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Abstract

We prove that there does not exist a piecewise affine isometric
embedding of a flat torus into R3 whose image has 7 veertices.

1 Introduction

1.1 Context

A flat polyhedral torus is a piecewise affine isometric embedding

φ : T → Ω ⊂ R3.

Here T is a flat torus, the quotient of R2 by a lattice of translations, and φ
preserves arc lengths of curves. The map φ tells how to build a torus out of
finitely many triangles so that the cone angle around each vertex is 2π.

Surprisingly, flat polyhedral tori exist. The 1960 paper of Y. Burago
and V. Zalgaller [BZ1] gives the first constructions. The 1985 paper [BZ2]
proves that one can realize every isometry class of flat torus as some flat
polyhedral torus. Their construction produces examples with thousands of
faces. The 2024 preprint of F. Lazarus and F. Tallerie [LT] gives a universal
triangulation, with thousands of faces, which does the job simultaneously for
all isometry types.

The work (in progress) [ALM] of P. Arnoux, S. Lelievre, and A. Malaga
gives a different construction which achieves every isometry class of flat poly-
hedral tori using far fewer faces than in the other cited works. Specifically,
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they prove that the simple and elegant flat tori described by Ulrich Brehm
[Br] in 1978 can be made flat. I will leave it to those authors to tell that
story.

In 2025, Vincent Tugayé [T], discovered a 9-vertex flat polyhedral torus.
(Tugayé is one of Lelievre’s housemates, a physics teacher with a PhD in
physics and an interest in mathematics.) This beautiful example seems like
it might realize the minimum. We conjecture that the minimum number of
vertices needed for a flat polyhedral torus is 9.

1.2 The Seven Vertex Case

Let us discuss the 7-vertex case. The minimum number of triangles one
needs to triangulate a torus is 7, and there is only one such triangulation
up to combinatorial isomorphism. This triangulation is shown in Figure 1.
The triangulation gives the famous embedding of the complete graph K7 in
a torus. This is often called the Moebius Torus . We are drawing part of the
universal cover as well as a fundamental domain consisting of 7 hexagons.

Figure 1: The 7-vertex triangulation of a torus

In 1949, Császár [Cs] showed that the Moebius torus has a polyhedral
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embedding. Császár’s polyhedral embedding Ω is specified by giving coordi-
nates for the vertices P0, ..., P6. With our labeling, the coordinates are

(0, 0, 15), (3, 3, 0), (−3,−3, 1), (−1,−2, 3), (1, 2, 3), (3, 3, 1), (3,−3, 0).

This torus has 2-fold rotational symmetry and its convex hull contains 5 of
the 7 vertices. See e.g. [G], [HLZ], and [L] for more detail and a discussion
of related topics. The Császár torus is not flat. Could some other embedding
of the Moebius torus be flat?

The 1991 paper [BE] of J. Bokowski and A. Eggert gives an exhaustive
study of the combinatorial types of 7-vertex polyhedral tori, but they do not
address the question of flatness. In my opinion, had they done so they most
likely would have been able to answer it. Anyway, here is the answer:

Theorem 1.1 (Main) No flat polyhedral torus has 7 vertices.

A key step in the proof of the Main Theorem is

Theorem 1.2 (Hull) A 7-vertex polyhedral torus cannot have 7 vertices in
its convex hull.

This is one of the main results in [BE], though they did not name the
result. See the comment after after [BE, Theorem 3.7]. The proof of the
Hull Theorem in [BE] goes through the authors’ complete classification of
combinatorial types using oriented matroids. This is an extensive computer-
assisted enumeration.

I will give an independent and much lighter (though still computer as-
sisted) proof of the Hull Theorem. The computer part of the proof is combi-
natorial and uses exact calculations. I include the code in §3. The Java user
interface I use to run the code, as well as all the code, can be downloaded at
www.math.brown.edu/∼res/Java/SevenTorus.tar

1.3 Acknowledgements

I would like to thank the Samuel Lelievre and Alba Malaga-Sabogal for telling
me all about flat tori (over a period of some years) and in particular telling me
about the flatness problem and supplying me with some historical context. I
would like to thank the IHES, the Hamilton Institute, and the Isaac Newton
Institute, where I worked on this paper. I would like to thank chat gpt for
help evaluating and formatting my computer code.

3



2 The Main Theorem

2.1 The Proof Modulo the Hull Theorem

Lemma 2.1 If γ is a spherical polygonal loop of length at most 2π then γ
lies in some hemisphere of S2.

