01 ≥ r01, a contradiction.
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4 The Symmetrization Theorem I

4.1 Reduction to Four Lemmas

The domain Υ is defined in §1.3. Let X = (p0, p1, p2, p3) be an avatar in Υ.
We perform successive operations on X to arrive at X ′ = (p′0, p

′
1, p
′
2, p
′
3) and

X ′′ = (p′′0, ...), etc. We write Ir = [−r, r].
We let X ′ be the planar configuration which is obtained by rotating X

about the origin so that p′0 and p′2 lie on the same horizontal line, with p′0
lying on the right. Let Υ′ denote the domain of avatars X ′ such that

1. ‖p′0‖ ≥ ‖p′k‖ for k = 1, 2, 3.

2. 512p′0 ∈ [432, 498]× I16. (Compare [433, 498]× I0.)

3. 512p′1 ∈ I32 × [−465,−348]. (Compare I16 × [−464,−349].)

4. 512p′2 ∈ [−498,−400]× I16. (Compare [−498,−400]× [0, 24].)

5. 512p′3 ∈ I32 × [348, 465]. (Compare I16 × [349, 464].)

6. p′02 = p′22. (Compare p02 = 0.)

The comparisons are with Υ. In the next section we prove:

Lemma 4.1 (B1) If X ∈ Υ then X ′ ∈ Υ′.

Given an avatar X ′ ∈ Υ′, there is a unique configuration X ′′, invariant
under under reflection in the y-axis, such that p′j and p′′j lie on the same
horizontal line for j = 0, 1, 2, 3 and ‖p′′0 − p′′2‖ = ‖p′0 − p′2‖. We call this
horizontal symmetrization. In a straightforward way we see that horizontal
symmetrization maps Υ′ into Υ′′, the set of avatars p′′0, p

′′
1, p
′′
2, p
′′
3 such that

1. −512p′′2, 512p′′0 ∈ [416, 498]× I16

2. −512p′′1, 512p′′3 ∈ I0 × [348, 465].

3. p′′02 = p′′22.

Let K4 denote the set of configurations invariant under reflections in
the coordinate axes. Given a configuration X ′′ ∈ Υ′′ there is a unique con-
figuration X ′′ ∈ K4 such that p′′j and p′′′j lie on the same vertical line for
j = 0, 1, 2, 3. We call this operation vertical symmetrization. The configu-
ration X ′′′ coincides with the configuration X∗ defined in Lemma B.
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In summary (and using obvious abbreviations) we have

Υ
−→
Rot Υ′

−→
HS Υ′′

−→
VS K4.

Symmetrization, as an operation on Υ′, is the composition of vertical and
horizontal symmetrization.

Each avatar corresponds to a 5-point configuration on S2 via stereo-
graphic projection. The energy of the 5 point configuration involves 10 pairs
of points. Referring to Equation 16, a typical term is rsij . Given a list L of
pairs of points in the set {0, 1, 2, 3, 4} we define Es(P,L) to be the sum of the
Rs-potentials just over the pairs in L. E.g. L = {(0, 2), (0, 4)} = rs02 + rs04.

We call the subset L good for the parameter s, and with respect to one
of the operations, if the operation does not increase the value of Es(P,L).
We call L great if the operation strictly lowers Es(P,L) unless the operation
fixes P . We mean to take the appropriate domains in all cases. The Sym-
metrization Theorem I follows immediately from Lemma B1 and from the
3 lemmas below.

Lemma 4.2 (B2) The lists {(0, 2), (0, 4), (2, 4)} and {(1, 3), (1, 4), (3, 4)}
are both great for all s ≥ 2 and with respect to symmetrization.

Lemma 4.3 (B3) The lists {(0, 1), (1, 2)} and {(0, 3), (3, 2)} are both good
for all s ≥ 2 and with respect to horizontal symmetrization.

Lemma 4.4 (B4) The lists {(0, 1), (0, 3)} and {(2, 1), (2, 3)} are both good
for all s ≥ 12 and with respect to vertical symmetrization.

4.2 Proof of Lemma B1

We want to prove that if X ∈ Υ then X ′ ∈ Υ′. Rotation about the origin
does not change the norms, so X ′ satisfies Condition 1. Moreover, Condition
6 holds by construction. We must check Conditions 2,3,4,5.

