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PREFACE xi

Preface

There is a simple and well-known construction which starts with one polygon
and returns a new polygon whose vertices are the midpoints of the edges of the
original. The midpoint map is a good name for this construction, and we consider
it as a mapping on the space of polygons with a fixed number of vertices. When
written in coordinates, the midpoint map is a linear transformaton that is closely
related to the heat equation: The vertex coordinates of the new polygon are aver-
ages of the vertex coordinates of the original. The midpoint map commutes with
affine transformations of the plane. If you move the original polygon by an affine
transformation, then the new one goes along for the ride.

In this monograph I will study a non-linear construction that is somewhat like
the midpoint map but which commutes with projective transformations. I think
of the construction as something like a cross between the midpoint map and the
so-called pentagram map. I call the construction the projective heat map because I
imagine – perhaps with scant justification – that the construction models how heat
might flow in a world governed by projective geometry.

The projective heat map starts with a polygon P and returns a new polygon
P ′ = H(P ). The figure illustrates the construction when the polygons involved
are pentagons. P is the outer black one with white vertices, and P ′ is the inner
black polygon with grey vertices. The auxiliary grey lines are just scaffolding for
the construction.

The main purpose of this monograph is to answer the question: What does the
projective heat map do to pentagons? That is, what happens when the construction
is iterated; what is the sequence {Hn(P )} like? The question leads naturally to
the study of a certain 2-dimensional real rational map. This rational map has
surprisingly intricate behavior and a beautiful “Julia set”. I will give rigorous,
computer-assisted proofs of structural results which capture the main features of
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the projective heat map as it acts on pentagons, and this will give a pretty complete
answer to the original question. I wrote an extensive graphical user interface which
illustrates almost all the constructions of the monograph. This program is intended
as a companion for the monograph.

To broaden the scope of this monograph, I will also discuss (in less depth) some
other interesting polygon iterations such as the midpoint map, the map derived from
Napoleon’s Theorem, and the pentagram map. I will also include a numerical study
of what the projective heat map does to N -gons in general, and how it interacts
with the pentagram map.

This book is suitable for graduate students interested in projective geometry,
rational maps, and polygon iterations. Most of the introductory chapters could also
be read by advanced undergraduates. To make this work accessible to a broader
audience, I have included some expository material on projective geometry, ele-
mentary algebraic geometry, and basic dynamical systems such as the one-sided
shift and the Smale horseshoe. All these things play a role in the analysis of the
projective heat map.

In his forthcoming 2017 Brown University Ph.D. thesis, Quang Nhat Le explores
a 1-parameter family of maps generalizing the projective heat map. This monograph
does not discuss these matters, but the interested reader might like to know about
the existence of Nhat’s thesis.

I thank Max Glick, Pat Hooper, Quang Nhat Le, Gloria Mari-Beffa, Curtis
McMullen, Valentin Ovsienko, John Smillie, Sergei Tabachnikov, Guilio Tiozzo, and
Amie Wilkinson, for helpful and interesting discussions. I also thank an anonymous
referee for very helpful and detailed suggestions and comments. Finally, I thank
the National Science Foundation and the Simons Foundation for their support.



CHAPTER 1

Introduction

1.1. From Geometry to Dynamics

Figure 1.1 shows the constructions for three classical theorems in geometry.

Figure 1.1: Three classic theorems

(1) Start with an arbitrary quadrilateral. Then the midpoints of the edges
of the quadrilateral are the vertices of a parallelogram. I don’t know the
origins of this result.

(2) Start with an arbitrary triangle and construct equilateral triangles on each
of the sides. Then the centers of the three equilateral triangles themselves
make an equilateral triangle. This is known as Napoleon’s Theorem, and
it is attributed (perhaps not in all seriousness) to the famous emperor.

(3) Start with an arbitrary pentagon. Connect the vertices in a star pattern
and consider the smaller pentagon in the middle. The inner pentagon
and the outer pentagon are equivalent by a projective transformation. In
some sense this result was known to Darboux, and it is studied explicitly
in [Mot] and [S1].

All these results have probably been rediscovered many times. I will give proofs
of the first two of these results in §2, and the third one in §5.1. (The first one is
very easy.)

Figure 1.2 shows the same constructions for polygons having more vertices, and
one can ask whether the theorems above generalize. Strictly speaking, the results
above do not generalize as configuration theorems. For instance, the quadrilateral
joining the centers of the equilateral triangles is not typically a square.

1
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Figure 1.2: Variants of the classic constructions

However, there are dynamical generalizations of the results. For each of the
constructions, let P be the initial polygon and let P ′ denote the polygon defined
by the construction. Let P (2) = P ′′ and P (3) = P ′′′, etc.

In the first case, it is useful to work in AN , the space of N -gons modulo
affine transformations. An affine transformation is the composition of a linear
isomorphism and a translation. Two N -gons are equivalent if there is an affine
transformation carrying one to the other. The midpoint map commutes with affine
transformations, so it makes sense to consider {P (n)} as a sequence in An. The
general result is that {Pn} converges to the equivalence class of the regular N -gon
for almost all choices of P . This is a classical result which is closely related to heat
flow and the discrete Fourier transform. I will give a proof in §2.

In the second case, it is useful to work in the space SN of N -gons modulo
similarity. Napoleon’s construction commutes with similarities and so it makes
sense to consider {P (n)} as a sequence in SN . What typically happens to this
sequence depends on N . For example, when N = 12 the sequence {P (n)} converges
to the class of the 12-gon which wraps twice around the regular hexagon for almost
all choices of P . §2.4 I’ll give an analysis of most cases. See also [Bo] and [Gr].

The third construction is the pentagram map, which I introduced in [S1]. In
recent years, there have been many papers on the pentagram map. See the refer-
ences listed in §5.2. The natural setting for the pentagram map is the space PN

of projective equivalence classes of N -gons. Here, the N -gons are considered sub-
sets of the projective plane, and two N -gons are equivalent if there is a projective
transformation carrying one to the other.

In brief, the projective plane RP 2 is the space of lines through the origin in
R3, and a projective transformation is a map on RP 2 induced by an invertible
linear transformation on R3. In §3 I will give a primer on projective geometry and
explain this in more detail. The basic result here, due to V. Ovsienko, myself, and S.
Tabachnikov, [OST1], [OST2], and independently due to F. Soloviev [Sol], is that
the pentagram map is (in the appropriate sense) a discrete completely integrable
system on PN . I will discuss this and other results about the pentagram map in
§5.

All the results above make statements about polygon iterations . One starts with
an N -gon P and produces a new N -gon P ′ by some geometric construction. One
then asks about the behavior of the sequence {P (n)}, perhaps modulo some group
of symmetries. The main purpose of this monograph is to study a construction that
is related to the ones above, which I call the projective heat map.
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1.2. The Projective Heat Map

The projective heat map is based on the following construction. Given 4 points
a−3, a−1, a1, a3 ∈ RP 2 in general position – i.e. no three lie on a line – there is
a canonical choice of a point b0 on the line a−1a1. The construction is shown in
Figure 1.3. One might call b0 the projective midpoint of a−3, a−1, a1, a3. Note that
b0 is typically not the actual midpoint of the segment a−1a1. One situation where
this does happen is when there is some isometry that swaps a−3 with a3 and a−1

with a1, but this is not the typical situation.

-3
3

Figure 1.3: The construction of b0 from a−3, a−1, a1, a3.

Starting with an N -gon P , with vertices ...a−3, a−1, a1, a3, ... we form the
N -gon P ′ with vertices ...b−2, b0, b2, ..., where bk is the projective midpoint of
ak−3, ak−1, ak+1, ak+3. The indices are taken cyclically in this construction. We
define H(P ) = P ′. The map H commutes with projective transformations and
thus H induces a map on the quotient space PN of projective equivalence classes of
N -gons. The subspace CN of equivalence classes of convex N -gons is an invariant
subspace. It is worth remarking that H, like the pentagram map, is not entirely
defined on PN . The points of the polygon need to be in sufficiently general position
for this to make sense.

Numerical evidence supports the following conjecture.

Conjecture 1.1. For any N ≥ 5, and for almost all P ∈ PN , the sequence
{P (n)} converges to the projectively regular class.

I will discuss Conjecture 1.1 in §7.5. What makes this conjecture difficult is
that, in contrast to the midpoint map and Napoleon’s construction, the map H is
nonlinear. Even in the case N = 5, where the basic space P5 is a 2 dimensional
space, there is a lot of complexity. In the case N = 5, the projective heat map gives
rise to a two-variable rational map

H(x, y) = (x′, y′),

x′ =

(
xy2 + 2xy − 3

) (
x2y2 − 6xy − x+ 6

)

(xy2 + 4xy + x− y − 5) (x2y2 − 6xy − y + 6)

(1.1) y′ =

(
x2y + 2xy − 3

) (
x2y2 − 6xy − y + 6

)

(x2y + 4xy − x+ y − 5) (x2y2 − 6xy − x+ 6)

Our notation is such that H stands both for the map on P5 and the above rational
map on R2.
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1.3. A Picture of the Julia Set

The main goal of this monograph is to prove Conjecture 1.1 for the case N = 5.
At this point we set P = P5, etc., because this is the only case we consider. To be
precise, P consists of projective equivalence classes of pentagons whose points are
in general position.

We let J be the subset of P consisting of those points with well-defined orbits
that do not converge to the regular class. The set J is akin to the Julia set from
complex dynamics, a topic we discuss in §6.1. Our proof of Conjecture 1.1 amounts
to showing that J has measure 0. However, given the beauty of J , I couldn’t resist
analyzing it and getting finer information about it. Almost all my motivation for
this monograph came from wanting to rigorously justify the computer pictures of
J which I produced.

Figure 1.4: A subset of J .

Figure 1.4 shows the most interesting portion of T ◦B(J ), where T is a certain
linear transformation and B is a birational map discussed below. The points are
colored according to how many iterates of H it takes to map them into C, the space
of convex classes, and then these colored points are mapped into the picture plane
via T ◦B. Once a point gets into C it converges under iteration to the regular class.
(See Theorem 1.3 below.) The darker the color, the longer it takes. So, T ◦B(J )
would be the black points – or at least the black points with well defined orbits.
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1.4. The Core Results

Our first result is topological in nature.

Theorem 1.2. The map H is generically 6-to-1 when it acts on C2.

Our next result deals with the action of H on C.
Theorem 1.3. There is a smooth and rational function f : C → R such that

f ◦H(P ) ≥ f(P ) for all P ∈ C, with equality if and only if P is the regular class.
Moreover, the level sets of f are compact.

Given that f has compact level sets, Theorem 1.3 has the following corollary.
See the proof of Corollary 9.7 for details.

Corollary 1.4. {Hn(P )} converges to the regular class for all P ∈ C.
Now we turn to Conjecture 1.1. The way we understand J is that we first

understand a certain Cantor set in J and then we understand the rest. Accordingly,
here are our two main structural results.

Theorem 1.5. J contains a measure 0 forward-invariant Cantor set JC. The
restriction of H to JC is conjugate to the 1-sided shift on 6-symbols.

Theorem 1.6. J contains a measure 0 forward-invariant Cantor band JA
such that

J = JC ∪
∞⋃

k=0

H−k(JA).

JA is an open subset of J in the subspace topology. The action of H in a neigh-
borhood of JA is the 10-fold covering of a quasi-horseshoe.

Remarks:
(i) A Cantor band is a space homeomorphic to the product of a Cantor set and an
open interval. If you look at Figure 1.4 you can see a lot of Cantor bands.
(ii) We discuss the one sided shift in §6.2.
(iii) In §6.5 we define what we mean by a quasi-horseshoe. Such maps are pretty
close to the Smale horseshoe, which we describe in §6.4. When we prove theorem
1.6 we will explain what we mean by a 10-fold covering.

Corollary 1.7. Conjecture 1.1 holds for N = 5.

Proof: P inherits a smooth structure from its inclusion into R2. Recall that a
smooth map is regular at p if it is a local diffeomorphism at p. Almost every point
in P has a well defined H-orbit in which every power of H is regular at p. (The
set of points which do not have this property is contained in a countable union of
algebraic curves.) Call such points totally regular .

Let X = J −JC and let Y denote the set of totally regular points in X . Since
almost every point is totally regular, and since JC has measure 0, it suffices to
prove that Y has measure 0.

Call an open disk ∆ clean if there is some k such that the restriction Hk|∆ is
a diffeomorphism and if Hk(∆ ∩ X ) ⊂ JA. In this case ∆ ∩ X is the image of a
subset of JA under a diffeomorphism, and hence has measure 0. If follows from
Theorem 1.6 that Y is covered by a countable union of clean disks. Hence Y is the
countable union of sets of measure 0. Hence Y has measure 0. �
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1.5. Deeper Structure

For most of the results above, and all the results in this section, we will instead
use the map H = BHB−1, where

(1.2) B(x, y) = (b(x), b(y)), b(t) = φ3
(

φ+ t

−1 + φt

)

Here φ = (1 +
√
5)/2 is the golden ratio.

After we change coordinates, we will replace the space R2 by the more global
space M obtained by blowing up (R∪∞)2 at 3 specially chosen points. The space
M is a nice compact moduli space of projective classes of labeled pentagons –
not necessarily in general position. It turns out that there is an order 10 group
Γ of birational diffeomorphisms of M corresponding to dihedral relabelings of the
pentagons. Beautifully, there is a fundamental domain for Γ acting on M that
is obtained by blowing up one corner of a particular Euclidean triangle. This
fundamental domain turns out to be extremely useful to us.

Another advantage of using H and M is that the fixed points of H in M

have a particularly nice form. One fixed point is (∞,∞), corresponding to the
regular class. Another fixed point is (0, 0), corresponding to the star regular 1

class. Finally, there are 5 additional fixed points corresponding to the Γ orbit of
(1, 1). These 5 points represent various labelings of the star convex pentagon shown
in Figure 7.4. I discovered the map B by trying to move the fixed points of H to
the nicest possible locations, and then the triangular fundamental domain turned
out to be a happy surprise.

Figure 1.4 really shows the Julia set for H, up to a linear transformation 2

which is chosen so that the differentials of elements in Γ act isometrically at (0, 0).
We let ♥J denote 3 the closure of the set of points in M which have well

defined H-orbits but which do not converge to (∞,∞). We think of ♥J as a kind
of completion of J .

We say that a cone point is a point in ♥J having arbtrarily small neighborhoods
which intersect ♥J in the cone on a Cantor set. Intuitively, the cone points are
where the Cantor bands pinch down to single points. See Figure 1.4. Here is a
general structural result.

Theorem 1.8. ♥J is the union of a Cantor set ♥JC, a countable collection
of Cantor bands, and a countable collection of cone points.

Here ♥JC = B(JC), where JC is as in Theorem 1.5.
Now we describe structures in ♥J which elaborate the ones from Theorems 1.5

and 1.6. Consider the following infinite graph. One starts with the finite graph
shown on the left side of Figure 1.5 below and then puts the same graph inside
each of the 6 shaded pentagonal “holes”. This produces a more complicated graph
with 36 pentagonal holes, shown on the right hand side of Figure 1.5. One then
repeats indefinitely. Call the limiting “graph” G∞. This space is a variant of the
Sierpinski triangle.

1A pentagon is star regular if the relabeling relabeling (1, 2, 3, 4, 5) → (1, 3, 5, 2, 4) makes it
regular, and star convex if this relabeling makes it convex.

2This linear transformation makes the geometric picture as nice as possible, but we don’t use
it in our analysis because it is defined over a fairly high degree number field.

3We put the symbol ♥ in front of subsets of the Julia set in M to avoid notational clashes
what the many other objects that get letter names.
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Figure 1.5: The seed for G∞ and the second step in the construction.

Theorem 1.9. ♥J contains a subset ♥G which is homeomorphic to G∞.

Theorem 1.10. ♥J contains a forward invariant subset ♥S which, when blown
up at all its cone points. is homeomorphic to the connected 5-fold cover of the 2-adic
solenoid.

Remarks:
(i) ♥JC is the subset of ♥G comprised of the nested intersections of pentagonal
holes in the iterated construction.
(ii) In local coordinates, ♥G is a compact subset ofR2. The filled-in version Fill♥G,
i.e. the complement of the unbounded component of R2−♥G, is a “solid pentagon”
whose 5 “vertices” are the orbit Γ(1, 1). The center of ♥G is (0, 0).
(iii) The connected 5-fold cover of the 2-adic solenoid is the quotient

(R×Z2)/ ∼, (x, y) ∼ (x+ 5n, y + 5n), n ∈ Z.

Here Z2 is the topological group of 2-adic integers. We will discuss this space in
more detail in §6.6.
(iv) ♥S is the closure of the union of the maximal C1 arcs of ♥J which intersect
the Cantor band ♥JA = B(JA). Here JA is the Cantor band from Theorem 1.6.
(v) Our last picture in the monograph, Figure 20.7, is the culmination of all our
analysis. It shows a detailed schematic picture of ♥G and ♥S sitting inside M .
We get the more precise result that ♥S = (♥J − Fill♥G) ∪ Γ(1, 1).

All this structure contributes to our final result:

Theorem 1.11. The Julia set ♥J is path connected.

Note that ♥J is obviously not locally connected, on account of all the Cantor
bands. So, the connectivity comes about in a complicated way.
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1.6. A Few Corollaries

The Cantor set JC from Theorem 1.5 is contained entirely within the set of
star convex classes, and the one-sided shift has periodic points of all orders. Hence
H has periodic points of all orders, and we can even find such periodic points where
every point in the orbit represents a star convex pentagon.

For the interested dynamics expert, I will sketch a proof in §15.6 that H is not
post-critically finite. That is, the forward images of the set where dH is singular
cannot be contained in a finite union of algebraic curves. What happens is that
the singular set gets mapped transversely across the quasi-horseshoe and then it
gets wrapped around like crazy, making it impossible for the forward image to be
contained in a finite union of algebraic curves. If H were post-critically finite, there
would be additional tools available to investigate H, as in [N], so the result here
rules out one possible shortcut to the analysis of H.