Proof: This is well known. Let S2 denote the round unit 2-sphere. The
space of oriented great circles in S2 is canonically bijective with S2 itself, and
inherits a canonical probability measure σ. Given a spherical polygon γ and a
great circle σ, we let #(σ∩γ) denote the number of intersection points. (We
can ignore the finitely many great circles for which this is infinite.) Crofton’s
formula [S] says that

length(γ) = π

∫
S

#(σ ∩ γ) dσ. (1)

Now suppose that γ is a spherical polygon of length less than 2π. Crofton’s
formula says that some great circle σ intersects γ at most once. But then γ
lies in one of the two hemispheres defined by σ. When γ has length exactly
2π we can shorten γ a bit by cutting a small corner off. The shortened curve
then lies in a hemisphere. Taking a limit as the cut corner tends to 0 in
length, we see that γ itself lies in a hemisphere. ♠

Call a vertex of Ω interior if it does not lie in the convex hull boundary.
By the Hull Theorem, each 7-vertex polyhedral torus has at least one interior
vertex P . We show that the cone angle θ at P exceeds 2π.

Let L denote the union of rays which emanate from P and go through
the other 6 vertices of Ω. Two rays of L are consecutive if they go through
points which are adjacent in the combinatorial link of P . Let L̂ denote the
union of acute convex sectors we get by filling in every pair of consecutive
rays by the acute sector they bound. The intersection of L̂ with the unit S2

centered at P is a spherical polygon γ whose length equals θ.
Since P is in the interior of the convex hull of Ω and since L̂ contains

all the vertices of this convex hull, we see that L̂ cannot lie in any halfspace
bounded by a plane through origin. This means that γ cannot lie in any
hemisphere of S2. By Lemma 2.1, we see that γ has length greater than 2π.
But then θ > 2π.

This completes the proof of the Main Theorem, modulo the Hull Theorem.

4



2.2 Proof of the Hull Theorem: Combinatorics

We suppose that Ω is an embedded 7-vertex polyhedral torus having 7 points
on its convex hull H. We can perturb so that the points are in general
position. This makes H into a triangulated solid polyhedron with 7 vertices,
15 edges, and 10 faces. One property we will use repeatedly and is that Ω is
neighborly : Every two vertices of Ω are joined by an edge in the triangulation.
In particular, every edge of H is an edge of the triangulation of Ω.

Of the 21 edges of Ω, exactly 15 lie in ∂H. We call these the external
edges . We call the remaining 6 edges internal edges . We say that an internal
edge pattern is a choice of 6 distinguished edges from the 1-skeleton of the
triangulation, normalized (by symmetry) so that the first internal edge is
(01). There are

(
20
5

)
= 15504 different internal edge patterns.

We say that an external triangle of Ω is one that lies in ∂H, and an
internal triangle is one that does not. Each internal edge is incident to two
internal triangles.

Lemma 2.2 An internal triangle cannot be bounded by 3 external edges.

Proof: Suppose that such a triangle exists. Call it τ . If all three edges of
τ lie in ∂H and τ 6⊂ ∂H then τ separates H into two components, both of
which contain vertices of Ω in their interior. Any path in H connecting two
such vertices must intersect τ . On the other hand Ω− τ is path connected.
This is a contradiction. ♠

By Lemma 2.2, the internal edge pattern determines the set of internal
triangles and the set of external triangles. It is worth pointing out a triangle
of ∂H is not necessarily a triangle of Ω. However, its boundary is one of the
35 three cycles contained in the triangulation of Ω.

Lemma 2.3 All 6 internal edges cannot be incident to the same vertex.

Proof: Suppose all the internal edges are incident to (0). Then the union
of triangles incident to (0) is an embedded disk ∆ which intersects ∂H in an
embedded hexagon γ = ∂∆ and the isolated point P0. But then Ω must be
the union of ∆ with the side of ∂H − γ opposite (0). This is a topological
sphere rather than a torus. This is a contradiction. ♠

Now we know that there is at least one external edge incident to each
vertex.
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Lemma 2.4 If there are K internal edges incident to vertex P , then there
are 6−K triangles in ∂H incident to P .