Let ρθ denote the counterclockwise rotation through the angle θ. Since
p0 lies on the x axis and p2 lies on or above it, we have to rotate by a small
amount counterclockwise to get p′0 and p′2 on the same horizontal line. That
is, the rotation moves the right point up and the left one down. Hence
θ ≥ 0. This angle is maximized when p0 is an endpoint of its segment of
constraint and p2 is one of the two upper vertices of rectangle of constaint.
Not thinking too hard which of the 4 possibilities actually realizes the max,
we check for all 4 pairs (p0, p2) that the second coordinate of ρ1/34(p0) is
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larger than the second coordinate of ρ1/34(p0). From this we conclude that
θ < 1/34. This yields

512 cos(θ) ∈ [0, 1], 512 sin(θ) ∈ [0, 16]. (19)

From Equation 19, the map 512p0 → 512p′0 changes the first coordinate
by 512δ01 ∈ [0, 16] and 512δ02 ∈ [−1, 0]. This gives (something stronger
than) Condition 2 for Υ′. At the same time, we have p′21 = p′01 and the
change 512p2 → 512p′2 changes the second coordinate by 512δ21 ∈ [0, 1].
This gives Condition 4 for Υ′ once we observe that |p′21| ≤ |p′01|.

For Condition 3 we just have to check (using the same notation) that
512δ11 ∈ [0, 16] and 512δ12 ∈ [−1, 1]. The first bound comes from the
inequality 512 sin(θ) < 16. For the second bound we note that the angle
that p1 makes with the y-axis is maximized when p1 is at the corners of its
constraints in Υ. That is,

p1 =

(
±16

512
,
349

512

)
.

Since tan(1/21) > 16/349 we conclude that this angle is at most 1/21. Hence

|512δ12| ≤ max
|x|≤1/21

∣∣∣∣ cos

(
x+

1

34

)
− cos(x)

∣∣∣∣ < 1.

This gives Condition 3. The same argument gives Condition 5.

4.3 Proof of Lemma B2

Let s3 =
√

3/3. The significance of this number is that inverse stereographic
projection maps the triangle with vertices (±s3, 0) and ∞ to an equilateral
triangle on S2 having a vertex at (0, 0, 1).

Let (u, v) stand for either (0, 2) or (1, 3). For the points associated with
{(u, v), (u, 4), (v, 4)}. We make the following definitions for au, av, bu, bv > 0.

1. Start with pu, pv so that ‖pu‖, ‖pv‖ < 1 and let au = av be such that

‖pu − pv‖/2 = s3 + au = s3 + av.

Let qu = (−s3 − au, 0) and qv = (s3 + av, 0).

2. Choose bu, bv with bu ≤ au and bv ≤ av. Let

ru = (−s3 − bu, 0), rv = (s3 + bv, 0).

Note that ‖ru − rv‖ ≤ ‖qu − qv‖.
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3. Let p∗u, p
∗
v be images of ru, rv under any rotation about the origin.

We start with (p1, p2, p3, p4) ∈ Υ. This guarantees that au, bu, av, bv > 0.
For the points (pu, pv) our symmetrization operation is a special case of the
map

(pu, pv)→ (p∗u, p
∗
v),

for suitable choice of constants and a suitable rotation.
Recall that p̂ is the image of p under inverse stereographic projection.

Lemma B2 is implied by:

‖r̂u − r̂v‖−s + ‖r̂u − (0, 0, 1)‖−s + ‖r̂v − (0, 0, 1)‖−s ≤

‖p̂u − p̂v‖−s + ‖p̂u − (0, 0, 1)‖−s + ‖p̂v − (0, 0, 1)‖−s (20)

for all s ≥ 2, with equality iff (ru, rv) = (pu, pv) up to rotation about the
origin.

We will establish Equation 20 in two steps.

Lemma 4.5 (B21) Let s ≥ 2 and

As = ‖p̂u − p̂v‖−s − ‖q̂u − q̂v‖−s,

Bs = ‖p̂u − (0, 0, 1)‖−s + ‖p̂v − (0, 0, 1)‖−s − ‖q̂u − (0, 0, 1)‖−s − ‖q̂v − (0, 0, 1)‖−s.

Then As, Bs ≥ 0, with equality iff pu = qu and pv = qv up to a rotation.