Also for the dynamics expert, I will sketch a proof in §15.7 that H is not
rationally conjugate to a one-dimensional rational map. That is, there is no pair
(f, h) where f : R2 → R and h : R → R are rational and fH = hf . This situation
is impossible because some fibers of f would either cross the horseshoe transversely
or run along the leaves of the solenoid. Either case leads to a contradiction. The
lack of a rational semi-conjugacy rules out another possible shortcut to the analysis
of H.

1.7. Sketch of the Proofs

Theorem 1.2 has an elementary algebraic geometry proof. We count roots of
an associated pair of polynomials using Bezout’s theorem.

Theorem 1.3 is a direct calculation once we identify the increasing quantity.
The increasing quantity turns out to be E5O5, the simplest of the pentagram map
invariants. See §5.3.

For the remaining results, we partition P into a finite union of polygonal pieces
on which the action on the pieces is simple enough to analyze. Our partition will
have roughly the following structure.

• Some pieces will map into C after finitely many steps.
• Some pieces will map over themselves in an expanding way. This will give
rise to the Cantor set JC from Theorem 1.5.

• Some pieces will map over themselves in a hyperbolic way. Roughly, they
will be stretched in one direction and contracted in another. This will
give rise to the quasi-horseshoe JA from Theorem 1.6.

The proofs of the results mentioned in §1.5 build on the properties of JC and JA
and also make use of our partition.

The novel part of our approach is how we rigorously prove that pieces in the
partition move as we think that they do. Essentially, we boil down every step to
verifying that the image of some (solid) polygonal subset of P under f is contained
in, or disjoint from, another (solid) polygonal subset. We reduce both questions
to statements that certain finite collections of polynomials are positive (or non-
negative) on certain finite collections of polygons. We then use a divide-and-conquer
algorithm to establish this positivity. We call our algorithm the method of positive
dominance. We explain it in §11.
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Everything involved in our construction, is defined over the ringZ[1/2,
√
5,
√
13],

and so all our calculations are exact integer calculations. There are no roundoff er-
rors. Our results sometimes require the analysis of polynomials having total degree
about 45 and coefficients whose integer components are about 50 digits long. To
handle the enormous polynomials we get, we implement our calculations in Java,
using the BigInteger class. The BigInteger class allows one to do arithmetic in-
volving integers which are thousands of digits long. Our calculations don’t come
anywhere near the size limit imposed by the hardware of modern computers.

1.8. Some Comparisons

In spite of the complexity of the equation for the projective heat map, the
results we get for this real variable map on R2 are almost comparable in detail
to the kinds one sees in one dimensional complex dynamics. See [Mil] for an
introduction to that vast subject. For instance, our Theorem 1.9 is similar in spirit
to the combinatorial models of Julia sets called Hubbard trees . In §6.1 we will
discuss Julia sets of one dimensional rational maps and compare them to our J .

The projective heat map is defined over almost any field, and in particular
makes sense on the complexified version of P. Thus, one could consider the pro-
jective heat map in the context of 2-variable complex dynamics. There is a large
literature on rational maps on C2 or on other complex surfaces. For instance, the
paper [BLS] is one of a long series of papers written by the authors on the case of
polynomial maps. The projective heat map is not a polynomial map, so works like
[BLS] would probably not help with the proofs with the results above, but they
might be a beacon for future research.

Our quasi-horseshoe result is akin to results about the Hénon map:

(1.3) Fa,b(x, y) = (1− ax2 + y, by).

Here a and b are parameters which influence the nature of the map. The classic
case is a = 3/10 and b = 14/10. In this case, there is an attracting Cantor band. As
long as a 6= 0, the Hénon map is a polynomial diffeomorphism of R2. The papers
[A1] and [A2] deal with computational techniques for finding subsets of parameters
(a, b) for which Fa,b acts as the Smale horseshoe on the set of bounded orbits. These
techniques are somewhat like ours except that they use interval arithmetic and they
deal with an entire family of maps. The paper also [BS] has a discussion of this
problem.

In terms of the method of proof, one could also compare our results to those in
[Tu] concerning the existence of the Lorenz attractor. This paper also uses a kind
of partition approach to deal with a single dynamical system.

While not giving a comprehensive list, let me mention some other papers which
get detailed dynamical pictures for real rational maps of the plane. The results in
these papers, while certainly inspired by computer experiments, involve traditional
proofs. One thing about all these other papers is that the formulas for the maps
are considerably simpler than the formula for the projective heat map. Either the
high degree nature of the projective heat map makes it too difficult to study in a
traditional way – witness the difference in the amount known about the dynamics
of quadratic polynomials and the dynamics of higher degree polynomials – or else
a smarter author could do a better job.
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The paper [BD] studies the map τ ◦ σ, where

(1.4) σ(x, y) =

(
1− x+

x

y
, 1− y +

y

x

)
, τ(x, y) = (x, bx+ a+ 1− y).

This is a 2-paramater family of bi-rational maps depending on parameters a and b.
The paper [BLR] deals with the single rational map coming from (a case of)

the Migdal Kadanoff RG equations

(1.5) (x, y) →
(
x2 + y2

x−2 + y2
,

x2 + x−2 + 2

x2 + x−2 + y2 + y−2

)
.

These equations have to do with the Ising model.
The paper [N] studies the complex dynamics of the map

(1.6) (z, w) →
(
(1− 2z/w)2, (1− 2/w)2

)

and constructs a combinatorial model for the Julia set. Our Theorem 1.9 is similar
in spirit to this, though we get less information. In this map, the forward orbit of
the critical set – i.e. where the map is not a local diffeomorphism – is just a finite
union of lines. The map is an example of a post-critically finite map, unlike the
projective heat map.

The paper [HP] studies the dynamics of Newton’s method when it is used to
solve two simultaneous quadratic equations. (It is somewhat difficult to extract as
concrete formula as the ones given above.) This leads to a rational map on C2

which the authors analyze in detail.
Finally, the paper [BDM] also detailed information about the structure of some

concrete rational self-maps of CP 2.

1.9. Outline of the Monograph

This monograph comes in 3 parts.

Part 1: Context: Here I place the projective heat map in a broader context.
I include some background on projective geometry and dynamical system, and an-
alyze some dynamical systems related to the projective heat map. Some readers
might like §5, which has an account of some of the main features of the pentagram
map, including integrability. The sections directly relevant to the projective heat
map are §3, §4.1-4.3, §5.3, §5.6, §6.2 and §6.5.

Part 2: The Core Results: In this part of the monograph, I prove Theorems
1.2, 1.3, 1.5, and 1.6. I also explain the method of positive dominance, which is
used throughout this part and Part 3. This is the core material. At the end of Part
2, the proof of the pentagon case of Conjecture 1.1 is done.

Part 3: Deeper Structure: This part of the monograph studies the structure
of J in more detail. In particular, I prove Theorems 1.11, 1.8 and 1.9 and 1.10.
(This is not the order in which the results are proved.) The arguments in this part
are considerably more intricate than the ones in Part 2. To help guide the reader
through the thicket of details, I have included an introductory chapter, §15, which
gives detailed sketches of all the proofs.
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At the end of the monograph, I have included a reference chapter in an attempt
to make this monograph easier to read. §21.1 lists many of the basic definitions
and objects in the monograph and points to where they are discussed. The rest of
the chapter lists out important formulas, including coordinates for the vertices of
the polygons in our partition. We mention §21.3 especially. This section has the
formulas for all our basic maps.

1.10. Companion Program

I discovered practically everything in this monograph by writing a java com-
puter program which implements the dynamics of the projective heat map. The
computer-assisted part of my proof resides in the program. The reader can launch
the proofs using the program, and survey them down to a fine level of detail.

I strongly encourage the reader of this monograph to download and use the
program. The heavily documented program illustrates practically everything about
our results, and also has a tutorial section which teaches the user how to run the
computational tests used in our proofs. I have tried to write the monograph so that
it stands on its own, but I think that the reader will have a much more satisfying
experience reading the monograph while operating the program and seeing vivid
illustrations of what is going on. I would say that this program relates to the
monograph much like a movie relates to its screenplay.

One can download the program from

http://www.math.brown.edu/∼res/Java/HEAT2.tar

The program has a README file which explains how to compile and run the
program.





Part 1





CHAPTER 2

Some Other Polygon Iterations

In this chapter, we analyze the two iterations mentioned at the beginning of
the introduction, the midpoint map and the one connected to Napoleon’s Theorem.
We also discuss a third iteration that is based on conformal geometry.

2.1. The Midpoint Theorem

Let P be a quadrilateral and let P ′ be the new quadrilateral whose vertices are
the midpoints of P . Let D be one of the diagonals of P .

Figure 2.1: Proof of the parallelogram result

Using similar triangles, you can check that two of the sides of P ′ are parallel
to D and hence to each other. Since this holds for each diagonal of P , we see that
the opposite sides of P ′ are parallel in pairs. That is, P ′ is a parallelogram.

2.2. The Midpoint Iteration

We define the midpoint construction on the set XN of oriented N -gons, nor-
malized so that the center of mass of the vertices is the origin. That is, XN

is the complex vector subspace of CN consisting of vectors (z1, ..., zN ) such that
z1 + ...+ zN = 0. The midpoint map is given by M(z1, ..., zN ) = (z′1, ..., z

′
N ), where

(2.1) z′k =
1

2
zk +

1

2
zk+1.

In making this definition, we have made a symmetry-breaking choice on how to
label the vertices of the new polygon, but this choice turns out to be irrelevant for
the final analysis.

The most significant fact is that the map M : XN → XN is a circulent linear
map. (Here circulent means that M commutes with the cyclic shifting of the
coordinates.) Since M is linear, it makes sense to look for a basis of eigenvectors.
Since M is circulent, the eigenvectors have a very specific form.

15
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Let ωN = exp(2πi/N). The n − 1 dimensional complex vector space XN has
the basis E1, ..., EN−1, where

(2.2) Ek = (1, ωk
N , ω

2k
N , ..., ω

(N−1)k
N ).

It follows from symmetry that E1, ..., EN1
are all eigenvectors forM . Let λ1, ..., λn−1

be the corresponding eigenvalues. We have

(2.3) |λk| = |λN−k| =
|1 + ωk|

2
.

From this equation, we see that

(2.4) |λ1| = |λN−1| > |λ2| = |λN−2| > |λ3| = |λN−3| · · ·
Every P ∈ XN can be written

(2.5) P =

N−1∑

k=1

akEk.

Almost every choice will have

a1 6= 0, aN−1 6= 0, |a1| 6= |aN−1|.
We have

(2.6) Mn(P ) =

N−1∑

k=1

λkakEk = µn

(
E1 + bnEN−1 + ǫn

)

Here ǫn is some vector whose norm tends to 0 as n → ∞ and |bn| is independent
of n, and µn is some scaling factor.

Suppose first we mod out by similarities, so that P ∼ µP for any nonzero
complex µ. Modulo similarities, we see that, on a subsequence, Mn(P ) converges
to some linear combination E1 + bEN−1 with b 6= 0. Note that b depends on the
subsequence we take, and this is why it is not really completely satisfactory to mod
out by similarities. However, since |λ1| = |λN−1|, we see that the norm |b| does not
depend on the subsequence. We have

|b| = |bn| = |aN−1/a1| 6= 1.

To recognize E1 + bEn−1 as something familiar, we identify C with R2, and
observe that the kth vertex is

(2.7)

[
1− b1 b2
b2 1− b1

] [
cos(2πk/n)
sin(2πk/n)

]
.

Here b = b1 + ib2. In short, E1 + bEN−1 is the image of the regular N -gon under
some linear transformation Rb. Note that det(Rb) = 1−|b|2, so that Rb is invertible
if and only if |b| 6= 1. Hence T1 + bTN−1 is the image of the regular N -gon under
an invertible linear transformation.

Recall that AN is the space of N -gons modulo affine transformations. Remem-
bering our normalization that

∑
zk = 0, we observe that what we have proved is

equialent to the statement that {Mn(P )} converges in An to the affinely regular
class for almost every initial choice of P ∈ AN .

Remark: When |b| 6= 1, the polygon E1 + bEN−1 is inscribed in an ellipse whose
shape only depends on |b|. Thus, in a certain sense, we really do get convergence
when we just mod out by similarities.
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2.3. Napoleon’s Theorem

In Figure 1.1, Napoleon’s construction 1 appears to be defined for triangles
without regard for orientation, but to bring the analysis into the realm of linear
algebra, as we did for the midpoint map, we give a definition that depends on the
orientation of the triangle.

Suppose that the vertices of the triangle P are (z1, z2, z3). We define points
(w1, w2, w3) by the requiring that zk+1wkzk−1 make the vertices of an equilateral
triangle that is oriented counterclockwise. Here the indices are taken cyclically.

z2

z3

w3

w2
Figure 2.2: Napoleon’s construction for oriented triangles.

Concentrating on w1, we have

w1 − z2 = ω(z2 − z3), ω = exp(2πi/3).

Solving this equation gives

w1 = ω(z2 − z3) + z2.

One of vertices of the triangle P ′ given by Napoleon’s construction is

(2.8) z′1 =
w1 + z2 + z3

3
=

(2 + ω)

3
z2 +

(1− ω)

3
z3.

The formulas for the other two vertices are obtained by shifting the indices cycli-
cally. The map Ψ(P ) = P ′ is again a circulent linear transformation in these
coordinates.

As for the midpoint map, let X3 denote the subspace of C3 consisting of points
(z1, z2, z3) with z1 + z2 + z3 = 0. Let E1 and E2 be the basis for the space X3

considered for the midpoint map. These vectors both represent equilateral triangles,
with T1 being oriented counterclockwise and T2 being oriented clockwise.

Again, both E1 and E2 are eigenvectors for Ψ. This time the eigenvalues are
λ1 = −1 and λ2 = 0. One can check this from the formula, but it is better just
to draw a picture. Writing an arbitrary triangle as P = a1T1 + a2T2, we see by
linearity that P ′ = a1T1. Hence P ′ is an equilateral triangle unless P = a2T2.
In this case, P ′ is a single point. The unoriented construction given in Figure 1.1
implicitly assumes that P is oriented counterclockwise, and this gives us a2 6= 0.
This is why the unoriented construction always produces a nontrivial triangle.

1Some authors doubt that this construction is truly due to Napoleon. See [Gr].
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2.4. Napoleon’s Iteration

Many generalizations of Napoleon’s Theorem have been worked out – e.g. the
Douglas-Neumann Theorem. See B. Grünbaum’s article [Gr] or A. Bogomolny’s
online discussion [Bo] for plenty of information. Here I’ll pursue one direction,
without making any claims to the originality or completeness of the investigation.

As in the midpoint map, let XN denote the vector space of N -gons (z1, ..., zn)
normalized so that

∑
zi = 0. Inspired by Equation 2.8, we define Ψ : XN → XN

by the formula Ψ(z1, ..., zn) = (z′1, ..., z
′
n), where

(2.9) z′k =
(2 + ω3)

3
zk+1 +

(1− ω3)

3
zk+2.

Here ω3 = exp(2πi/3). This definition makes some arbitrary choices for the indices,
but this does not bother us. Geometrically, the map T represents Napoleon’s
construction on oriented N -gons. The map Ψ is again a linear map, and again
we consider the effect on the vector E1, ..., EN−1, which are all eigenvectors. Let
λ1, ..., λn−1 be the corresponding eigenvalues.

Lemma 2.1. The eigenvalues λk with the largest norm corresponds to the values
of k which are closest to N/6. This value of k is unique when N 6≡ 3 mod 6. When
N > 3 and N ≡ 3 mod 6 there are two consecutive values of k which are closest to
N/6.

Proof: Let z = exp(iθ) be a unit complex number. Let Tz be the equilateral
triangle whose vertices are 1, w, z, traced out in counterclockwise order as in Figure
2.3 below. Let z′ be the center of Tz.

We study the function h(θ) = |z′θ|. It is convenient to think of this as a function
of θ ∈ [−2π/3, 4π/3]. An easy exercise in calculus establishes the following

• h attains its global maximum, 2/
√
3, at the midpoint π/3.

• h attains its minimum, 0, at the endpoints −2π/3 and 4π/3.
• h is increasing on [−2π/3, π/3] and decreasing on [π/3, 4π/3].
• h(π/3− θ) = h(π/3 + θ) for all θ.

w

Figure 2.3: A point which varies with θ.
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Let ω = exp(2πi/N), as in the definition of the vectors E1, ..., EN−1. Let
θk = 2πk/N be the argument of ωk. We have

(2.10) |λj | = h(θj), j = 1, ..., N − 1.

When N 6≡ 3 mod 6, there is a unique choice of k which is closest to N/6 and
the corresponding value of θk ∈ I is closest to π/3. Hence |λk| > |λj | for any other
j 6= k. When N > 3 and N ≡ 3 mod 6 there are two consecutive choices of k which
are as close as possible to N/6, and we have |λk| > |λj | when j is not one of these
two special values of k. �

Now we play the same game as above for the midpoint map. For simplicity
suppose that N 6≡ 3 mod 6. We take an arbitrary P ∈ XN and write

P =
N−1∑

i=1

aiEi.

For almost every choice of p we will have ak 6= 0, where k is the index closest to
N/6. By Lemma 2.1 we have

(2.11) Ψn(P ) = µn

(
Ek + ǫn

)
.

Here ǫn is a vector whose norm tends to 0 with n and µn is a scale factor. Modulo
similarities, the sequence {Pn} converges to Ek. When N is divisible by 6, the
polygon Ek traces around the regular hexagon N/6 times. One could say that
when N is not divisible by 3, the limiting shape tries as hard as possible to wrap
itself around the regular hexagon. For N = 4, 5, 6, 7, 8 the limiting shape is the
convex regular N -gon. For N = 10 the limiting shape wraps twice around the
convex regular pentagon. Figure 2.4 shows the limiting shape when N = 11.