Proof: Say that a flag is a pair (τ, P ) where τ is a triangle of ∂H and P is a
vertex of Ω. For vertex Pi there are Ki incident internal edges. Hence there
are 6 −Ki external edges incident to Pi. But that means there are at least
6−Ki flags involving Pi. Say there are 6−Ki + Li such flags, with Li ≥ 0.
This gives a total of

7× 6− 2
∑

Ki + 2
∑

Li = 30 +
∑

Li

flags. Since each triangle of ∂H participates in 3 flags this gives us a total
of 10 +

∑
Li/3 triangles. But there are exactly 10 triangles in ∂H. Hence

L0 = ...L6 = 0. This means that there exactly Pi − Ki flags involving Pi,
which is equivalent to our claim. ♠

For each vertex (q) we have the list {(q, vi) | i = 1, ..., Kq} of Kq external
edges incident to q. We write K = Kq and order these K = Kq vertices
cyclically according to the link of (q) in Ω. The link of Lq of (q) in ∂H is
some permutation of (w1, ..., wK) of (v1, ..., vK).

Lemma 2.5 (Cycle Rule) In order to be a viable candidate for the link of
(q) in ∂H, the link (w1, ..., wK) must satisfy two properties.

1. (wi, wi+1) must be an external edge for all i. Indices are taken cyclically

2. The cycle (w1, ..., wK) must be a dihedral permutation of (v1, ..., vK).

Proof: The necessity of Condition 1 is obvious. Condition 2 requires some
explanation. Consider the picture in ∂H at (q). Since the points are in
general position, ∂H is a proper convex cone near (q). We let Π be a plane
parallel to a support plane through (q) and consider the intersection ∂H ∩Π.
This is a convex (K)-gon ∆ and the cyclic order of ∆ is given by (w1, ..., wK).
At the same time, the link of (q) in Ω is some polygonal loop γ ⊂ ∆ that
visits the vertices in the order (v1, ..., vK). If the permutation is not dihedral
then γ cannot be an embedded loop. ♠

Using the Cycle Rule we eliminate all the possible remaining internal edge
patterns except 6. These 6 are all the same up to combinatorial isometry.
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2.3 Proof of the Hull Theorem: Geometry

Figure 2 shows one of the 6 remaining internal edge patterns. One of them
corresponds to an embedded torus if and only all of them do. So, we just
have to rule out this one.

Figure 2: The one remaining pattern

Remark: We have an alternate ending of the proof of the Main Theorem
which just uses the combinatorial result in the previous section. The reader
who wants to get a full proof of the Main Theorem as fast as possible can
skip the rest of this section and read the next section instead.

Suppose for the sake of contradiction that this pattern corresponds to an
embedded torus Ω. We think of Ω as a subset of projective space P 3.

We can apply a projective transformation so that (2) moves to the point
[0 : 0 : 1 : 0] at infinity in P 3 in projective space. This point is “infinitely
far away” along the Z-axis. We also can arrange that the (now) rays (2j)
start at (j) and move downward (rather than upwards) along the Z-axis,
limiting on (2). We can do all this by a projective transformation that maps
H − {(2)} into the affine patch, which we identify with R3. Essentially, our
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normalization is a limit of examples in R3 in which (2) moves farther and
farther down the Z axis.

Now, H − {(2)} is still a convex subset in R3. It is like a hexagonal
prism that has been truncated at one end. Here is the crucial observation:
since H is convex, the projection of the hexagon (603541) into the XY -plane
is a convex hexagon. We can further normalize so that the projections of
(15) and (36) into the XY -plane are parallel line segments. We do this by
mapping the line [215] ∩ [236] to a line at infinity which contains (2). Here
[abc] is the plane containing the points (a) and (b) and (c).
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Figure 8: Projection of part of ∂H into the XY -plane

The 3-cycles (036) and (145) are both triangles on ∂H. These are not
triangles of Ω. Every other triangle in ∂H does belong to ∂Ω. By convexity,
these two 3-cycles are bend downward. What we mean is that the plane
containing (036) has the rest of H beneath it. The same goes for the plane
containing (145).

The blue triangle in Figure 8 is (346). This is an internal triangle. We can
foliate this triangle by parallel line segments as shown in the figure. These
segments are parallel in space and they project to parallel segments in R2.
The blue triangle in Figure 8 is (015). We make all the same constructions
for this internal triangle. We call these foliations red and blue, as in the
figure.

Say that a special plane is a plane in R3 whose projection to R2 is a line
parallel to the projections of the red and blue foliations. One special plane
contains (15). In this plane, the red foliation is above the blue foliation.
Another special plane contains (36). In this plane, the blue foliation is above
the red foliation. So, by the intermediate value theorem, there is a special
plane for which these two foliations coincide. But then (015) and (346)
intersect. This contradicts the fact that Ω is embedded.