Proof: Note that if A2 > 0 then As > 0 for all s > 0. If B2 > 0 then the
Convexity Lemma implies that Bs > 0 for all s > 2. So, it suffices to prove
that A2, B2 > 0. We rotate so that

pu = (−x+ h, y), pv = (x+ h, y), qu = (−x, 0), qv = (x, 0). (21)

We compute

A2 =
h4 + y2(2 + 2x2 + y2) + 2h2(1− x2 + y2)

16x2
, B2 =

y2 + h2

2
. (22)

Since x ∈ (0, 1) we have A2, B2 > 0 unless h = y = 0. ♠

Define

Fs(au, av) = ‖q̂u − q̂v‖−s + ‖q̂u − (0, 0, 1)‖−s + ‖q̂v − (0, 0, 1)‖−s, (23)

Likewise define Fs(bu, bv). Finally, define

E(s) = Fs(au, av)− Fs(bu, bv). (24)
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Lemma 4.6 (B22) E(s) ≥ 0 with equality iff bu = au and bv = av.

Proof: It suffices to prove this result in the intermediate case when au = bu
or av = bv because then we can apply the intermediate result twice to get
the general case. Without loss of generality we consider the case when
av = bv and bu < au. With the file LemmaB22.m – see below – we compute
that ∂F2/∂au and −∂F−2/∂au are both rational functions of au, av with all
positive coefficients. Hence E(2) > 0 and E(−2) < 0.

Consider the sign sequence for E(s). When au = bu, the expression
E(s) is an exponential sum with 4 terms. When au = av = 0 the points
ζ̂u, ζ̂v and (0, 0, 1) make an equilateral triangle on a great circle. Hence,
when au, av, bu, bv > 0 the point ζ̂u is closer to (0, 0, 1) than it is to ζ̂v
both in its old location and in its new location. The inward motion of
the point ζu increases the shorter (corresponding spherical) distance and
decreases the longer (corresponding spherical) distance. More to the point,
our move decreases the longer inverse-distance and increases the shorter
inverse-distance. Thus the sign sequence (§2.1) for E(s) is +,−.−,+.

By Descartes’ Lemma, E(s) changes sign at most twice and also E(s) > 0
when |s| is sufficiently large. Since E(−2) < 0 as see that E changes sign
on (−∞,−2). If E has a root in (2,∞) then in fact E has at least 2 roots
(counted with multiplicity) because it starts and ends positive on this in-
terval. But then E has at least 3 roots, counting multiplicity. This is
contradiction. Hence E(s) > 0 for s ≥ 2. ♠

4.4 Proof of Lemma B3

The domain Υ′ is symmetric with respect to reflection in the X-axis. Thanks
to this symmetry, it suffices to prove Lemma B3 for the list {(0, 1), (1, 2)}.
We set qj = p′j and q′j = p′′j .

We introduce the notation q1 = (q10, q11), etc. The horizontal sym-
metrization operation is given by

(q0, q1, q2)→ (q′0, q
′
1, q
′
2),

where

q′0 =

(
q01 − q21

2
, q02

)
, q′1 = (0, q21), q′2 =

(
q21 − q01

2
, q22

)
,

(25)
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Note that ‖q′0 − q′1‖ = ‖q′2 − q′1‖. This means that the kind of inequality we
are trying to establish has the form 2As ≤ Bs + Cs for choices of A,B,C
which depend on the points involved. Therefore, by the Convexity Lemma,
it suffices to prove that {(0, 1), (1, 2)} is good for the parameter s = 2.

Let D denote the set of triples of points (q0, q1, q2) ∈ (R2)3 such that
there is some q3 such that q0, q1, q2, q3 ∈ Υ′. Most of our proof involves find-
ing a concrete parametrization of a subset of R6 that contains D. Note that
D is really a 5 dimensional set, because q22 = q02. We will use parameters
a, b, c, d, e to parametrize a subset of R6 that contains D.

We define

[a, b, t] =
a(1− t)

512
+

bt

512
. (26)

Here F512(a, b, ·) maps the interval [0, 1] onto the interval [a, b]/512. Given
(a, b, c, d, e) ∈ [0, 1]5 and σ1, σ2 ∈ {−,+} we define

p0 = ([+416,+498, a] + [0, 49, e], [0, 16σ1, b]);
p1 = ([0, 32σ2, d], [348, 465, c]);
p2 = ([−416,−498, a] + [0, 49, e], [0, 16σ1, b]);

(27)

We call this map φσ1,σ2 . In these coordinates, horizontal symmetrization is
the map

(a, b, c, d, e)→ (a, b, c, 0, 0). (28)

We have two steps we need to take. First we really need to show that we
have parametrized a superset of D. Second, we need to calculate the energy
change as a function of a, b, c, d, e and check at it decreases.