Figure 2.4: The limiting shape for N = 11.

When N > 3 and N ≡ 3 mod 6, the generic behavior is somewhat more subtle.
We leave this to the interested reader.
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2.5. Conformal Averaging

In [S4] I studied a polygon iteration that is similar in spirit to the projective
heat map. I called this other iteration conformal averaging . The iteration works
for convex polygons inscribed in the unit circle.

Given 4 complex numbers a, b, c, d, we define their cross ratio.

(2.12) [a, b, c, d] =
(a− b)(c− d)

(a− c)(b− d)

In the next chapter we will discuss the cross ratio in the alternate setting of real
projective geometry. Here we are interested in the cross ratio of unit complex
numbers. When a, b, c, d are unit complex numbers, their cross ratio is a real
number.

Given 4 consecutive unit complex numbers a−3, a−1, a1, a3 on the unit circle,
there is a unique unit complex number c0 on the unit circle such that

(2.13) [a−3, a−1, c0, a1] = [a−1, c0, a1, a3]

and the points a−3, a−1, c0, a1, a3 come in order on the unit circle. This equation
has two solutions, and we take the one which makes the points lie in the correct
order.

The left side of Figure 2.5 shows a geometric construction of c0. For comparison,
the right side shows the construction of the projective midpoint b0. The a points
are in black and move from left to right.

Figure 2.5: The conformal and projective midpoints

We think of an inscribed convex N -gon as a cyclically ordered list

P = (a1, a3, a5, ...)

of N unit complex numbers. Geometrically P is a convex N -gon inscribed in the
unit circle. We form the new inscribed convex N -gon

Ψ(P ) = (c0, c2, c4, ...),

where c0, c2, c4, ... are the consecutive conformal midpoints of the points of P .
In [S4] we proved

Theorem 2.2. For any N ≥ 5 the following is true. {Ψn(P )} converges to a
projectively regular N -gon for every choice of P .

The main idea of the proof was establishing the inequality

(2.14)
∏

[ci, ci+2ci+4ci+6] ≥
∏

[ai, ai+2ai+4ai+6].

This inequality works for all N ≥ 5 and one has equality iff P is projectively
regular. Thus, the conformal averaging map increases the product of the cross
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ratios of consecutive points. The result is very similar to our Theorem 1.3, and it
works for all N ≥ 5. Equation 2.14 is what motivated Theorem 1.3.

The case N = 5 deserves special scrutiny. It is a fact that every pentagon is
projectively equivalent to one which is inscribed in the unit circle. Moreover, the
conformal averaging map is also projectively natural. We have TΨ = ΨT whenever
T is a projective transformation preserving the unit circle. Since the definition
of Ψ depends on the polygon being convex, Ψ induces a map on the space C5 of
projective classes of convex pentagon. One might wonder if Ψ is related to the
projective heat map H acting on C5. Perhaps one has Ψ = H.

This turns out not to be the case. The map Ψ is not a rational map on C5,
because the definition of the conformal midpoint involves taking a square root. The
convexity constraint allows us to take a canonical choice of square root, and this
makes the square-root operation less conspicuous in the construction.





CHAPTER 3

A Primer on Projective Geometry

3.1. The Real Projective Plane

The projective plane can be defined relative to any field, but we will concentrate
on the case when the field is R, the reals.

The real projective plane is the space of lines through the origin in R3. Equiv-
alently, it is the equivalence classes of nonzero vectors, where V ∼ rV for any
nonzero r. The projective plane is denoted RP 2. We will typically denote points
in RP 2 by triples [x, y, z]. This denotes the equivalence class of the vector (x, y, z).
The projective plane is a smooth compact surface.

A line in RP 2 is the set of points represented by the lines contained in a plane
through the origin. The space of lines in RP 2 is often denoted (RP 2)∗. We will
typically denote points in (RP 2)∗ by coordinates [A,B,C]. This denotes the line
corresponding to the plane Ax + By + Cz = 0. The space (RP 2)∗ is often called
the dual projective plane.

The projective plane has the beautiful property that any two distinct lines
intersect in a unique point, called the meet of the lines, and any two distinct points
lie in a unique line, called the join of the points. We define the meet and join of
A and B as (AB) in both cases. To show this notation in action, the projective
midpoint of points a−3, a−1, a1, a3 is given by:

(3.1) b0 = ((((a−3a−1)(a+1a+3)) ((a−3a+1)(a−1a+3))) (a−1a+1)).

See Figure 1.3.
A collection of points is called collinear if they all lie on the same line. A

collection of lines is called coincident if they all contain the same point.

3.2. Affine Patches

The complement of a line in RP 2 is called an affine patch. The most common
affine patch is the subset A2 consisting of the lines [x, y, z] with z 6= 0. There is a
canonical map from A2 to R2 given by

(3.2) [x, y, z] → (x/z, y/z).

The inverse map is given by

(3.3) (x, y) → [x, y, 1].

Under this identification, any line in RP 2 which actually intersects A2 does so in
an ordinary line. Using affine patches, one can do a good job of representing figures
in RP 2. This is exactly how Figure 1.3 works.

23
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3.3. Projective Transformations and Dualities

Each invertible linear transformation T : R3 → R3 permutes the lines through
the origin and so induces a smooth diffeomorphism from RP 2 to itself. Since these
linear transformations also permute the planes through the origin, projective trans-
formations permute the lines in RP 2 and thus induce smooth self-diffeomorphisms
of (RP 2)∗. There is a nice converse to the statements above: Any homeomorphism
of RP 2 which maps lines to lines is a projective transformation. The proof is a fun
exercise.

The group of projective transformations is denoted PGL3(R). It is the group
invertible linear transformations modulo scaling. PGL3(R) is an 8-dimensional Lie
group. This group acts simply transitively on the set of general position quadruples.
That is, there is a unique projective transformation carrying any general position
quadruple of points to any other general position quadruple of points.

Each nondegenerate quadratic form Q on R3 defines a canonical map between
RP 2 and (RP 2)∗. The point p ∈ RP 2, corresponds to the 0-set of the linear
functionalW → Q(Vp,W ). Here Vp is any vector representing p. The most familiar
case is whenQ is the dot product. In this case the obvious map from a 1-dimensional
subspace to its perpendicular complement induces the map from RP 2 to (RP 2)∗.
Algebraically, the point [x, y, z] simply corresponds to the line [x, y, z] in this case.
In general, these maps are called polarities .

A duality is a map of the form ∆ = T ◦ Π, where Π is a polarity and T is
a projective transformation. Dualities are diffeomorphisms from RP 2 to (RP 2)∗

which have the property of preserving incidence relations. That is, a, b, c are three
collinear points in RP 2 if and only if ∆(a),∆(b),∆(c) are three coincident lines.
Conversely, any homeomorphism from RP 2 to (RP 2)∗ with the above property is
a duality. Each duality automatically induces a map from (RP 2)∗ to RP 2: The
point ∆(L) is defined to be the point which contains all the lines ∆(p) with p ∈ L.
This dual map coincides with ∆−1 when ∆ is a polarity, but in general it does not.

A flag is a pair (p, L), where p is a point and L is a line and p ∈ L. The
flag space is the set all flags. The flag space is a smooth compact 3-manifold. It
fibers over RP 2 and (RP 2)∗ in the obvious way: you either forget the line or
you forget the point. Both projective transformations and dualities act as smooth
diffeomorphisms of the flag space. A projective transformation T maps (p, L) to
(T (p), T (L)) and a duality ∆ maps (p, L) to (∆(L),∆(p)).

3.4. The Cross Ratio

The cross ratio of 4 real numbers a, b, c, d ∈ R is defined as

(3.4) [a, b, c, d] =
(a− b)(c− d)

(a− c)(b− d)
.

This formula is the special case of an invariant of 4 collinear points in RP 2, also
called the cross ratio. Given a, b, c, d we define [a, b, c, d] = χ, where

(3.5) (χ, χ, χ) =
(a× b)(c× d)

(a× c)(b× d)
,

Equation 3.5 requires some interpretation. The quantities a, b, c, d now are vec-
tors representing 4 collinear points in RP 2. The expression (a × c)(b × d) is
the coordinatewise product of two vectors. That is, if a × b = (v1, v2, v3) and
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c × d = (w1, w2, w3), then the product is (v1w1, v2w2, v3w3). The same goes for
the denominator in Equation 3.5. Finally, the ratio is the coordinatewise quotient.
This quotient turns out to have all coordinates equal. If we include R as a subset of
A2 in a natural way, then the two definitions of the cross ratio coincide. Moreover,
[a, b, c, d] = [T (a), T (b), T (c), T (d)] for any projective transformation T .

If A,B,C,D are 4 coincident lines, represented by vectors as discussed above,
then [A,B,C,D] can be defined using Equation 3.5. This definition coincides with
the cross ratio of the slopes of the lines, assuming that they all intersect the affine
patch A2.

Figure 3.1 illustrates the fundamental connection between cross ratios of points
and the cross ratios of lines. The cross ratio of any 4-tuple of coincident lines equals
the cross ratio of the 4 points (taken in the same order) obtained by intersecting
this 4-tuple with any auxiliary line.

Figure 3.1: Cross ratios of points and lines

For later reference, we call this basic connection the Cross Ratio Principle.

3.5. The Hilbert Metric

A subset S ⊂ RP 2 is called compact convex if there is some projective trans-
formation T such that T (S) ⊂ A2 and T (S) is a compact convex subset of A2 in
the ordinary sense. Given a compact convex set S, there is a canonical metric on
the interior So of S, called the Hilbert metric. Given points b, c ⊂ So, we define

(3.6) d(b, c) = − logχ(a, b, c, d),

where a and d are the points where (bc) intersects ∂S, as shown in Figure 3.2.

Figure 3.2: Consruction for the Hilbert Metric

When S is the unit disk, the Hilbert metric on the interior of S coincides with
the Klein-Beltrami metric. This is the familiar model of the hyperbolic disk in
which the geodesics are Euclidean line segments. So, one could view the Hilbert
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metric as a generalization of the hyperbolic metric. The following result justifies
the terminology.

Lemma 3.1. The Hilbert metric really is a metric.

Proof: If is not hard to see from the definition of the cross ratio that d(b, c) ≥ 0
with equality if and only if b = c. Also, symmetries of the cross ratio imply that
d(b, c) = d(c, b). The difficult part is establishing the triangle inequality.

Suppose we want to show that d(b, e) + d(c, e) ≥ d(b, c). Referring to Figure
3.3, we can replace the lightly shaded region S by the darkly shaded quadrilateral
Q. In making this switch, the distances d(b, e) and d(c, e) do not change but, as
one can easily check from the formula, d(b, c) increases. So, it suffices to prove our
result in the quadrilateral Q and for the points arranged as shown in Figure 3.3.

Figure 3.3: Switching the domain

Since every two quadrilaterals are projectively equivalent, it suffices to consider
the case when Q = [−1, 1]2, as shown in Figure 3.4.

Figure 3.4: The normalized picture

In this case, we have

b = (s,−s, 1), c = (t, t, 1), e = (0, 0, 1), s, t ∈ (0, 1).

We compute that

exp d(b, e) =
1− s

1 + s
, exp d(c, e) =

1− t

1 + t
, exp d(b, d) =

(1− s)(1− t)

(1 + s)(1 + t)
.

Hence d(b, c) = d(b, e) + d(c, e) in this case. �
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3.6. Projective Invariants of Polygons

Let P be a polygon. Figure 3.5 shows how to assign a number

(3.7) χ(p) = [A,B,C,D]

to the vertex p of P . We call these quantities the vertex invariants of the polygon.

Figure 3.5: Definition of the vertex invariants.

When P is a pentagon, two consecutive vertex invariants determine P . This
is most easily seen by normalizing P so p1, p2, p3, p4 are vertices of a square and
considering the two cross ratios are χ(p2) and χ(p3). Fixing the value of each of
these cross ratios confines p5 to a line and the two lines are distinct. So, p5 must
be the intersection of the two lines.

Figure 3.6 shows how to assign a number

(3.8) χ(L) = [a, b, c, d]

to each edge L of a polygon P . We call these quantities the edge invariants .

L

d

Figure 3.6: Definition of the edge invariants

Two consecutive edge invariants determine a pentagon up to projective equiv-
alence. Indeed, one can see from the Cross Ratio Principle that, for pentagons,
χ(p) = χ(L) whenver L is the edge opposite the point p.
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On a polygon P , a flag is a pair (p, L) where p is a vertex and L is an edge of
P incident to v. We indicate the flag (p, L) with an auxilliary white point placed
on the edge L two-thirds of the way towards v. We associate the number

(3.9) χ(p, L) = [a, b, c, d].

where a, b, c, d are as in Figure 3.7. We call these the flag invariants of the polygon.

A
Figure 3.7: Invariant of a flag

Remarks:
(i) Some readers might look at Figure 3.7 and wonder if we have truly placed the
auxiliary white point in the right place. Perhaps it should be 2/3 of the way to
towards c rather than 2/3 of the way towards p. Let me justify the placement of
the white point – i.e., the choice of flag (p, L). One could say that L is the line
that is just clockwise from lines A,B and p is the vertex just counterclockwise from
points c, d.
(ii) Our construction involves the edges A,B of the polygon, and the vertices c, d.
In this way, the lines and vertices of the polygon are on an equal footing in the
construction. We have to break the symmetry (between lines and vertices) when
we take the cross ratio [a, b, c, d] of points, but by the Cross Ratio Principle we
could also define χ(p, L) in terms of the cross ratio of the (slopes of the) 4 lines
connecting A∩B to a, b, c, d. Thus, points and lines are on a truly equal footing in
the construction. We will take this up in the next section.
(iii) We have drawn these invariants for convex polygons, but these invariants make
sense for any polygon in which the points are in sufficiently general position. In-
deed, these invariants make sense over most fields.

In general, we list out the flag invariants of a polygon as follows. We can think
of a polygon as a cyclically ordered list v0, L1, v2, L3, ... where v0, v2, v4, ... are the
vertices and L1, L3, L5, ... are the (lines extending the) edges between them – i.e.
L2k+1 is incident to both v2k and v2k+2. The flag invariants are then χ(v0, L1),
χ(v2, L1), χ(v2, L3),... The invariants come in the same order as the auxiliary white
dots representing the flags.

Here are the fundamental relations between these invariants.
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Lemma 3.2. Suppose that p1 and p2 are two consecutive vertices which are both
incident to the edge L. Suppose also that L1 and L2 are two consecutive edges which
are incident to the vertex p. Then

(3.10) χ(p, L1)χ(p, L2) = χ(p), χ(p1, L)χ(p2, L) = χ(L).

Proof: The first relation only involves 5 consecutive points. So, if the first relation
holds for all pentagons, it holds for all polygons. For pentagons, we just have to
check the case when p = p5 and
(3.11)

p1 = (0, 1), p2 = (0, 0), p3 = (1, 0), p4 = (1, 1), p5 = (x, y).

The flag invariants associated to the flags incident to p5 are

(3.12)
x− 1

x− y
,

x

x+ y − 1
.

The vertex invariant is

(3.13)
(x− 1)x

(x− y)(x+ y − 1)
,

namely the product of the two flag invariants. This establishes the first relation.
The second relation follows from the first relation and from projective duality con-
siderations explained in the next section. (A direct calculation would also work.) �

3.7. Duality and Relabeling

The flag invariants are obviously invariant under projective transformations.
Moreover, they are also invariant under dualities, once a proper interpretation is
given. First of all, we make the labeling convention that the flag invariants x1, x2, ...
of an N -gon P always have the property that x1 and x2 correspond to flags which
share a common edge. The opposite convention would stipulate that the first two
invariants correspond to flags which share a common vertex.

Given a duality ∆, we let ∆∗(P ) denote the polygon whose edges are the edges
of ∆(P ). A better way to understand the action of ∆∗ is to think of P as a list of
flags. When P is an N -gon, the flag perspective on P realizes P as a 2N -gon in
the flag space. Denote this 2N -gon by P#. Let ∆# denote the action of ∆ on the
flag space, as discussed at the end of §3.3. We have

(3.14) (∆∗(P ))# = ∆#(P#).

Inspecting our construction of our flag invariants given in Figure 3.7, we we
see that P and ∆∗(P ) have the same flag invariants. Here is the proof. Label
the vertices of Figure 3.7 clockwise so that p = p2. Label the edges of Figure 3.7
counter-clockwise so that L = L2. Then

χ(p, L) = [((p0p1)(p3p4)), ((p1p2)(p3p4)), p3, p4] =

[((L0L1)(L3L4)), ((L1L2)(L3L4)), L3, L4].

The construction remains unchanged when the roles of points and lines are swapped.
Suppose that the flag invariants of P are (x1, ..., x2N ). If we cyclically relabel

the vertices of P the new flag invariants could be (x2k+1, x2k+2, ...) for some integer
k. That is, cyclically relabeling the vertices corresponds to shifting the indices by
an even integer.
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Which polygon has the flag invariants (x2, x3, ...)? Certainly it is not the poly-
gon P with a different labeling of the vertices. We have already accounted for what
happens when we cyclically relabel the vertices of P . The answer is that these are
the invariants for ∆∗(P ) relative to any duality, provided that a suitable labeling
of the vertices of ∆∗(P ) has been made.

3.8. The Gauss Group

Let x1, x2, ... be the flag invariants associated to a pentagon. A direct calcula-
tion reveals that

(3.15) xk+2 =
1− xk

1− xkxk+1
.

Equivalently,

(3.16) (xk+1, xk+2) = G(xk, xk+1), G(x, y) =

(
y,

1− x

1− xy

)
.