This completes the proof of the Hull Theorem.
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2.4 An Alternate Ending

Our proof of the Main Theorem does not require the full force of the Hull
Theorem. All we need is the weaker result that no flat embedded 7-vertex
polyhedral torus Ω has all 7 vertices in its convex hull boundary, ∂H.

The argument in §2.2 alone establishes the following result: If Ω has all
7 vertices in ∂H then a neighborhood in ∂H of one vertex P contains all 6
triangles of Ω incident to P . In other words, the link of P in Ω coincides
with the link of Ω in H. We just have to prove that this property precludes
the flatness of Ω.

Suppose that Ω is flat. Since H is also convex at P , we have some serious
constraints on the link of P in Ω. First of all, H cannot be strictly convex at
P . This means that some support plane through P intersects Ω in (at least) a
line segment through P that contains P in its relative interior. But then the
intersection of ∂H with a small sphere centered at P is a spherical polygon
consisting of two arcs which connect the same pair of antipodal points. Using
the fact that the cone angle of Ω at P is 2π we see (by Crofton’s formula)
that both these spherical arcs must be halves of great circles.

This means that there is a plane Π that contains at least 3 consecutive
triangles of Ω incident to P . But then Π contains at least 5 vertices of Ω.
Finally, this implies that Π contains an embedded copy of the complete graph
K5. This contradicts the fact that K5 is not planar.
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3 Java Code

The code for the proof of the Hull Theorem is distributed in two files. The
first file helps manipulate lists. The second file has the actual tests.

3.1 The ListHelp Class

import java.util.Arrays;

public class ListHelp {

/**prints out an integer list*/

public static void printout(int[] list) {

if(list==null) return;

for(int i=0;i<list.length;++i) System.out.print(list[i]+" ");

System.out.println("");

}

/**checks if two lists match up to permutation*/

public static boolean match(int[] a,int[] b) {

if(a.length!=b.length) return false;

int[] aa=Arrays.copyOf(a,a.length);

int[] bb=Arrays.copyOf(b,b.length);

Arrays.sort(aa);

Arrays.sort(bb);

for(int i=0;i<a.length;++i) {

if(aa[i]!=bb[i]) return false;

}

return true;

}

/**checks if element a is amongst the

first k elements of list b*/

public static boolean onList(int a,int[] b,int k) {

for(int i=0;i<k;++i) {

if(a==b[i]) return true;

}

return false;

}
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/**take an integer list, sorts it, and removes redundancies*/

public static int[] irredundantSortedList(int[] data) {

Arrays.sort(data);

int n=data.length; int[] temp = new int[n];

int count = 0;

for (int i = 0; i < n; ++i) {

if ((i == 0) ||(data[i] != data[i - 1])) {

temp[count] = data[i];

++count;

}}

return Arrays.copyOf(temp, count);

}

/**Gives all the 6 element subsets of {0,...,20} having

0 as the first element*/

public static int[] subsetGenerator(int index) {

int[] subset = {0,0,0,0,0,0};

int x = 1;

for (int i=1; i<6 ;++i) {

while(choose(20-x,5-i)<=index) {

index = index - choose(20 - x, 5 - i);

++x;

}

subset[i] = x;

++x;

}

return subset;

}

/**This returns n choose k.*/

public static int choose(int n,int k) {

int x=1;int y=1;

for(int i=1;i<=k;++i) {

x=x*(n-i+1);

y=y*i;

}

return x/y;

}
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/**Gets the kth dihedral permutation of list a*/

public static int[] perDihedral(int[] a,int k) {

int n=a.length;

if(k<n) return cycle(a,k);

return reverse(cycle(a,k));

}

/**reverses list a*/

public static int[] reverse(int[] a) {

int n=a.length;

int[] b=new int[n];

for(int i=0;i<n;++i) b[i]=a[n-i-1];

return b;

}

/**cycles list a by k clicks*/

public static int[] cycle(int[] a,int k) {

int n=a.length;

int[] b=new int[n];

for(int i=0;i<n;++i) b[i]=a[(i+k)%n];

return b;