Lemma 4.7 (B31) We have

D ⊂ φ+,+([0, 1]5) ∪ φ+,−([0, 1]5) ∪ φ−,+([0, 1]5) ∪ φ−.−([0, 1]5).

Proof: Recall that qi = (qi1, qi2). Let Dij denote the set of possible coor-
dinates qij that can arise for points in D. Thus, for instance

D01 = [−16, 16]/512.

Let D∗ij denote the set of possible coordinates qij that can arise from the
union of our parametrizations. By construction Di2 ⊂ D∗i2 for i = 0, 1, 2 and
D11 ⊂ D∗11.

Remembering that we have q01 ≥ |q21|, we see that the set of pairs
512(q01, q21) satisfying all the conditions for inclusion in D lies in the triangle
∆ with vertices

(498,−498), (498,−400), (432,−400).
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At the same time, the set of pairs (512)(p∗01, p
∗
21) that we can reach with our

parametrization is the rectangle ∆∗ with vertices

(498,−498), (416,−416), (498,−498)+(49, 49), (416,−416)+(49, 49).

One checks easily that hence ∆ ⊂ ∆∗. Indeed, ∆ is inscribed in ∆∗. ♠

Using our coordinates above, we define

F±,±(a, b, c, d, e) = ‖q̂0 − q̂1‖−2 + ‖q̂2 − q̂1‖−2,

Φ±,±(a, b, c, d, e) = num+(F±,±(a, b, c, d, e)− F±,±(a, b, c, 0, 0)). (29)

Here q0, q1, q2 are the points which correspond to (a, b, c, d, e) under our map
φ±,± and q̂0, q̂1, q̂2 are their images under inverse stereographic projection.
To finish our proof, we just have to show that Φ±,±(a, b, c, d, e) ≥ 0 on [0, 1]5.
The following lemma, and continuity, gives us this result.

Lemma 4.8 (B32) For any sign choice, Φ±,± > 0 on (0, 1)5.

Proof: We let Φa = ∂Φ/∂a, and likewise for the other variables. Iterating
this notation, we let Φaa, etc., denote the second partials.

Let Φ be any of the 4 polynomials. The file LemmaB32.m – see below –
computes that

1. Φ and Φd and Φe are zero when d = e = 0.

2. Φdd and Φee are weak positive dominant, hence nonnegative on [0, 1]5.

3. Φd + 2Φe is weak positive dominant, hence nonnegative on [0, 1]5.

Let Qd ⊂ [0, 1]5 be the sub-cube where d = 0. We fix (a, b, c) and consider
the single variable function φ(d) = Φ(a, b, c, d, 0). From Items 1 and 2 above,
φ(0) = φ′(0) = 0 and φ′′(d) ≥ 0. Hence φ(d) ≥ 0 for d ≥ 0. Hence Φ ≥ 0 on
Qd. A similar argument shows that likewise Φ ≥ 0 on Qe.

Any point in (0, 1)5 can be joined to a point in Qd ∪ Qe by a line seg-
ment L which is parallel to the vector (0, 0, 0, 1, 2). From Item 3 above, Φ
increases along such a line segment as we move out of Qd∪Qe. Hence Φ ≥ 0
on [0, 1]5. ♠
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4.5 Proof of Lemma B4

The set Υ′′ is symmetric with respect to reflections in both coordinate axes.
Thanks to these symmeties, it suffices to prove that {(0, 1), (0, 3)} is good
for all s ≥ 12, and it suffices to consider the case when p′′02 ≥ 0. That is, the
point p0 lies on or above the X-axis. For ease of notation set qk = p′′k and
q′k = p′′′k . We are considering the case when q02 ≥ 0.

Let D be the set of configurations (q0, q1, q3) such that q02 ≥ 0 and
(q0, q1, q2, q3) ∈ Υ′′ when q2 is the reflection of q0 in the Y -axis. Let D± ⊂ D
denote those configurations with ±(q12+q32) ≥ 0. Obviously D = D+∪D−.