The map G is a famous map. It is often called the Gauss Recurrence. It arose in
Gauss’s study of spherical pentagons. The topic goes under the heading of Gauss’s
pentagramma mirificum. Beautifully, G has order 5. This means that the flag
invariants for a pentagon repeat after 5 steps. They are

x1, x2, x3, x4, x5, x1, x2, x3, x4, x5.

We define the Gauss group to be the group generated by the elements G and
the order 2 element

(3.17) R(x, y) = (y, x).

The Gauss group has order 10. Geometrically, the Gauss group records the action
of the dihedral relabeling group on the space of P5 of labeled pentagons modulo
projective equivalence. However, there is a subtlety here. Cyclically shifting the
vertices corresponds to an even power of the Gauss recurrence, but the fact that
the Gauss recurrence has order 5 means that odd powers of the Gauss recurrence
are also even powers and hence are realized by cyclic relabellings as well.

There is a map from P5 into R2 given by

(3.18) f(P ) = (χ(p1, L), χ(p2, L)).

That is, we just take two consecutive flag invariants. f conjugates the group of
dihedral relabelings to the Gauss group.

The fact that G5 is the identity also has a geometric explanation. We have
already mentioned that for pentagons χ(p) = χ(L) if the vertex v is opposite the
edge L. This translates into the statement that there is a projective duality which
carries the vertices of P to the lines of P . That is, P = ∆∗(P ). Given the action
of ∆∗ on the flag invariants, discussed in the previous section, we see that the
list of flag invariants of P must repeat after an odd number k of steps. The only
possibility is that k = 5.



CHAPTER 4

Elementary Algebraic Geometry

In this chapter we present some results and definitions from elementary alge-
braic geometry. Some of the results we will quote without proof and sometimes we
will give proofs. See W. Fulton’s book [F] for a much more thorough treatment.
See also K. Kendig’s book [K].

4.1. Measure Zero Sets

A subset S ⊂ Rn has measure zero if, for any ǫ > 0, the set S is contained in a
countable union of cubes such that the sum of the volumes of the cubes is less than
ǫ. On the other extreme, S has full measure if Rn−S has measure zero. Countable
unions of measure zero sets have measure zero, and (hence) countable intersections
of full measure sets have full measure.

If M is a smooth manifold, a subset S ⊂ M , which happens to be contained
in a coordinate chart (U, φ) of M , has measure 0 provided that φ(S) ⊂ Rn has
measure zero. A general subset S ⊂ M has measure 0 if S is the countable union
of measure zero sets contained in coordinate charts. A full measure subset of M is
one whose complement has zero measure.

We say that almost every point has property P provided that property P fails
only on a set of measure zero. For instance, a nonconstant polynomial on Rn is
nonzero almost everywhere.

4.2. Rational Maps

A rational function on Rn is a function of the form f = P/Q where both P
and Q are polynomials. Such maps are defined on the set where Q is nonzero. That
is, they are defined except on a set of measure 0. A rational map from Rn to Rn is
a map of the form f = (f1, ..., fn) where each fj is a rational function. A rational
map is defined almost everywhere.

A rational map f : Rn → Rn is called birational if there is another rational
map f : Rn → Rn such that fg and gf are the identity map wherever both are
defined. Often we write g = f−1. There is an open and full measure subset where
both maps are defined.

The composition of rational maps is again a rational map. Hence, the set of all
rational maps on Rn forms a semigroup and the set of birational maps on Rn forms
a group. This group is called the Cremona group. The Gauss group considered at
the end of the last chapter is an order 10 subgroup of the Cremona group of R2.

Given a rational map f , and x ∈ Rn, we define fn(x) = f ◦ ... ◦ f(x), provided
that all the maps are well-defined on the relevant points. The forward orbit of
x is {fn(x)} provided that this is well defined. When f is birational, we define

31
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f−n = (f−1)n and we define the orbit of x to be the bi-infinite sequence {fn(x)}.
Almost every point in Rn has a well-defined orbit.

4.3. Homogeneous Polynomials

A homogeneous polynomial in 3 variables is any finite sum

(4.1) P (x, y, z) =
∑

ci,j,kx
iyjzk,

where ci,j,k ∈ C and the total sum i+ j + k = D is independent of the summand.

D is called the degree of P . Though we view P as a map from C3 to C, it makes
sense to talk about the zero set of P as a subset of the complex projective plane
CP 2 where P vanishes. That is,

(4.2) V (P ) = {[v] ∈ CP 2| P (v) = 0}.
Here CP 2 is the space of complex lines through the origin in C3. The definition
of V (P ) makes sense because P (v) = 0 if and only if P (λv) = 0 for any nonzero
v ∈ C3 and any nonzero λ ∈ C. The subset V (P ) ⊂ CP 2 is a special case of what
is called a projective variety .

Each homogeneous polynomial on C3 gives rise to an ordinary polynomial on
C2 just by setting z = 1. Formally, this amounts to restricting the polynomial to
the affine patch {z 6= 0} and then conjugating by the canonical map to C2. This 2-
variable polynomial is called the dehomogenization of the homogeneous polynomial.

The process can be reversed. Given a 2 variable polynomial in x, y, we can
simply pad it with powers of z to make it homogeneous. One example should
explain the whole construction. Suppose that f(x, y) = x2 + 3xy2 + 2. Then the
homogeneous polynomial is F (x, y, z) = x2z + 3xy2 + 2z3. The polynomial F is
called the homogenization of f .

There are two other equally natural affine patches, namely the set {x 6= 0}
and the set {y 6= 0}. The homogenenization and dehomogenization process works
the same for these affine patches. Note that CP 2 is covered by these three affine
patches. So, if we want to understand the zero set of a homogeneous polynomial in
CP 2, it suffices to study the inhomogeneous polynomials obtained by setting each
of the coordinates equal to 1.

4.4. Bezout’s Theorem

Let C[x, y] denote the set of polynomials in 2 variables with complex coeffi-
cients. Given f ∈ C[x, y] we let V (f) denote the solution set of the equation f = 0.
The set V (f) is called a plane algebraic curve. Let V (f1, f2) denote the solution set
of the equations f1 = f2 = 0. When f1 and f2 have no common factors, V (f1, f2)
is a finite set of points. We explain how to properly count the number of points in
V (f1, f2). The quantity of interest to us is often denoted Ip(f1, f2), and it is called
the intersection number of V (f1) and V (f2) at p.

An algebraic definition of the intersection number Ip(f1, f2) is given in [F]. For
the sake of exposition, we give a more analytic definition which doesn’t require
a build-up of algebraic geometry. The equivalence of the analytic and algebraic
definitions can be extracted from [AGV, §5].

We define a δ-perturbation of a polynomial f1 to be a polynomial g1 with the
property that deg(f1) = deg(g1) and all the coefficients of f1 − g1 have norm less
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than δ. We define

(4.3) Ip(f1, f2) = min
ǫ>0

(
lim sup

δ→0
N(g1, g2, ǫ)

)
.

Here N(g1, g2, ǫ) denotes the number of solutions to g1 = g2 = 0 within ǫ of p, when
g1 and g2 are δ-perturbations of f1 and f2. Intuitively, we perturb f1 and f2 in a
generic way and count the number of points in V (g1, g2) near p.

When it comes time for us to compute some intersection numbers, we will not
use the definition above. Rather we just one of the properties of the intersection
number listed on p 37 of [F]:

(4.4) Ip(f1, f2) ≥ mp(f1)mp(f2).

The quantity mp(fj) is known as the multiplicity of fj at p. All we need to know
about this quantity is as follows: If fj vanishes to kth order at p then mp(fj) ≥ k.
In the application the point of interest will always be (0, 0), and to show that
m(0,0)(fj) ≥ k we just have to show that

(4.5) fj(x, y) = gk(x, y) + higher order terms.

Here gk is a homogeneous polynomial in two variables of degree k.
If f1 and f2 are homogeneous polynomials in 3 variables with no common

factors and p ∈ CP 2 is a solution to the simultaneous equation f1 = f2 = 0,
we define Ip(f1, f2) = Ip∗(f∗1 , f

∗
2 ) where p∗ is the image of p in C2 under the

identification of C2 with an affine patch containing p. Here f∗1 and f∗2 are the
corresponding inhomogeneous polynomials. This definition is independent of the
chosen affine patch. As discussed, we always use one of the three affine patches
mentioned above.

Here is a special case of Bezout’s Theorem.

Theorem 4.1 (Bezout). Let f1 and f2 be two homogeneous polynomials in
C[x, y, z] with no common factors. Then

(4.6)
∑

p∈V (f1,f2)

Ip(f1, f2) = deg(f1) deg(f2).

We emphasize that the count of the intersections takes place in all of CP 2.
Practically any book on algebraic geometry has a proof of Bezout’s Theorem.

4.5. The Blowup Construction

The blowup construction starts with a smooth manifold M and some point
p ∈ M and returns a new smooth manifold Mp. The reader should know that the
construction also makes sense in the category of algebraic manifolds. An algebraic
manifold is a smooth manifold equipped with an atlas of coordinate charts whose
overlap functions are birational maps. For instance, the space RP n of lines through
the origin in Rn+1 is naturally an algebraic manifold. IfM is an algebraic manifold,
then Mp naturally inherits the structure of an algebraic manifold. We will just use
the term manifold to refer to manifolds of either type.

We first discuss Rn
0 , the blowup of Rn at the origin. We denote the origin by

0, through really the point is (0, ..., 0). As a set, Rn
0 is the set of flags (p, L) where

p ∈ Rn and L ∈ RP n−1 and p ∈ L. This set is naturally a submanifold of the
product Rn ×RP n−1.
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There is a canonical map π : Rn
0 → Rn given by

(4.7) π(p, L) = p.

We call π the blow down map. Since each nonzero point in Rn determines a
unique line through the origin, π is a birational diffeomorphism from Rn

0 − π−1(0)
to Rn − {0}. The inverse image π−1(0) is a copy of RP n−1. It is called the
exceptional fiber . If B ⊂ Rn is some open set which contains the origin, we let
B0 = π−1(B). We think of B0 as the blowup of B at 0.

Now consider the general case of a manifold M with p ∈ M . The easiest way
to understand the blowup Mp is to choose a coordinate chart on M such that p is
(identified with) the origin in Rn and some open ball B ⊂ Rn about the origin is
(identified with) an open neighborhood of p in M . We get Mp by cutting out B
and pasting back in B0. Formally, Mp is the quotient space

(4.8)

(
(M −B)

∐
B0

)
/ ∼,

where q1 ∼ q2 if and only if q1 ∈ B − 0 and q2 ∈ B0 − π−1(0) and π(q2) = q1. Here∐
denotes the disjoint union.
A bit of reflection reveals that the new space can be naturally be made into a

manifold again, and the isomorphism class of the manifold (in whatever category)
does not depend on the choice of B. Notice also that the above construction would
work about the same way if we chose a coordinate chart in which a neighborhood
of p ∈ M was identified with an open ball B′ about some other point in Rn. We
would blow up by replacing B′ with a suitably translated copy (B0)

′ of B0.
Later on, we will blow up (R ∪∞)2 at 3 points. Note that R2 is naturally a

subset of (R∪∞)2. If the points all lie in R2 we can perform the blowup operation
as above, and simultaneously, using pairwise disjoint disks centered at these points.
The first time we do this triple blowup, the points we consider, namely (1, 1) and
(0,∞) and (∞, 0), do not all belong to R2. However, we could move these points
into R2 using a suitable birational change of coordinates – e.g. the map B from
Equation 1.2. Indeed, the case we really care about is when we blow up (R ∪∞)2

at the points B(1, 1), B(0,∞) and B(∞, 0), all of which do lie in R2. The first
blowup contruction is just a stepping stone to understanding the second one.

Here we explain one use of the blowup construction. We stick to the 2 dimen-
sional case and we imagine that we have blown up R2 at some point p ∈ R2. We
say that a rational function f = P/Q has a simple blowup at p if P (p) = 0 and
Q(p) = 0 and the gradients ∇P (p) and ∇Q(p) are linearly independent.

Lemma 4.2. Suppose that f has a simple blowup at p. There is an open neigh-
borhood U of π−1(p) in R2

p and a smooth map fp : U → R ∪∞ so that π ◦ fp = f
on π(U)− p.

Proof: After making an affine change of coordinates, we can assume that p = (0, 0)
and

(4.9) f(x, y) =
y +

∑
i+j≥2 aijx

iyj

x+
∑

i+j≥2 bijx
iyj

.

The blowup R2
0 is the space of flags (q, ℓ) where q ∈ R2 and ℓ is a line through (0, 0)

and q. We write ℓ = {(tu, tv)| t ∈ R} and denote the point ((0, 0), ℓ) as [u : v]. We
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have π(q, ℓ) = q. We define f0(q, ℓ) = f(q) when q 6= (0, 0) and f0([u : v]) = u/v.
Evidently, f = π ◦ f0 whenever f is defined.

Since π is a diffeomorphism away from π−1(0), the map f0 is smooth away
from π−1(0). We just have to see that f0 is smooth at an arbitrary point [u : v].
Replacing f with 1/f if necessary, we can without loss of generality consider the
case when |v| < |u|. We introduce smooth local coordinates in a neighborhood of
[u : v] ∈ R2

0 which have the form (x, t). When x 6= 0 the point (x, t) corresponds
to (x, tx) and when x = 0 the point (x, t) corresponds to [1 : t]. Since we want to
work in an open neighhborhood of [u : v], we can take, say, |t| ≤ 2.

In our new coordinates, we have

(4.10) f0(x, t) =
t+

∑
i+j≥2 aijt

jxi+j−1

1 +
∑

i+j≥2 bijx
i+j−1tj

= t+
∑

k≥1

Pk(t)x
k.

Here Pk(t) is a polynomial in t. The degree and maximum size of a coefficient in
Pk grows at most exponentially. So, for |x| sufficiently small, the equation above
defines a convergent power series and hence a smooth map. �





CHAPTER 5

The Pentagram Map

5.1. The Pentagram Configuration Theorem

The Pentagram Configuration Theorem says that a pentagon P and its pen-
tagram P ′ are projectively equivalent. I learned the proof from John Conway in
1988. See also [Mot] or [S1]. Figure 5.1 shows the proof. By two applications
of the Cross Ratio Principle, the vertex invariant of the outer pentagon P at the
highlighted black vertex is the same as the vertex invariant of the inner pentagon
P ′ at the highlighted black vertex. In both cases, the invariant is the cross ratio of
the 4 white points. Hence P and P ′ have the same vertex invariants. Hence, they
are projectively equivalent.

Figure 5.1: Two vertex invariants coincide

There is another configuration theorem like this. The two hexagons P and P ′′

are always projectively equivalent when they are labeled as in Figure 5.2. I’ll leave
this to the interested reader. Actually, I don’t know a geometric proof. See [ST]
for some other related configuration theorems.

6

Figure 5.2: The pentagram map acting on hexagons

37
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5.2. The Pentagram Map in Coordinates

By now there are many papers on the pentagram map. See, for instance, [S1],
[S2], [S3], [OST1], [OST2], [Sol1], [KS], [Gli], [GSTV], [MB1], [MB2].

Let T denote the pentagram map acting on the space PN of projecive equiva-
lence classes of labeled N -gons. As for the projective heat map there is no canonical
way to make T act on PN . One must break the symmetry to get a labeling scheme.
Whatever the labeling scheme, T is not periodic for N ≥ 7.

Figure 5.3 shows a canonical labeling scheme for T 2. Note that this is different
from the labeling scheme in Figure 5.2. The labeling scheme in Figure 5.2 is designed
specially for P6. Were we to use the labeling scheme from Figure 5.3 for P6, the
map T 2 would have order 2.

Figure 5.3: Canonical labeling scheme for T 2.

Our discussion now refers to the invariants introduced in §3.6. Let x1, x2, ... be
the flag coordinates for an N -gon P . In [S3] we show that

(5.1) T 2 = α1 ◦ α2.

Here α1(x1, ..., x2n) = (x′1, ..., x
′
2n) and α2(x1, ..., x2n) = (x′′1 , ..., x

′′
2n) where

x′2k−1 = x2k
1− x2k+1x2k+2

1− x2k−3x2k−2
; x′2k = x2k−1

1− x2k−3x2k−2

1− x2k+1x2k+2
;

x′′2k+1 = x2k
1− x2k−2x2k−1

1− x2k+2x2k+3
x′′2k = x2k+1

1− x2k+2x2k+3

1− x2k−2x2k−1
(5.2)

Both α1 and α2 are involutions. Thus, T 2 is the composition of two involutions.
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Remarks:
(i) The pentagram map gives rise to a birational map of R2n. Not all points in
R2n represent the flag invariants of an n-gon. We discuss this in detail in §5.7.
(ii) Some authors (including myself) of pentagram map papers call the flag invari-
ants defined above the corner invariants . I am calling these invariants the flag
invariants here to distinguish them from the vertex invariants defined above. Also,
since the flag invariants are associated to the flags of the polygon, and the vertex
invariants are associated to the vertices, the terminology here is better.

5.3. The First Pentagram Invariant

For each P ∈ PN , let

(5.3) f(P ) =
2n∏

i=1

xi

denote the product of the flag invariants associated to the N -gon P . It follows
immediately from the formulas that f(P ) = f(T (P )). That is, f is an invariant of
the pentagram map. In papers on the pentagram map, f is written as O5E5. See
e.g. [S3] or [OST], and also §5.7 below.

Each vertex is incident to two flags. As we have already seen in §3.6, each vertex
invariant of P is the product of the flag invariants associated to these two incident
flags. Therefore, f(P ) is also the square of the product of the vertex invariants.
Tracing through the definitions, we see that − 1

2 log(f(P )) is the perimeter of P ′ in
the Hilbert metric on (the open region bounded by) P .