}
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3.2 The LinkAnalyzer Class

import java.util.Arrays;

public class LinkAnalyzer {

/**This class performs all the tests for the proof of the

Hull Theorem in our paper. The file works with ListHelp.java

to manipulate lists*/

/**Returns kth edge of the complete graph K7. This is also the

1-skeleton of the 7-vertex triangulation of the torus*/

public static int[] edge(int k) {

int[][] f={{0,1},{0,2},{0,3},{0,4},{0,5},{0,6},

{1,2},{1,3},{1,4},{1,5},{1,6},

{2,3},{2,4},{2,5},{2,6},

{3,4},{3,5},{3,6},

{4,5},{4,6},{5,6}};

return f[k];

}

/**Returns kth face in the 7-vertex triangulation of the torus.*/

public static int[] face(int k) {

int[][] f={{0,1,3},{0,5,1},{0,3,2},{0,2,6},{0,4,5},{0,6,4},

{1,2,4},{1,4,3},{1,6,2},{1,5,6},{2,3,5},{2,5,4},

{3,4,6},{3,6,5}};

return f[k];

}

/**This gets the links of each vertex in the torus*/

public static int[] torusLink(int k) {

int[][] L={{1,3,2,6,4,5},{0,5,6,2,4,3},{0,3,5,4,1,6},

{0,1,4,6,5,2},{0,6,3,1,2,5},{0,4,2,3,6,1},{0,2,1,5,3,4}};

return L[k];

}
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/**This gets the kth choice of 6 element subset of the edges and

then returns the corresponding edges.*/

public static int[][] internalEdges(int k) {

int[] t=ListHelp.subsetGenerator(k);

int[][] list=new int[6][2];

for(int i=0;i<6;++i) {

list[i]=edge(t[i]);

}

return list;

}

/**This gets the triangles incident to the edge

list from the previous routine.*/

public static int[][] internalFaces(int k) {

int[] t=ListHelp.subsetGenerator(k);

int[] list1=new int[12];

int count=0;

for(int i=0;i<6;++i) {

int[] ee=edge(t[i]);

for(int j=0;j<14;++j) {

if(incident(ee,face(j))==true) {

list1[count]=j;

++count;

}

}

}

list1=ListHelp.irredundantSortedList(list1);

int[][] list2=new int[list1.length][3];

for(int i=0;i<list1.length;++i) list2[i]=face(list1[i]);

return list2;}

/**Returns true if edge e is incident to face f.*/

public static boolean incident(int[] e,int[] f) {

if(ListHelp.onList(e[0],f,3)==false) return false;

if(ListHelp.onList(e[1],f,3)==false) return false;

return true;}
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/**This routine picks a vertex k and returns all the

external edges that are incident to it. We are

careful to maintain the correct cyclic order*/

public static int[] convexLink(int[][] e,int k) {

int[] L=torusLink(k);

int[] list=new int[6];

int count=0;

for(int i=0;i<6;++i) {

int[] ee={k,L[i]};

boolean test=false;

for(int j=0;j<6;++j) {

if(ListHelp.match(ee,e[j])==true) {

test=true;

break;

}

}

if(test==false) {

list[count]=L[i];

++count;

}

}

return Arrays.copyOf(list,count);

}

/**Make sure that consecutive elements are not internal edges.*/

public static boolean onlyAllowedConnections(int[][] e,int[]

↪→ cycle) {

for(int i=0;i<cycle.length;++i) {

int ii=(i+1)%cycle.length;

int[] L={cycle[i],cycle[ii]};

for(int j=0;j<6;++j) {

if(ListHelp.match(L,e[j])==true) return false;

}

}

return true;}
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/**This returns the link if it is viable

and otherwise returns null*/

public static int[] getViableCycle(int k,int i) {

int[][] edge=internalEdges(k);

int count=0;

int[] link=LinkAnalyzer.convexLink(edge,i);

if(link.length<3) return null;

if(onlyAllowedConnections(edge,link)==false) return null;

return link;}

/**Tests all the cycles associated to the kth internal

edge pattern. Returns true if they are all viable. */

public static boolean mainTest(int[] filter,int k) {

for(int i=0;i<7;++i) {

int[] cyc=getViableCycle(k,i);

if((filter[i]==1)&&(cyc==null)) return false;

}

return true;}

/**This final test. This is what we run.*/

public void bigTest() {

int count=0;

int[] f={1,1,1,1,1,1,1};

for(int i=0;i<15504;++i) {

if(mainTest(f,i)==true) ++count;

}

System.out.println("count (should be 0) "+count);}

}
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