The sets D± are 4-dimensional subsets of (R2)3. We parametrize a
superset of D± much as we did in the proof of Lemma B3. As in Equation
26 we define

[a, b, t] =
(1− t)a

512
+

bt

512
.

Given (a, b, c, d) ∈ [0, 1]4 and σ ∈ {+,−} we define

p0 = ([416, 498, b], [0, 16, d]);
p1 = (0,−[348, 465, a] + [0, 59σ, c]);
p3 = (0,+[348, 465, a] + [0, 59σ, c]);

(30)

We call this map φσ. In these coordinates, the symmetrization operation is
(a, b, c, d)→ (a, b, 0, 0).

Lemma 4.9 (B41) D± ⊂ φ±([0, 1]4).

Proof: This is just like the proof of Lemma B31. The only non-obvious
point is why every pair (p12, p32) is reached by the map φ±. The essential
point is that for configurations in D± we have 512|p12 + p32| ≤ 2× 59. ♠

Following the same idea as in the proof of Lemma B3, we define

Fs,±(a, b, c, d) = ‖Σ−1(q0)− Σ−1(q1)‖−s + ‖Σ−1(q0)− Σ−1(q3)‖−s, (31)

Φs,±(a, b, c, d) = num+(Fs,±(a, b, c, d)− Fs,±(a, b, 0, 0)). (32)

The points on the right side of Equation 31 are coordinatized by the map
φ±. We can finish the proof by showing that φ2,+ ≥ 0 and φ12,− ≥ 0 on
[0, 1]4. The Convexity Lemma then takes care of all exponents greater than
2 on D+ and all exponents greater than 12 on D−. Notice the asymmetry
in the calculation. The (+) side is much less delicate.
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Lemma 4.10 (B42) Φ2,+ ≥ 0 on [0, 1]4.

Proof: Let Φ = Φ2,+. Let Φ|c=0 denote the polynomial we get by setting
c = 0. Etc. Let Φc = ∂Φ/∂c, etc. The Mathematica file LemmaB42.m com-
putes that Φ|c=0 and Φ|d=0 and Φc+ Φd are weak positive dominant. Hence
Φ ≥ 0 when c = 0 or d = 0 and the directional derivative of Φ in the direc-
tion (0, 0, 1, 1) is non-negative. This suffices to show that Φ ≥ 0 on [0, 1]4. ♠

Lemma 4.11 (B43) Φ12,− ≥ 0 on [0, 1]4.

Proof: The file LemmaB43.m has the calculations. Let Φ = Φ12,−. This
monster has 102218 terms.

Step 1: Let M denote the maximum coefficient of Φ. We let Φ∗ be the
polynomial we get by taking each coefficient of c of Φ and replacing it with
floor(1010c/M). Note that if Φ∗ is nonnegative on [0, 1]4 then so is Φ.

Step 2: Now Φ∗ has 37760 monomials in which the coefficient is −1. We
check that each such monomial is divisible by one of c2 or d2 or cd. Let

Ψ = Φ∗∗ − 37760(c2 + d2 + cd),

where Φ∗∗ is obtained from Φ∗ by setting all the (−1) monomials to 0. We
have Ψ ≤ Φ∗ on [0, 1]4. Hence, if Ψ is non-negative on [0, 1]4 then so is Φ∗.
The polynomial Ψ has 5743 terms.

Step 3: We check that Ψaaa is WPD and hence non-negative on [0, 1]4.
This massive calculation reduces us to showing that the restrictions Ψ|a=0

and Ψa|a=0 and Ψaa|a=0 are all non-negative on [0, 1]3. Consider

f |c=0, f |d=0 4fc + fd, (33)

We show that all three functions are WPD when either f = Ψa|a=0 or
f = Ψaa|a=0. This shows that Ψa|a=0 and Ψaa|a=0 are non-negative on
[0, 1]3. Also, we show that the first two functions are WPD when f = Ψ|a=0.

Step 4: Let g = 4fc + fd ≥ 0 on [0, 1]3 when f = Ψ|a=0. We check that gd
is WPD and hence non-negative on [0, 1]3. This reduces us to showing that
h = g|d=0 is non-negative on [0, 1]2. here h is a 2-variable polynomial in
b, c. Referring to the operation in §2.2, we check that the two subdivisions
Sb,0(h) and Sb,1(h) are WPD. This proves h ≥ 0 on [0, 1]2. ♠
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