Remark: The only other thing in this chapter that is used in later in the mono-
graph is the notion of a twisted polygon defined in §5.6. We mention this because
some of the material below is rather advanced and also a bit sketchy.

Theorem 5.1. If P is a convex N -gon, then {Tn(P )} shrinks to a point.

Proof: If this is false, then
⋂
Tn(P ) = K, some nontrivial compact convex subset.

Let L be any line that intersects K in a nontrivial segment. Then L ∩ Tn(P ) con-
verges to the segment L∩K. In particular, the endpoints of L∩Tn+1(P ) converge
to the respective endpoints of Tn(P ), and these endpoints are distinct. This is
enough to show that the Hilbert diameter of Tn+1(P ) in Tn(P ) tends to ∞. But
then, by the triangle inequality, the Hilbert perimeter of Tn+1(P ) in Tn(P ) tends
to ∞, a contradiction. �

Lemma 5.2. The space CN is diffeomorphic to R2N−8.

Proof: To see this, we normalize the first 4 points by a projective transformation
so that they are the vertices of a square. This leaves 2N − 8 degrees of freedom
to pick the remaining points, and accounts for the dimension. The fifth point is
forced to lie in a triangle T ⊂ RP 2 bounded by certain of the lines extending the
edges of the polygon in order to retain the convexity condition. Once the fifth point
is placed, the 6th point must lie in a triangle. And so on. Thus, CN is an open
triangle bundle over CN−1. The topological part of the lemma follows from this. �

The flag invariants lie in (0, 1) for convex polygons, so f maps CN into (0, 1).
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Lemma 5.3. f is a proper function on CN .

Proof: A careful proof is given in [S1]. Here is a sketch. It suffices to show that
f(Pn) → 0 on any sequence Pn which exits every compact subset of CN . Since all
the flag invariants are in (0, 1) it suffices to show that at least one flag invariant
tends to 0 with n. We normalize so that the first 4 points are the vertices if the
unit square. Let pn,k denote the kth vertex of Pn. Let Tn be the triangle from
Lemma 5.2, so that pn,5 ∈ Tn. After cyclically relabeling the points if necessary,
and passing to a subsequence, we can arrange that pn converges to a point on ∂Tn.
In other words, at least one 5-tuple must be degenerating in a projective sense and
we relabel to arrange that (pn,1, ..., pn,5) is a degenerating 5-tuple. A case-by-case
analysis shows that one of the vertex invariants χ(pn,4), χ(pn,4), χ(pn,5) tends to 0.
But each vertex invariant is the product of two flag invariants. Hence, some flag
invariant tends to 0 as well. �

Lemma 5.3 says that the iterates Tn(P ) stay more or less the same shape in a
projective sense, as they shrink to a point. Now we will go more deeply into the
dynamics of the pentagram map.

5.4. The Poincare Recurrence Theorem

As a prelude to proving the recurrence of the pentagram map, we give a proof
of the Poincare Recurrence Theorem. Let M be some topological space and let
T : M → M be a map. A point p ∈ M is recurrent for T if p is an accumulation
point of its own forward orbit.

Theorem 5.4 (Poincare Recurrence). Suppose M is a topological space with a
countable basis for its topology and a finite measure which assigns positive values
to all open sets. Suppose that T :M →M is an invertible and measure-preserving
map of M . Then almost every point of M is recurrent for T .

Proof: Let {Uj} be a countable basis of open sets for the topology. Say that
p ∈ Uj is good with respect to Uj if T k(p) ∈ Uj for infinitely many k > 0, and
otherwise bad with respect to Uj . We will prove that the set of points that are bad
with respect to Uj has measure 0. Say that a point p ∈ M is bad if it is bad with
respect to some Uj that contains it. The countable union of sets of measure zero
again has measure zero. Hence, the set of bad points has measure 0. Any point
that is not bad is good with respect to every basis element which contains it, and
hence is a recurrent point. So, almost every point is a recurrent point.

Now we will prove that the set of points bad with respect to Uj has measure
0. Set U = Uj . Let

(5.4) Vm =

∞⋃

k=m

T−k(U), V =

∞⋂

m=0

Vm.

Note that U ⊂ V0. We have V0 ⊃ V1 ⊃ V2... and all these sets have finite measure.
Moreover T (Vm) = Vm−1 for all m. Hence, all these sets have the same measure.
But then the set of points in V0 − V has measure 0. Since U has positive measure,
almost all points of U lie in V . But every point in V is good with respect to U . �
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5.5. Recurrence of the Pentagram Map

Now we sketch the proof that the pentagram map is recurrent on CN . A
complete proof is given in [S2].

Lemma 5.5. There exists a T -invariant measure on CN . The measure comes
from a smooth volume form.

Proof: Here is a sketch. Let XN denote the space of all convex N -gons in RP 2.
We have CN = XN/PGL3(R). We will construct a volume form on XN which
is both T -invariant and PGL3(R)-invariant. We can describe the tangent space
to XN at a point P as the set of infinitesimal variations of a polygon P . An
infinitesimal variation is specified by 2N vectors, with 2 based at each vertex of
P . Figure 5.4 shows one of 2N canonical variations. All the points of P stay fixed
except one, which moves according to the function t → p+ tV . Here V is tangent
to the setment AB at p and is a unit vector relative to the Hilbert metric on AB.
The other canonical variations have the same kind of description.

Figure 5.4: One of the canonical variations

When we take the 2N canonical variations together we get a PGL3(R) in-
variant framing of XN – i.e. a basis of each tangent space. When we write the
differential dT relative to this canonical basis (for P and for P ′) we compute that
det(dT ) = ±1. So, we can define a PGL3(R)-invariant and (up to sign) T -invariant
volume form ω by requiring that ω evaluates to 1 on the canonical basis. The un-
signed measure associated to ω is T -invariant. �

For almost every ǫ ∈ (0, 1) the T -invariant set Kǫ = f−1[ǫ, 1) is a smooth
manifold with boundary. This is a consequence of Sard’s Theorem. The space
Kǫ has a finite volume smooth invariant volume form. In particular, the map
f : Kǫ → Kǫ is a measure preserving transformation acting on a space of finite
measure. It now follows from the Poincare Recurrence Theorem that the pentagram
map is recurrent on CN . Now we have a little more information about the shapes
in the orbit {Tn(P )}. Typically one sees nearly the same shape repeat over and
over.

The rest of this chapter is devoted to sketching the complete integrability of
the pentagram map on CN (and related spaces). The complete integrability implies
a much stronger kind of recurrence.
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5.6. Twisted Polygons

A twisted N -gon is a map Ψ : Z → RP 2 such that

(5.5) Ψ(k +N) =M ◦Ψ(k), ∀k ∈ Z.

Here M ∈ PGL3(R) is a projective transformation called the monodromy of Ψ.
When M is the identity, the notions of twisted and ordinary N -gons coincide. I
introduced twisted polygons in [S3] and they arise in almost every discussion of the
pentagram map.

Two twisted N -gons Ψ1 and Ψ2 are equivalent if there is a projective transfor-
mation S such that S ◦ Ψ1 = Ψ2. In this case, M2 = SM1S

−1. Here Mj is the
monodromy of Ψj . In other words, projectively equivalent twisted N -gons have
conjugate monodromies.

Generically, any list x1, ..., x2N of real numbers coincides with 2N consecutive
flag invariants of a twisted N -gon. (The infinite list of invariants is 2N -periodic.)
The twisted N -gon is uniquely determined by the list of numbers, up to projective
equivalence. We will have more to say about this in the next chapter. Thus, we
naturally identify R2N with the space ZN of twisted N -gons modulo projective
equivalence. Some points, such as (0, ..., 0), do not correspond to geometrically
realized twisted N -gons, but we are after generic statements which hold almost
everywhere and so we ignore these technicalities.

Remark: At this point, nothing else in this chapter will be used later in the
monograph.

5.7. The Pentagram Invariants

Here I will explain the pentagram invariants, which I first constructed in [S3].
By now there are many constructions. See e.g. [Sol] or [GSTV].

The pentagram map is well defined on ZN and the equations given in Equation
5.2 work in this more general setting. Indeed, these equations are even better suited
to ZN than to the smaller space PN or ordinary N -gons. One can view PN as a a
codimension 8-subvariety of ZN = R2N .

If Ψ is a twisted N -gon, then T (Ψ), the image of Ψ under the pentagram map,
is another twisted N -gon with the same monodromy. Thus, the conjugacy class of
the monodromy is a pentagram-invariant function on ZN .

The space ZN admits an operation which is commonly called scaling . The
scaling operation does not preserve PN but nevertheless it is a key construction.
Here is the scaling operation:

(5.6) Rt(x1, x2, x3, x4, ...) = (tx1, t
−1x2, tx3, t

−1x4, ...).

Rt commutes with T 2. That is, Rt ◦T 2 = T 2 ◦Rt. The variable t is now sometimes
called the spectral parameter .

Letting x1, ..., x2N be the flag invariants of P , define

(5.7) EN (P ) = x2x4...x2N , ON (P ) = x1x3...x2N−1.

From Equation 5.2 we see that EN (T (P )) = ON (P ) and ON (T (P )) = EN (P ).
Hence EN and ON are both invariants of T 2.
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Let M be the monodromy of a twisted polygon P . We lift M to an element of
GL3(R) which we also denote by M . We define

(5.8) Ω1 =
trace3(M)

det(M)
; Ω2 =

trace3(M−1)

det(M−1)
.

These quantities are independent of the lift ofM and only depend on the conjugacy
class of M . Hence they are invariants of T . The functions

(5.9) Ω̃1 = O2
NENΩ1; Ω̃2 = ONE

2
NΩ2.

are invariants of T 2.
A polynomial in the flag coordinates has weight k if R∗

t (P ) = tkP . Here R∗
t

denotes the obvious action of the scaling map Rt on polynomials. In [S3] we show
that

(5.10) Ω̃1 =

(
1 +

(N−1)/2∑

k=1

Ok

)3

; Ω̃2 =

(
1 +

(N−1)/2∑

k=1

Ek

)3

,

where Ok has weight k and Ek has weight −k. Since the functions Ω̃1 and Ω̃2 are in-
variants of T 2, and T 2 commutes with scaling, the polynomials O1, ..., On, E1, ..., En

are invariants of T 2. Here n = (N − 1)/2. Combining these with ON and EN , we
get N + 1 invariants of T 2. More precisely, if we choose either sensible labeling
scheme for the action of T , we get Ok = Ek ◦T and Ek = Ok ◦T for all k. See [S3]
for a a combinatorial description of these polynomials.

5.8. Symplectic Manifolds and Torus Motion

A symplectic manifold is a smooth manifold M equipped with a closed, non-
degenerate 2-form ω. What we mean is that dω = 0 and that ω ∧ ... ∧ ω is a
nondegenerate volume form. At each point p ∈ M , the form ω gives a canonical
linear map between the tangent space TpM and the cotangent space (TpM)∗. The
vector V maps to the linear functional XV which has the property that

(5.11) XV (W ) = ωp(V,W ), ∀W ∈ Tp(M)

The nondegeneracy of M forces this map to be an isomorphism.
Given a smooth function f : M → R, we get a vector field, Xf , called the

Hamiltonian, which has the property that ω(Xf ,W ) = df(W ) for all vector fields
W . In other words, we use the linear isomorphism to convert the 1-form df to the
vector field Xf . Note that

(5.12) df(Xf ) = ω(Xf , Xf ) = 0.

Hence Xf is tangent to the level sets of f .
Let C∞(M) denote the space of smooth functions on M . There is a natural

bracket operation on C∞(M), defined as follows:

(5.13) {f, g} = ω(Xf , Xg).

This bracket is a special case of what is called a Poisson bracket , which we will
discuss below. One important property of the bracket is that

(5.14) X{f,g} = [Xf , Xg].
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The right hand side is the Lie bracket of vector fields, an operation that only
depends on the smooth structure ofM . In particular, if {f, g} = 0 then Xf and Xg

generate commuting flows. In this situation, we say that f and g Poisson commute.
Suppose now that M is a compact symplectic manifold of dimension 2k and

f1, ..., fk are functions on M which pairwise Poisson commute. Suppose also that
the differentials df1, .., dfk are almost everywhere linearly independent. At each
p ∈ M we have the level set through p, consisting of those points q ∈ M such that
fj(q) = fj(p) for all j. Call Lp clean if df1, ..., dfk are linearly independent at every
point of Lp. It follows from Sard’s Theorem that almost every p is contained in a
clean level set.

Let L be a clean level set. Since df1, ..., dfk are linearly independent at each
point of L, the vector fields X1, ..., Xk are also linearly independent at each point
of L. Moreover, these vector fields commute. In other words, L has a framing by
commuting vector fields. Let’s explore the topological consequences of this.

A translation manifold is a smooth k-dimensional manifold having coordinate
charts into Rk so that the overlap functions are all restrictions of translations.
Note that a translation manifold inherits the metric from Rk and, in particular, is
locally isometric to Rk. A compact translation manifold must be a torus, because
it is universally covered by Rn and the covering group consists of translations. Our
framed level set L has precisely this structure. We get the translation structure
on M by integrating the vector fields. The fact that they commute gives us well-
defined maps to Rk. The overlap functions are all translations. Thus, each clean
level set has a canonical metric in which it is isometric to a flat torus.

A symplectomorphism is a map φ : M → M which preserves the symplec-
tic form. That is, ω(V,W ) = ω(dφ(V ), dφ(W )) for all vector fields V and W . A
discrete completely integrable system on a compact 2k-dimensional symplectic man-
ifoldM is a symplectomorphism φ :M →M which has k independent and pairwise
Poisson-commuting invariant functions f1, ..., fk. In particular, df1, ..., dfk are al-
most everywhere linearly independent. In this situation, φ preserves all the level
sets. Moreover, if L is a clean level, then L has a φ-invariant framing by commuting
flows. This means that φ must be a translation relative to the translation structure
on L. In other words, L has a flat metric relative to which φ is a translation. We
say that φ exhibits torus motion on L. This works for almost all the level sets.
Hence, almost every point of M exhibits torus motion under the action of φ.

The kind of integrability discussed above is known as Arnold-Liouville integra-
bility . As we will see in the next section, this notion of integrability is defined in
the wider context of Poisson manifolds.

5.9. Complete Integrability

In [OST1] we proved that the pentagram map is a discrete completely in-
tegrable system acting on ZN , in a sense which slightly broadens the notion of
complete integrability discussed in the last section. I will sketch the proof here.
For ease of exposition, I will take N odd. The even case is essentially the same, but
the dimension count is a bit different. There are two extra invariants in the even
case.

Let M be a smooth manifold and let C∞(M) denote the space of smooth
functions on M . A Poisson bracket is a map { , } : C∞(M) × C∞(M) which
satisfies the following properties.
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• anti-symmetry: {f, g} = −{g, f}.
• linearity: {f1 + f2, g} = {f1, g}+ {f2, g}.
• Liebniz rule: {f, gh} = {f, g}h+ {f, h}g.
• Jaboci identity: {f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0.

A symplectic form on M gives rise to a Poisson bracket, as described in §5.8.
The converse is not quite true. For instance, the 0-bracket does not come from a
symplectic form. However, there is a close connection: The Poisson bracket defines
a fibration of M by symplectic manifolds. (In the 0-bracket case, the fibers are
individual points; this case is boring.)

There is a Poisson bracket on R2N which has the following action on the coor-
dinate functions

(5.15) {xi, xi+2} = (−1)ixixi+2, {xi, xj} = 0 if |i− j| 6= 2.

The bracket is extended to all rational functions using the Liebniz rule and
linearity, and to all smooth functions using Taylor series. By direct calculation, we
prove 3 algebraic facts about the Poisson bracket and the associated Hamiltonian
derivative:

(1) { , } is T -invariant. That is {f ◦ T, g ◦ T} = {f, g} ◦ T for all smooth
functions. It suffices to check this on the coordinate functions.

(2) {Ei, Ej} = {Oi, Oj} = {Ei, Oj} = 0 for all indices i, j.
(3) {f,EN} = {f,ON} = 0 for all smooth functions f . That is, EN and ON

are Casimirs for the bracket.

We also prove that the Poisson bracket, when restricted to the joint level sets
of ON and EN , is non-degererate. This, together with Sard’s Theorem, implies
that the generic level set of ON and EN is a symplectic manifold, equipped with
a symplectic form that induces the above Poisson bracket. Whenever we have a
compact level set of the remaining invariants, corresponding to a regular value of
the map

p→ (O1(p), ..., On(p), E1(p), ..., En(p)),

we get the torus motion described in §5.8. In [OST] we isolate a nice class of
twisted polygons, called universally convex , which undergo torus motion by virtue
of lying on compact level sets.

So far we have been talking about the integrability of the pentagram map on the
larger space ZN , whereas the reader might be specially interested in what happens
on the smaller space PN . In [OST2] we proved that almost every point of CN

undergoes torus motion under some power of the pentagram map. We show that
the Hamiltonian vector fields corresponding to the pentagram invariants on ZN are
everywhere tangent to PN and that the span of these vector fields generically has
the same dimension as the level sets of the invariants intersected with PN . These
facts combine with Sard’s theorem and the compactness of the level sets in CN

to guarantee the torus motion on CN without quite getting all the classic features
associated to integrability – e.g. an invariant Poisson bracket on CN .

Fedor Soloviev gave a proof in [Sol] that the pentagram map is integrable on
PN , in the algebro-geometric sense, and this also implies the torus motion result
for CN . The pentagram map is now known to be a special case of the spin networks
considered in [GSTV], a special case of the cluster algebras considered in [GP],
and a special case of the integrable systems defined in [KS], [Bef1], [Bef2], [GK],
and [F].





CHAPTER 6

Some Related Dynamical Systems

In this chapter we discuss some dynamical systems related to the projective
heat map.

6.1. Julia Sets of Rational Maps

Here I will give some very basic material on the notion of a Julia set for a single
(complex) variable rational map. I include this section just so that the reader can
see the classical definition of a Julia set and compare it to the definition of our
set J . This section barely scratches the surface of this vast topic. For much more
information, see J. Milnor’s book [Mil].

First we’ll consider the case of polynomials. Let n ≥ 2 and let

(6.1) P (z) = anz
n + ...+ a1z + a0

be a polynomial of degree n. The notation Pm denotes the m-fold composition of
P with itself. Let UP denote the set of points z such that

lim
m→∞

Pm(z) = ∞.

Lemma 6.1. UP is an open set which contains a neighborhood of ∞.

Proof: There is some constant C so that |z| > C implies that |P (z)| > 2|z|. Hence,
UP contains a neighborhood of ∞. Also, if z ∈ UP , then there is some n such that
|Pm(z)| > C. But then |Pm(w)| > C for all w sufficiently close to z. Hence UP

contains an open neighborhood about z. �

Certainly P (UP ) ⊂ UP and P−1(UP ) ⊂ UP , and from these equations it is not
hard to see that P (UP ) = UP and P−1(UP ) = UP . That is, UP is fully invariant .
The Julia set JP has a simple definition: It is the boundary of UP . Since UP is
open, JP does not intersect UP . Hence, every point in JP has a bounded orbit.
Moreover, JP is bounded. Hence, JP is compact. Since UP is fully invariant, so is
JP . The Julia set is always a compact set without isolated points.

Remark: This definition of JP lines up well with our set J = J 5, which we are
calling the Julia set of the projective heat map H acting on P5. We will see that
the set U of projective classes x such that {Hn(x)} converges to the regular class
is open. This follows from the easy fact that the regular class is an attracting fixed
point of H. Thus, our set J is contained in the boundary of U . We will see that J
has measure zero, and in particular no interior. Hence J is exactly the boundary of
U . So, the definition is quite analogous to definition of the Julia set of a polynomial.

47
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Julia sets in the quadratic case have been very well studied. In the quadratic
case, one typically makes a change of variables so that P (z) = z2 + a, and then
considers the entire family as a ∈ C varies. The famous Mandlebrot set consists of
those values a ∈ C for which JP is connected.

Now we’ll consider the case of rational maps. A single variable rational map is
an expression of the form f = P/Q, where P and Q are polynomials. The simplest
examples are the case when P and Q are linear maps. In this case f is a linear
fractional transformation, or Mobius transformation. This case is rather boring
from the point of view of complex dynamics.

Let S2 = C ∪∞ denote the Riemann sphere. Let U ⊂ S2 be some open set. A
family F of holomorphic maps from U into S2 is a normal family if every sequence
in F has a subsequence which converges, uniformly on compact subsets to another
holomorphic map on U . Here are some examples, all taking U to be the open unit
disk.

• If f(z) = z/2 then the family {fn} forms a normal family. Any limiting
map is either a contraction by a factor of 2−n or the 0-map

• If f(z) = z+1, then the family {fn} forms a normal family. Any limiting
map is either a translation or the map which sends all points to ∞.

• If f(z) = uz for some unit complex number z then the family {fn} is a
normal family. Any limiting map is a rotation.

• If f(z) = 2z then {fn} is not a normal family. The sequence itself has no
convergent subsequence.

Given a rational map f : S2 → S2, the Fatou set is defined to be the set of points
p ∈ S2 such that there exists an open neighborhood U of p such that the family of
iterates of f |U forms a normal family. The Julia set Jf is the complement of the
Fatou set.

Here is another characterization of the Julia set Jf . Let z be a periodic point for
P . Say that Pm(z) = z. Setting f = Pm, we call z repelling if |f ′(z)| > 1. From the
discussion of normal families above, it is not hard to see that Jf must contain all the
repelling periodic points. It turns out that the repelling periodic points are dense in
Jf . So, one can characterize Jf as the closure of the set of repelling periodic points.

Remark: One can use normal families to define the Julia set of a rational map on
CP n. For the case n = 2 see [BDM] for instance. We can define the projective
heat map over C, and perhaps the general notion of a Julia set for a rational map
coincides with the closure of the set of projective classes of polygons which do not
converge to the regular class upon iteration.

6.2. The One-Sided Shift

6.2.1. Basic Definition. The construction of the one-sided shift is based on
some finite set F . For concreteness, we take F = {1, 2, 3, 4, 5, 6}. This is the
example that comes up in connection with Theorem 1.5. The shift space is the
space of all infinite sequences {ai}∞i=0 with ai ∈ F . Call this space ΣF . This space
is naturally a metric space. Define the distance from {ai} to {bi} to be 6−K where
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K is the smallest integer such that aK 6= bK . The space ΣF has diameter 1, and
is homeomorphic to a Cantor set. The one-sided shift is the map φ : ΣF → ΣF

defined by: φ({ai}) = {bi} where bi = ai+1 for all i. In other words φ just chops
the zeroth term off the sequence. By definition, φ expands distances by a factor of
6 and is 6-to-1.

A periodic point in ΣF is a point p such that φn(p) = p for some n. The
smallest n for which this holds is called the period of the point. This definition
makes sense in any dynamical system.

Lemma 6.2. ΣF has periodic points of all orders, and the periodic points are
dense in ΣF .

Proof: Any sequence in ΣF which repeats after n steps is a periodic point of
period n. Hence ΣF has periodic points of all orders. Any point in ΣF can be
approximated arbitrarily well by a periodic point. We just take the first n terms of
the point and then make it repeat endlessly. Hence the periodic points are dense. �

ΣF naturally has a measure: The measure of the set of all sequences starting
i0, ..., ik has measure 6−k. These sets are called cylinder sets . Equipped with this
measure, φ is a measure-preserving map in the sense that φ−1(S) and S have the
same measure for any measurable subset of ΣF . It suffices to check this on the
cylinder sets. The inverse image of a cylinder set of size 6−k is a disjoint union of
6 cylinder sets of size 6−k−1.

A subset S ⊂ ΣF has measure 0 if, for every ǫ > 0, we have

S ⊂
⋃
Ci,

∑
µ(Ci) < ǫ.

Here {Ci} is a countable collection of cylinder sets.

Lemma 6.3. Almost every point of ΣF has a dense orbit.

Proof: A point in ΣF has a dense orbit provided that it contains every finite
sequence. We will show that the set of points which do not have a particular finite
sequence has measure zero. Since the countable union of sets of measure zero has
measure zero, the set of points which avoid some subsequence has measure zero.
Hence, almost all points contain all finite sequences.

Let S be a finite sequence. Suppose that S has length n. Let ΣF (S) denote
the set of points which do not have S. Suppose that S has length n. Let Σ′

F (S)
denote the set of points with the following property: There is no k for which
akn, ..., a(k+1)n−1 is S. In other words, elements of Σ′

F (S) might contain S but just
not in positions starting at 0, n, 2n, 3n, ....

Obviously ΣF (S) ⊂ Σ′
F (S). So, it suffices to prove that Σ′

F (S) has measure
0. Note that Σ′

F (S) is contained in 6n − 1 cylinder sets of size 6−n. Each of these
cylinder sets intersects Σ′

F (S) in exactly 6n−1 cylinder sets of size 6−2n, and so on.
Hence, for any k, we see that Σ′

F (S) is contained in a union of (6n − 1)k cylinder
sets of size 6−kn. The total measure of these cylinder sets is less than any desired
ǫ provided that k is taken large enough. �
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6.2.2. The Shift in Action. Now we show the 1-sided shift arises in a 2-
dimensional context. Suppose K is a closed topological disk and K1, ...,K6 ⊂ D
are 6 pairwise disjoint topological disks. Suppose we have a rational map h on R2

such that

• For k = 1, ..., 6, we have h(Kk) = D and the restriction of h to some open
neighborhood of Kk is a diffeomorphism.

• For every point of D −Kk where h is defined, we have h(p) 6∈ D.

We define ♥K ⊂ K1 ∪ ... ∪K6 to be those p such that hn(p) ∈ D for all n. To
analyze this set, we let K(n) denote those points p such that hn(p) ∈ D. Evidently

♥K =
⋂
K(n).

Each disk Kj contains 6 smaller topological disks Kij = Ki ∩ h−1(Kj). Each
of the 36 disks Kij contains 6 smaller disks kijk = Ki ∩ h−1(Kjk). And so on.
From this description we see that K(n) consists of 6n pairwise disjoint disks, each
of which contains 6 disks of K(n+ 1).

To get more information about ♥K we need some control over the sizes of these
disks. The assumption we make is that there exists some n0 ≥ 1 and some η > 1
such that the restriction of h to each disk of K(n0) expands distances by at least
η. From this assumption we see that any nested family of disks in the intersection⋂
K(n) shrinks to a point.
Thus, we recognize ♥K as a Cantor set. To be more precise, we have a well-

defined map Ψ : ΣF → ♥K. Each point in the shift space ΣF corresponds to a
nested sequence of disks in this construction and Ψ maps this point to the inter-
section of the corresponding disks. Ψ is surjective and, thanks to the expanding
property, continuous. Any continuous surjective map from a compact space to a
subset of the plane is a homeomorphism. Hence Ψ is a homeomorphism. Moreover,
by construction Ψ is a conjugacy : ΨφΨ−1 = h. Thus, we recognize the action of h
on the set ♥K as (conjugate to) the one-sided shift on 6 symbols.

6.2.3. A Contrived Generalization. When it comes time to consider an
application of the analysis above in §12.5 we will have a slightly more contrived
situation. We explain it here. We assume that we have a piecewise smooth and
everywhere continuous function ρ on the tangent bundle of D that is comparable
to the Euclidean metric in the sense that there is some uniform constant C > 0
such that C−1‖V ‖ ≤ ρ(V ) ≤ C‖V ‖ for all vectors V . We call ρ a tangent bundle
function.

We say that h is η-expanding on a set S, with respect to ρ, if

(6.2) ρh(p)(dh(V )) ≥ η ρp(V ),

for all p ∈ S and all tangent vectors V based at p. We get the same shrinking
disks conclusion if we assume that there is some n0 and some η > 1 so that h is
η-expanding on each disk of K(n0) with respect to ρ.

Here’s the proof. Choose some arbitrary disk κn of K(n0 + n) and consider
κ0 = hn(κn). The disks h(κn), ..., h

n(κn) = κ0 all lie in K(n0). The function ρ
allows us to define the lengths of paths in D, and by the expansion property, the
length of any path in κn is at most η−n as long as its image in κ0. This combines
with the comparison to the Euclidean metric to show that the Euclidean diameter
of κn is at most Cη−n for some constant C that does not depend on any choices.
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6.3. The Two-Sided Shift

The two-sided shift is based on some finite set F . We define the space ΘF to be
the set of bi-infinite sequences {ai}∞i=−∞. The metric on ΘF is defined in a similar

way to the one on ΣF . Here d({ai}, {bi}) = |F |−K , where K is the smallest integer
such that ak = bk for all |k| < K. The space ΘF is compact.

The two-sided shift is the map f({ak}) = {bk} where bk = ak+1. The map f is
a homeomorphism from ΘF to itself. As with the one-sided shift, ΘF has a natural
measure with respect to which f is measure preserving. f has periodic points of
all orders, and the periodic points are dense, and almost every point has a dense
orbit. The proofs are essentially the same as for the one-sided shift. When we look
at the Smale Horseshoe, we will see how the two-sided shift arises naturally in the
context of a planar diffeomorphism.

6.4. The Smale Horseshoe

Let X = [0, 1]× [−1/2, 3/2]. The Smale horseshoe is a smooth map f : X → X
which has the topological features shown in Figure 6.1

2

6

Figure 6.1: The Smale horseshoe

The map also has the following additional properties.

• f : X → f(X) is a diffeomorphism.
• f is a contraction on X1 and on X7. In particular, f has an attracting
fixed point p∞ ∈ X7.

• f is an affine map on X3 and on X5. Here the derivative df is a diagonal
matrix of the form

[
λ−1 0
0 λ

]
λ > 1.

Note that f3(p) ∈ X7 when p ∈ X − X3 − X5, and then for such points
fn(p) → p∞. So, the only points not attracted to p∞ under iteration are the points
p such that fn(p) ∈ X3 ∪X5 for all n. Let A denote the set of these points.

Let X ′ = X3∪X5. The set of points p ∈ X ′ such that f(p) ∈ X ′ is the union of
4 rectangles. These rectangles have the form Xij = Xi ∩ f−1(Xj) for i, j ∈ {3, 5}.
These 4 rectangles are shown in Figure 6.2.
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Figure 6.2: X33 and X35 and X53 and X55.

The pattern continues, the set p ∈ X such that fk(p) ∈ X ′ for k = 0, ..., n− 1
consists of 2n rectangles, indexed by all sequences of length n in F = {3, 5}. The
intersection A of all these sets is ΣF × [0, 1], the product of a Cantor set and an
interval. The action of f on Xs maps horizontal line segments to horizontal line
segments, and the action on these line segments is the 1 sided shift on ΣF .

The inverse map f−1 is defined on Y3 = f(X3) and Y5 = f(X5). (These are
the shaded rectangles on the right side of Figure 6.1.) The same analysis shows
that the set B of points p ∈ Y3 ∪ Y5 such that f−n(p) ∈ Y3 ∪ Y5 for all n is the
product [0, 1]×ΣF , and the action of f−1 on the vertical line segments of B is the
1-sided shift. B is just A turned sideways. The set B is the attracting set for the
restriction of f to A. For every p ∈ A, the forward orbit {fn(p)} accumulates on
A∩B. Likewise, A∩B is the attracting set for the restriction of f−1 to B. Figure
6.3 hints at the nature of the set A ∩B.

Figure 6.3: A hint of the set A ∩B.



6.5. QUASI HORSESHOE MAPS 53

Each point p ∈ A ∩ B has two infinite sequences attached to it. The sequence
sA describes the position of p in A and the sequence sB describes the sequence in
B. form the bi-infinite sequence sB .sA, where sB is written right to left and sA
is written left to right. The decimal point indicates that term 0 of this bi-infinite
sequence is the first term in sA. The map f moves the decimal point one unit to
the right and the map f−1 moves the decimal point one unit to the left. Thus, the
restriction of f to A ∩B is conjugate to the 2-sided shift.

6.5. Quasi Horseshoe Maps

Here I describe the kind of map that appears in Theorem 1.6, something I call
a quasi-horseshoe. The notion of a quasi-horseshoe is a relaxation of the notion of
a Smale horseshoe. The main point of making the relaxation is that it is easier to
establish the existence of a quasi-horseshoe than it is to establish the existence of a
Smale horseshoe. I do not know if my definition of a quasi-horseshoe arises in the
literature.

6.5.1. Adapted Quadrilaterals. Let ∨ ⊂ R2 denote the standard light
cone. Here ∨ is the set of vectors in R2 whose slope exceeds 1 in absolute value.
We say that a curve is timelike if all of of its chords lie in ∨. (A chord of the curve
is a vector pointing from one point on the curve to another.) We say that a curve
is spacelike if reflection in the diagonal maps it to a timelike curve. These are the
usual definitions.

We say that an adapted quadrilateral (or quad for short) is a piecewise smooth
embedded loop with 4 distinguished vertices we call corners , such that one pair of
opposite sides is timelike and the other pair is spacelike. Here a side is an arc of
the quad connecting two consecutive corners. We say that two quads are interlaced
if the following holds.

• Each spacelike edge of one quad crosses each timelike edge of the other.
• The spacelike edges of one quad are disjoint from the spacelike edges of
the other.

• The timelike edges of one quad are disjoint from the timelike edges of the
other.

Figure 6.4 shows a quad, two interlaced quads, and one quad interlacing four others.

Figure 6.4: A quad and some interlaced quads

6.5.2. Interlacing and Quasi-Hyperbolicity. Let P0 be a quad and let
P1, ..., Pk be a finite list of quads. We say that a continuous map F : P0 → R2

interlaces P1, ..., Pk if
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(1) F (P0) ⊂ P ′, where P ′ is a quad which interlaces P1, ..., Pk.

(2) F maps one of the spacelike edges of P0 above P1, ..., Pk and one below.
In each case, we mean that some horizontal line separates the relevant
sets.

Figure 6.5 shows what we mean.

F

Figure 6.5: F (P0) interlaces P1, P2, P3, P4.

Now we add some more structure. Given λ > 1, we call F λ-quasi-hyperbolic
on P0 if

• F is a local diffeomorphism in a neighborhood of P0.
• dF (∨) ⊂ ∨ strictly at all points in a neighborhood of P0.
• ‖dF (V )‖ ≥ λ‖V ‖ for all V ∈ ∨.

We call λ the stretch factor . When the choice of λ is not important, we simply say
that F is quasi-hyperbolic.

Figure 6.6: The cone ∨ and its image dF (∨) ⊂ ∨.
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Remark: Being quasi-hyperbolic is weaker than what people usually mean by
hyperbolic. In the hyperbolic case, one would want dF to have one eigenvalue less
than 1 and one eigenvalue greater than 1.

6.5.3. A Preliminary Definition. I hope the reader will forgive the upcom-
ing terminology. I first want to describe a map which has many of the features of a
quasi-horseshoe but lacks one complicating definition. Most of the analysis we care
about does not depend on the extra definition.

Let Ω = P1 ∪ ... ∪ Pk. Here P1, ..., Pk are pairwise disjoint quads. We say that
a quasi quasi-horseshoe is a map F : Ω → R2 with the following properties.

• F (Pj) interlaces P1, ..., Pk for each j.
• The restriction of F to each Pj is λ quasi-hyperbolic for some λ > k that

does not depend on the index j.

Let A ⊂ Ω be the set of points x such that Fn(x) ∈ Ωo for all n = 0, 1, 2, ....
Note that A ⊂ Ωo. Here Ωo is the interior of Ω.

Lemma 6.4. A has (2-dimensional Lebesgue) measure 0.

Proof: Let L1 denote length. Consider the family T of all smooth timelike curves
which intersect A. Let M be the supremum of L1(γ ∩ A), where γ ∈ T . Certainly
M < 2 diam(Ω). If A has positive measure then, by Fubini’s Theorem, we can find
a vertical line which intersects A in a set of positive length. Hence M > 0.

Recall that k/λ < 1. Here λ is the stretch factor. Choose some γ1 ∈ T such
that L1(γ1 ∩A) > (k/λ)M. But then there is some index j such that

L1(γ1 ∩A ∩ Pj) > M/λ.

Given the the interlacing property of F , we see γ2 = F (γ1 ∩ Pj) ∈ T . Given the
λ-stretching property, and the forward-invariance of A, we see that L1(γ2∩A) > M.
This is a contradiction. �

Recall that a Cantor band is a space homeomorphic to the product of a Cantor
set and an open interval. Note that a Cantor band is naturally a union of maximal
embedded open arcs. We call these arcs the strands of the Cantor band.

Lemma 6.5. A is a Cantor band. All the strands of A are spacelike.

Proof: Let A′ be the set of points x such that Fn(x) ∈ Ω for all n = 1, 2, 3, ....
The difference between A′ and A is that A = A′ ∩ Ωo. We will show that A′ is
homeomorphic to [0, 1] × Y , where Y is a Cantor set. We get A by removing the
endpoints of all the arcs of A′.

Let Ω(0) = Ω and let Ω(n+ 1) = F−1(Ω(n)). Note that

(6.3) A′ =

∞⋂

n=0

Ω(n).

The interlacing property combines with induction to show that Ω(n) consists of kn

quads, and each quad of Xn−1 contains k quads of Ω(n). These quads are pairwise
disjoint and have their timelike sides in the timelike sides of X0. Figure 6.7 shows
X0 and X1 when k = 2.
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Figure 6.7: X0 and X1 when k = 2.

Let Yn denote a collection of kn pairwise disjoint segments so that each segment
of Yn contains k segments of Yn−1. Choose these segments so that Y =

⋂
Yn

is a Cantor set – i.e. every infinite nested intersection is a point. There is a
homeomorphism hn between Ω(n) and [0, 1] × Yn which has constant speed along
the spacelike edges of the quads in Ω(n).

The same argument as in the measure 0 case shows that each vertical line
intersects each quad of Ω(n) in a segment of length at most O((k/λ)n). Hence,
any infinite nested intersection of these quads is a single spacelike arc. From this
property, our sequence of homeomorphisms induces a homeomorphism between A′

and [0, 1]× Y .
Finally, there is a dense set of strands in A corresponding to the tops and

bottoms of the nested quads. These strands are all spacelike. Hence, their limit
strands are spacelike in the weak sense that their chords are never timelike. If such
a limit strand γ has a chord of slope ±1 then the image F (γ) has a timelike chord
by the quasi-hyperbolicity. Hence γ only has spacelike chords. Hence all strands in
A are spacelike. �

We can get one more result without too much trouble. The basic idea behind
the next result is that the quasi-hyperbolicity exaggerates a hypothetical point
of non-differentiability (or non-continuous differentiability) to the point where it
contradicts the spacelike nature of the arcs.

Lemma 6.6. The strands of A are continuoutly differentiable.

Proof: As in the previous result, we work with the larger set A′. We will show
that the strands of A′ are differentiable. At the endpoints of the strands of A′ we
mean to use the one-sided definition of the derivative. We work with this larger
space because it is compact. Exactly the same argument shows that the strands
are in fact continuously differentiable.

Let α be the line through the origin of slope −1 and let δ be the line through the
origin of slope 1. These are the two boundaries of the lightcone ∨. Suppose some
arc µ of A′ is not differentiable at some point x ∈ µ. Then there are sequences of
points {yn} and {xn}, all in µ, so that yn → x and zn → x and the angles between
the lines βn = (xyn) and γn = (xzn) do not converge to 0. We label so that the
slopes of α, βn, γn, δ come in order. Consider the cross ratios of the slopes:

(6.4) [x] = lim sup
n→∞

[α, βn, γn, δ].

By compactess, we can choose x so that [x] is as large as possible.
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Suppose we apply F to this whole picture. Let x′ = F (x), etc. Let β′
n be the

line (x′y′n) and let γ′n be the line (x′z′n). Recall that dF (∨) is contained strictly
inside ∨. If [x] = ∞ then either βn → α or γn → δ. In either case, one of β′

n or γ′n
lies strictly in ∨ for n large. This contradicts the spacelike nature of the curves.

Now we know that [x] is finite and moreover βn does not converge to α and γn
does not converge to δ. Hence, for n sufficiently large we have

(6.5) [α, βn, γn, δ] = [α′, β′
n, γ

′
n, δ

′] ≤ (1− ǫ)[α, β′
n, γ

′
n, δ],

for some ǫ > 0 independent of n. This gives [x] ≤ (1− ǫ)[x′], a contradiction. �

6.5.4. Main Definition. Here we motivate our main definition by pointing
out one shortcoming of the definition above. Let F be a quasi quasi-horseshoe
as above. Let B denote the set of accumulation points of F -orbits in A. Let
α be a strand of A. We might have a situation where F maps each Pj onto a
thin neighborhood of a single timelike curve and contracts the strands of A in this
neighborhood. In this case, B would intersect each strand of A in a single point.
This seems rather unlike what happens with the horseshoe.

We say that F is a quasi-horseshoe if we can partition each Pj into a left and
a right half

(6.6) Pj = P 1
j ∪ P 2

j ,

so that the following things are true.

(1) F (Pj) interlaces P
1
1 , ..., P

1
k or P 2

1 , ..., P
2
k for each j.

(2) Each of the options in Item 1 occurs for some index.

What we are saying is that sometimes F maps the quads over the left half and
sometimes F maps the quads over the right half.

Remark: Unlike the Smale horseshoe, a quasi-horseshoe need not be an injec-
tive map.

Given a subset S ⊂ A, let S∗ denote the set of accumulation points of S.
Inductively define S(n) = (S(n−1))∗. Say that S has infinite Cantor-Bendixson
rank if S(n) is nonempty for all n.

Lemma 6.7. If F is a quasi-horseshoe, then B intersects each strand of A in a
set of infinite Cantor-Bendixson rank.

Proof: Since F is a local diffeomorphism and F maps each strand of A into a
strand of A, the restriction of F to each strand is injective.

The action of F on the strands of A is conjugate to the one-sided shift on k
symbols. In particular, this strand-action has dense orbits. Hence B intersects a
dense set of strands of A. Recall that A′ is the compact set obtained by adjoining
the endpoints of each strand of A. Since B is closed and A′ is compact, we see that
B intersects every strand of A′. Since F (A′) ⊂ A we see, finally, that B intersects
every strand of A.

But now we can apply F and use the definition above to say that B intersects
each strand of A in two points, one on the left and one on the right. Now we can
iterate. Since the restriction of F to each strand is injective, we can say that B
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intersects A in at least 2n points for every n. Hence B intersects each strand of A
in an infinite set of points.

Let α be a strand of A. Since F (A′) ⊂ A and each strand of A′ is compact, we
can see that B ∩ α has at least one accumulation point in α. Hence B∗ intersects
every strand of A. But now we can repeat the same argument as above to show
that B∗∗ intersects every strand of A. And so on. �

Remark: One can cook up examples where B intersects the strands of A in sets
which are not Cantor sets.

6.6. The 2-adic Solenoid

A 2-adic integer is an infinite sequence of the form a1, a2, a3, ... where aj ∈ Z/2j

and

(6.7) aj+1 ≡ aj mod 2j ∀j.

The set Z2 of such sequences forms a ring. One does coordinatewise addition
and multiplication in the corresponding finite rings and the compatibility given by
Equation 6.7 makes this well defined. We only care about the addition and not the
multiplication in what we say below, though people interested in p-adic dynamics
generally care about both.

The set Z2 also has a natural metric, the 2-adic metric. The distance between
two points {ak} and {bk} is 2−N whereN is the smallest integer where the sequences
disagree. This makes Z2 into a metric ring. There is a natural inclusion of N , the
natural numbers, into Z2. The point n maps to the sequence {aj} where aj is the
reduction of n mod 2j . We simply think of N as a subset of Z2. The set N consists
of those sequences which are eventually constant. Clearly N is dense in Z2. Hence
Z2 is the completion of N with respect to 2-adic metric. With the 2-adic metric,
the space Z2 is homeomorphic to a Cantor set.

The 2-adic odometer is the map x→ x+1 acting on Z2. The orbit of 0 under
this map is N . Hence 0 has a dense orbit. The orbit of any other point under the
2-adic odometer is just a translate of N . Hence, every point has a dense orbit.

The 2-adic solenoid is the mapping cylinder for the 2-adic odometer. That is,
we take the space [0, 1]×Z2 and we identify the points (0, y) with (1, y+1). More
canonically we take R × Z2 and we take quotient out by the Z action generated
by the map (x, y) → (x+ 1, y + 1).

The 2-adic solenoid is partitioned into infinite curves. Each infinite curve is
dense in the solenoid. The M -fold cyclic cover of the 2-adic solenoid is the quotient
R×Z2 by the subgroup MZ. Here MZ is generated by the map

(x, y) → (x+M,y +M).

Theorem 1.10 mentions the 5-fold cover.
Finally, we mention that we can think of the 2-adic solenoid as a fibration over

the circle. The fibration map is just the projection onto the first coordinate. The
fibers (a.k.a. cross-sections) are copies of Z2 and hence homeomorphic to Cantor
sets. Thus, one can picture the 2-adic solenoid as a kind of twisted version of the
product of a circle and a Cantor set.
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6.7. The BJK Continuum

Here is another point of view on the 2-adic integers. One can alternatively
represent a 2-adic integer as a formal infinite series

(6.8) b0 + 2b1 + 4b2 + ...

Here the bi are either 0 or 1. We get a 2-adic sequence by taking the partial sums
a1 = b0 and a2 = b0 + 2b1, and so on. This gives us an identification of Z2 with
the set of infinite binary sequences. With this identification, addition is done the
way one learns it in elementary school, except that one works in base 2 and carries
to the right. We call this identification the series identification.

Remark: Here is how to see the homeomorphism between Z2 and the middle
third Cantor set. We take the series in Equation 6.8 and map it to the base 3
expansion

.(2b0), (2b1), (2b2), ...

This expansion contains only 0s and 2s and hence defines a point in the middle
third Cantor set.

We identify Z2 with the set of infinite binary strings, using the series identifi-
cation. We consider the following two involutions on Z2. The involution I0 reverses
all the digits after the first 1 is encountered. For instance,

I0(0010101110...) = 0011010001...

The involution I1 reverses all the digits.
We can use these involutions to construct the Brouwer-Janiszewski-Knaster

continuum. This space is obtained as follows. We start with the [0, 1] × Z2 and
we identify the points (j, y) to (j, Ij(y)) for j = 0, 1. Figure 6.8 shows the first few
steps in a concrete construction of the BJK continuum.

Figure 6.8: Constructing the BJK Continuum

Since Z2 is a ring, we can interpret the involutions I0 and I1 algebraically. We
do this by working formally with the series representation of points in Z2.

Lemma 6.8. I1(x) = −1− x.

Proof: Using the rule for addition mentioned above, we have

(1, 0, 0, 0, ...) + (1, 1, 1, 1, ...) = 0.

Here is what is going on: When we perform the addition, we get 1 + 1 = 0 in the
leftmost position and then we carry the 1 to the right. This gives 0 in the second
position and again we carry the 1 to the right. And so on. The remainder of 1
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sweeps rightward, leaving all 0s in its wake. What this means is that (1, 1, 1, 1, ...)
is the series representation for −1. Now, given x = (b0, b1, b2, ...) ∈ Z2, we have

I(x) = (1− b0, 1− b1, 1− b2, ...).

Adding coordinatewise, we get x+ I(x) = (1, 1, 1, ...) = −1. �

Lemma 6.9. I0(x) = −x.

Proof: Taking the series representation for x as in Equation 6.8, we have

x+ I0(x) = 1(0) + 2(0) + ...+ 2k(0) + 2k+1(1 + 1) + 2k+2(1) + 2k+3(1) + ... = 0.

Here k + 1 is the index of the first 1 in the series representation of x. What is
going on here when we add is that we first produce k consecutive 0s and then we
have 1 + 1, which produces another 0 with a remainder of 1. Following this, the
remainder sweeps rightward, leaving an infinite string of 0s in its wake. �

We use our algebraic knowledge of the maps I0 and I1 to define the BJK
continuum in a different way. We let I0 and I1 act on R × Z2 by the diagonal
action I0(x, y) = (−x,−y) and I1(x, y) = (−1 − x,−1 − y). Then 〈I1, I2〉 is the
infinite dihedral group and this group acts on R × Z2. The quotient space is the
BJK continuum.

Observe that

(6.9) (I0I1)
M (x, y) = (x+M,y +M).

In this way we recognize the 2-adic solenoid as the double cover of the BJK con-
tinuum. Moreover, the M -fold cover of the 2-adic solenoid is an order 2M dihedral
cover of the BJK continuum. This is how we will recognize the space from Theorem
1.10 in the case M = 5.
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CHAPTER 7

The Projective Heat Map

In this chapter we will derive formulas for the projective heat map in general,
and then specialize to the case N = 5. The last section in this chapter contains
some speculation about what the projective heat map does for N ≥ 6, but really
there are no results here. Following this chapter, the rest of the monograph is about
the case N = 5.

7.1. The Reconstruction Formula

In general, if we want to derive the equation for some projectively natural
iteration Ψ in terms of these flag invariants, from §3.6, we take the following 3
steps.

(1) Start with a list (x0, x1, x2, ...) of flag invariants and construct the polygon
P which has these flag invariants.

(2) Compute the polygon Ψ(P ).
(3) Compute the flag invariants (y0, y1, y2, ...) of Ψ(P ).

The desired rational map is then (x0, x1, x2, ...) → (y0, y1, y2, ...).
In any given case, the description of the map Ψ would presumably give a recipe

for doing Step 2. This is certainly true for the projective heat map. In §3.6 we give
a recipe for Step 3. What really needs to be explained is Step 1.

Step 1 comes from work in [S3] where I give a general formula for P in terms of
the list (x0, x1, x2, ...). Note that this list of flag invariants does not uniquely specify
P . Any projectively equivalent polygon has the same list of flag invariants. My
formula makes some specific choice of P by normalizing the first few vertices and
edges in a certain way. I call this formula the reconstruction formula. I originally
used the reconstruction formula to compute things about the pentagram map.

The derivation of the reconstruction formula in [S3] is rather long and com-
plicated. However, for the purposes of deriving the formula for the projective heat
map acting on PN , we only need to know the first 8 points of our polygon. The
reader who does not want to think about the general reconstruction formula can
simply plug the formulas given below for the 8 points

P−7, P−3, P1, P5, P9, P13, P17, P21

into a symbolic manipulator and see that they are indeed the correct first 8 points
for P . We present the general reconstruction formula so that the interested reader
can see where our formulas for the 8 abovementioned points actually come from.

We make one more apology before presenting the reconstruction formula. The
points are indexed in a funny way, but this way of indexing makes the general
formula as clean as possible. Now for the formula.

63
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Our polygon will have vertices P9+2k for k = −8,−6,−4,−2, .... We normalize
so that (in homogeneous coordinates)

(7.1) P−7 =




0
x0x1
1


 , P−3 =



0
0
1


 , P1 =



1
0
0


 , P5 =



1
1
0




We define polynomials Ob
a for a ≤ b+2 odd integers, in the following recursive

way. First, for all b we set Ob
b = Ob

b−2 = 1 and Ob
b+2 = 0. Next, we define

(7.2) Ob
a =




1
−xb−2

xb−4xb−3xb−2


 ·



Ob−2

a

Ob−4
a

Ob−6
a


 , a = b− 4, b− 6, ...

These polynomials are quite close to the pentagram invariants Ok defined in §5.
The rest of the points of the polygon are given by

(7.3) P9+2k =



O3+k

−1

O3+k
+1

O3+k
+3


 , k = 0, 2, 4, ...

The polygon P with vertices P−7, P−3, P1, , ... has flag invariants x0, x1, x2, ....
If we just know the 8 points P−7, ..., P21 then we can compute the invariants

x0, ..., x7. We have listed formulas for the first four of these points above, and now
we list formulas for the next four of these points. To simplify the expressions, we
introduce the monomials

(7.4) Xk = xk−1xkxk+1.

The points are then given by

P9 =



1− x1

1
1


 ,

P13 =



1− x1 − x3 +X2

1− x3
1


 ,

P17 =



1− x1 − x3 − x5 +X2 +X4 + x1x5

1− x3 − x5 +X4

1− x5


 ,

P21 =



1−x1−x3−x5−x7+X2+X4+X6+x1x5+x3x7+x1x7−X2x7 − x1X6

1− x3 − x5 − x7+X4+X6+x3x7
1− x5 − x7+X6




(7.5)

7.2. The Dual Map

There is one more piece of structure we want to explain before we derive the
formula for the projective heat map. We want to explain what we call the dual
projective heat map, H∗. The map H∗ is essentially obtained from the projective
heat map H by dualizing the construction. In this section we explain what that
means. The reason we consider both H and H∗ in general is that the formulas for
the one map are intimately bound up with the formulas of the other.
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Given 4 lines A−3, A−1, A1, A3, we construct the new line B0 shown in Figure
7.1.

A

A

3

1

-1
Figure 7.1: The construction of B0 from A−3, A−1, A1, A3.

Equation 3.1 also gives an equation for B0. It is the same equation as for the
projective midpoint, except that the roles of points and lines are reversed.

Starting with a polygon P described in terms of its lines A1, A3, ..., we define
H∗(P ) to be the polygon whose lines are B0, B2, .... On the level of unlabeled
polygons, we have

(7.6) H∗ = ∆∗ ◦H ◦∆∗.

for any polarity ∆. See §3.3 for the definition of a polarity. Here ∆∗(P ) is the
polygon whose lines are the images of the vertices of P under ∆.

When P is a pentagon, ∆∗(P ) = P up to projective equivalence. For this
reason, H and H∗ induce the same map on P5. This makes the map especially
canonical in this case. In general H and H∗ induce different maps. We will study
the interaction between H and H∗ below.

7.3. Formulas for the Projective Heat Map

As with the other maps we have considered, we must break symmetry to get
a labeling scheme for the action of H or H∗ on PN . However, there is a canonical
choice for P5. This is shown in Figure 7.2.

1

5

Figure 7.2: The canonical labeling scheme for H acting on P5.
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The maps H2 and HH∗ and H∗H and (H∗)2 all have canonical labeling
schemes when they act on PN . Figure 7.3 shows the canonical labeling scheme
for the action of H2. The labeling schemes for the other maps are similar, and we
will discuss them below.

Figure 7.3: The canonical labeling scheme for H2.

Choose a polarity ∆ and define

(7.7) Ω = ∆∗ ◦H,
In other words, Ω(P ) is the polygon whose edges are the edges of ∆(H(P )). The
action on PN is independent of the choice of polarity. There is a canonical labeling
scheme for Ω. The kth edge of H(P ) has its endpoints in the projective midpoints
lying on the two edges incident to the kth vertex of P . The kth vertex of Ω(P ) is
the image of the kth edge of H(P ) under ∆∗.

We also have the left and right shift maps L and R, which respectively shift
the indices one unit to the left or to the right. These maps act on R2n and have
order 2n. We have the following relations:

• Ω2 gives the formula for H∗H with its canonical labeling scheme.
• LΩ = H relative to some labeling scheme. The same goes for RΩ.
• ΩL = H∗ relative to some labeling scheme. The same goes for ΩR.
• LΩRΩL = RΩLΩR = H2 relative to the canonical labeling scheme.
• ΩRΩL = ΩLΩR = (H∗)2 relative to the canonical labeling scheme.
• Ω = H = H∗ on P5 relative to the canonical labeling schemes.

To compute the formula for Ω, we write out the first 8 points of P , as given
in Equations 7.1 and 7.5. We then construct the first 5 points of Q using the
straight line construction. Finally, we compute the only 2 flag invariants of Q we
have enough information to compute. We do the calculation in Mathematica. (The
reader who downloads our computer code can see the Mathematica code.) Given
the formula for Ω, we readily get the formulas for the other maps listed above.

These calculations are done behind the scenes so to speak, and now we present
the result. Suppose that P has projective flag invariants x0, x1, x2, ... andQ = H(P )
has flag invariants y0, y1, y2, .... Define

(7.8) Ak = 2 + xk−3/2 + xk+3/2.

(7.9) B±
k = Ak∓1 − xk±1/2Ak±1 + xk±5/2Ak∓1.

Ω(x1, ..., x2n) = (y1, ..., y2n), where
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(7.10)
y2k+0

x2k+1
=
A2k−5/2B

−
2k+1/2

B+
2k−3/2B

+
2k+1/2

,
y2k+1

x2k+0
=
A2k+5/2B

+
2k+1/2

B−
2k+3/2B

−
2k+1/2

.

Of course, one can solve for y2k+0 and y2k+1.
It seems worth unpacking this formula a bit. Concretely, we have

y5 =
x6(2 + x1 + x4)(−2− 2x3 + x5 + x5x6 − x8 − x3x8)

(2 + x1 − x4 − x3x4 + 2x6 + x1x6)(−2− x3 + x6 + x5x6 − 2x8 − x3x8)
.

The formula for y6 is obtained from the formula for y5 by replacing each index k by
11− k. The formula for the remaining y variables is obtained by cyclically shifting
the formulas for y5 and y6 by suitably chosen even amounts.

7.4. The Case of Pentagons

In the special case N = 5 we can use the Gauss group, defined in §3.6, to
express everything in terms of the first two coordinates, which we call x = x1 and
y = x2. The general formula simplifies somewhat. We then take the first two
coordinates, and this gives us the rational map H in Equation 1.1.

The first thing we can do with the formula is compute the fixed points. Let φ de-
note the golden ratio. The first fixed point of H is the regular class r = (φ−1, φ−1),
the point corresponding to the regular class. We compute the differential

(7.11) dHr =

[
2φ−5 0
0 2φ−5

]
,

Thus, the point representing the regular class is an attracting fixed point, with
multiplier 2φ−5.

The point (−φ,−φ) corresponds to the star regular class. It is a repelling fixed
point, and

(7.12) dH(−φ,−φ) =

[
−φ5

2 0

0 −φ5

2

]
.

The product of the multipliers at (φ−1, φ−1) and (−φ,−φ) is −1.
H has 5 additional fixed points. One of the points is (−3,−3), and the other

ones are the orbit of (−3,−3) under the Gauss group:

(7.13) (−3,−1/2), (−1/2,−8), (−8,−1/2), (−1/2,−3).

These fixed points are all repelling. The eigenvalues of the linear differential at
each of these points are −22/3 and 6. The corresponding eigenvectors are (−1, 1)
and (1, 1). This structure will be important for the discussion in §16.4.

The 5 fixed points just mentioned correspond to consecutive flag invariants of
the star convex isosceles pentagon with vertices.

(−1,−1), (0, 1), (0,−1), (−1, 1), (1, 0).
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Figure 7.4: A particular star isosceles pentagon

We mentioned in the introduction that eventually we will conjugate H by the
map B from Equation 1.2. Here we explain the motivation for that. We have

(7.14) B(−φ,−φ) = (0, 0), B(−3,−3) = (1, 1), B(1/φ, 1/φ) = (∞,∞).

Again, φ is the golden ratio. So, when we change coordinates, the origin represents
the star-regular class and (∞,∞) represents the regular class. This turns out to be
a very convenient normalization for most of the analysis. The map H = BHB−1

is an algebraic monster – see our computer program for a display of the equation –
but we will deal with it in a computer assisted way.

7.5. Some Speculation

The maps H and H∗ are not invertible but we can consider the semigroup H
generated by H and H∗. Here is a conjecture which is based mostly on experiments
done in the case N = 6 and N = 7.

Conjecture 7.1. Let G ∈ H be any nontrivial element which does not have
the form (HH∗)k or (H∗H)k for k = 1, 2, 3, ... Then almost every point P ∈ PN is
such that {Gn(P )} converges to the projectively regular class.

Now we describe what happens for the two maps H∗H and HH∗ in case N = 6
and N = 7. Let c be the string (a, b, b, a) and let d be the string (b, a, a, b). The
string (c, c) stands for (a, b, b, a, a, b, b, a), and so on. A calculation shows that

(7.15) Ω(c, ..., c) = (d, ..., d).

Hence Ω2 = H∗H fixes any point in PN having this form. Similarly, HH∗ fixes
points of the form (a, a, b, b, a, a, b, b...) when such strings have length which is a
multiple of 4. When N = 6 these two kinds of points correspond to the projective
classes of hexagons having 6-fold dihedral symmetry. Figure 7.4 shows the shapes
of the hexagons corresponding to these two kinds of points.

Figure 7.4: Symmetric hexagons fixed by H∗H and HH∗ respectively.
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Let’s call these two kinds of hexagons type 1 and type 2. Here is what one sees
experimentally.

Conjecture 7.2. Let F = H∗H (respectively F = HH∗). Almost every
P ∈ P6, and every P ∈ C6, has the property that {Fn(P )} converges to the class of
a convex hexagon of type 1 (respectively type 2).

The situation on P7 is strange. Recall that f(P ) is the product of the flag
invariants of P , as discussed in §5.3. Letting P0 be the regular class, we have

(7.16) f(P0) =

(
2 sin(π/14)

)14

≈
(
.445

)14

.

Let

(7.17) η =

(
7

18

)14

≈
(
.38888

)14

.

There is nothing significant about 7/18 in this definition, except that it is a rational
approximation to a slightly smaller number which starts .38887. The significant
thing for us is that η < f(P0).

Conjecture 7.3. Let F = H∗H or F = HH∗. Almost every P ∈ P7, and
every P ∈ C7, has the property that {Fn(P )} converges to some Q ∈ CN with
f(Q) < η.

The polygon Q depends on the initial choice on P . It looks like f(Q) also
depends on P , but only in a mild way. It almost always happens that f(Q) =
.38887... I’m not sure whether the value is always the same.

For fun, I thought about the larger semigroup 〈H,H∗, T, T ∗〉. Here T is the
pentagram map and T ∗ = T−1 is the conjugation of T by a duality. At first there
seems to be no connection between H and T , but then there are some curious
results which seem to suggest that the maps are not entirely unrelated.

Conjecture 7.4. Let F be any word that just involves T and H. Then for
almost all P ∈ PN , the sequence {Fn(P )} converges to the regular class.

On the other hand, the element F = H2T ∗ seems to have the following struc-
ture: For N ≥ 11 the map seems to obey Conjecture 7.4. However, for N ≥ 12
it seems that the space PN has an attracting submanifold AN so that almost all
P ∈ PN have the property that {Fn(P )} converges to AN . The restriction of F to
AN seems to be torus motion, though I am not sure.

Here is another example of strange behavior. For N = 7, all the words

(HH∗)kHT 2, k = 1, 2, 3, ...

seem to obey a version of Conjecture 7.3 but with different constants. Most of the
other words in the semigroup generated by H,H∗ and T seem to obey Conjecture
7.4.

My computer program has a subdirectory with an auxiliary program that lets
the user do experiments with the action of the semigroup on N -gons. So, the
interested reader can play around and draw his or her own conclusions.





CHAPTER 8

Topological Degree of the Map

8.1. Overview

The purpose of this chapter is to prove Theorem 1.2. We remind the reader of
this result. We have the rational map

H(x, y) = (x′, y′),

x′ =

(
xy2 + 2xy − 3

) (
x2y2 − 6xy − x+ 6

)

(xy2 + 4xy + x− y − 5) (x2y2 − 6xy − y + 6)

(8.1) y′ =

(
x2y + 2xy − 3

) (
x2y2 − 6xy − y + 6

)

(x2y + 4xy − x+ y − 5) (x2y2 − 6xy − x+ 6)

We will prove that a generic point p ∈ C2 has the property thatH−1(p) consists
of 6 points. Here, generic means that this statement is true for a set U ⊂ C2 such
that C2 − U is the solution set of a nontrivial polynomial. Such sets are called
Zariski open. They are open and dense, and have full measure.

In general, there is some constant M such that H−1(p) has M pre-images for
all p in a Zariski open set. We just want to prove that M = 6. We will show that
M ≥ 6 and that M ≤ 6. The lower bound is a direct calculation and the upper
bound is an application of Bezout’s Theorem.

8.2. The Lower Bound

Here we prove that M ≥ 6.
Let

(8.2) φ = (1 +
√
5)/2

be the golden ratio. Let r = (φ−1, φ−1). In our coordinates, r represents the regular
class. By symmetry H(r) = r. Next, define

(8.3) q1 = q2 = φ− 2, q3 = q5 = φ, q4 = 3φ− 4.

The funny ordering of the points is deliberate. We check that H(qi, qi+1) = r for
i = 0, 1, 2, 3, 4, with indices taken mod 5.

Hence H−1(r) has at least 6 points. Next, we check that that the Jacobian JH
does not vanish at any of these 6 points. Hence, there is an open set in C2 such
that every q ∈ U has at least 6 pre-images.

71
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8.3. The Upper Bound

The coordinate change

(8.4) x = Y/X, y → X

is a birational coordinate change. So, it suffices to prove that equation

(8.5) H(Y/X,X) = (a1, a2)

generically has at most 6 solutions in C2. When we expand out Equation 8.5 and
then homogenize we get

(8.6)

(
P1 + a1Q1

R1
,
P2 + a2Q2

R2

)
= (0, 0),

P1 = −(XY + 2Y Z − 3Z2)(XY 2 − 6XY Z + 6XZ2 − Y Z2).

Q1 = −(Y 2 +XZ + 6Y Z − 6Z2)(X2Y −X2Z + 4XY Z − 5XZ2 + Y Z2).

R1 = (−5XZ2 −X2Z + Y Z2 + 4XY Z +X2Y )(6Z2 −XZ − 6Y Z + Y 2).

P2 = −X(2XY + Y 2 − 3XZ)(−Y 2 +XZ + 6Y Z − 6Z2).

Q2 = −(X2 + 4XY + Y 2 − 5XZ − Y Z)(XY 2 − 6XY Z + 6XZ2 − Y Z2).

R2 = (−5XZ +XZ + Y Z + 4X + Y 2)(6XZ2 − Y Z2 − 6XY Z +XY 2).

Before applying Bezout’s Theorem, we need to take care of a technical point.
In the technical point, we will make use of the Resultant of a polynomial, but only
in a theoretical sense. All we need to know is that the resultant of two polynomials
is a polynomial expression in their coefficients which vanishes if and only if the
polynomials have a common factor.

Lemma 8.1. For a generic choice of a1, a2 ∈ C2 the polynomials P1 + a1Q1

and p2 + a2Q2 have no common factors.

Proof: Suppose that this result is false. Then, after we dehomogenize by setting
Z = 1, the set of points where the polynomials have a common factor is not Zariski
open. But then the resultant of these polynomials vanishes everywhere. But then,
by continuity, the polynomials have a common factor everywhere, including at the
values a = −1 and b = −1. But one can check in Mathematica (or by trial and
error) that both P1 − Q1 and P2 − Q2 are irreducible and not scalar multiples of
each other. �

Set fj = Pj + ajQj , with the understanding that these functions depend on a1
and a2. Inspecting our equations, we see that for the generic choice of (a1, a2), we
have

(8.7) deg(fj) = 5, j = 1, 2.

Hence V (f1, f2) has 25 points (properly counted), by Bezout’s Theorem.
Define

(8.8) ψ =

√
13 + 1

2

We find the following points in V (f1, f2), independent of the choice of a1, a2:

• [1, 0, 0] with intersection number 4.
• [1, 1, 1] with intersection number 4.
• [0, 1, 0] with intersection number 2.



8.3. THE UPPER BOUND 73

• [0, 0, 1] with intersection number 2.
• [−2, 4, 1].
• [+ψ + 0,−ψ + 3, 1].
• [+ψ + 0,+ψ + 3, 1].
• [+ψ − 2,−ψ + 3, 1].
• [−ψ + 1,+ψ + 2, 1].
• [−ψ + 1,−ψ + 4, 1].
• [−ψ − 1,+ψ + 2, 1].

We check that these points all lie in V (P1, Q1, R1, P2, Q2, R2). All the component
polynomials vanish. Hence, these points all belong to V (f1, f2), independent of a1
and a2. They account for 19 of the solutions. Since R1 and R2 vanish on these
points, the map H is not well defined on the corresponding points. To be sure, we
check this directly. For instance, the point [−ψ,ψ + 3, 1] corresponds to the point

(
ψ + 3

−ψ ,−ψ
)

=

(−3−
√
13

2
,
1−

√
13

2

)

and this is indeed an indeterminate point for H.
Since 19 of the 25 solutions in V (f1, f2) do not correspond to pre-images of

H in C2, there can be at most 6 pre-images of a generic point. In outline, this
completes the proof.

However, we are not quite done. We have to verify that the first 4 points listed
above have the advertised intersection numbers. We treat these points in turn.
Actually, we will be a bit lazy and we will just show that each of the points has at
least the advertised intersection number. Bezout’s theorem then tells us that the
we have equality in all cases.

Case 1: For [1, 0, 0] we compute the intersection number in the affine patch
{X 6= 0}. Let P ∗

j etc. be the polynomials we get by setting X = 1. We can
see directly that each of the factors of P ∗

j and Q∗
j vanishes at (0, 0). Hence (0, 0)

vanishes to at least second order for each P ∗
j and Q∗

j . Hence (0, 0) vanishes to at
least second order for each f∗j . But then I(0,0)(f

∗
1 , f

∗
2 ) ≥ 2×2 = 4 on [1, 0, 0]. Hence

[1, 0, 0] has intersection number at least 4.

Case 2: For [1, 1, 1] we make the change of variables X = 1 +X ′ and Y = 1 + Y ′

and then repeat exactly the same argument for the polynomials in the X ′ and Y ′

variables. It works exactly the same way. Hence [1, 1, 1] has intersection number
at least 4.

Case 3: For [0, 1, 0] we consider the picture in the affine patch {Y = 1}. We
check that P ∗

1 and Q∗
1 vanish to second order at (0, 0), and P ∗

2 and Q∗
2 both vanish

(to first order). Hence [0, 1, 0] has intersection number at least 2.

Case 4: For [0, 0, 1] we consider the picture in the affine patch {Z = 1}. We
check that P ∗

2 and Q∗
2 vanish to second order at (0, 0), and P ∗

1 and Q∗
1 both vanish

(to first order). Hence [0, 1, 0] has intersection number at least 2.

Everything works out as claimed. This completes the proof of Theorem 1.2.





CHAPTER 9

The Convex Case

9.1. Flag Invariants of Convex Pentagons

Recall that C is the set of projective classes of convex pentagons. The purpose
of this chapter is to prove Theorem 1.3. This result says that for every convex class
P ∈ C we have f(H(P )) ≥ f(P ), with equality iff P is the regular class. Here f
is the first pentagram invariant, defined in §5.3. When P is convex, all the flag
invariants lie in (0, 1). Since f(P ) is the product of the flag invariants for P , we
have f(P ) ∈ (0, 1) when P is convex.

Our flag coordinates identify C with a subset of (0, 1)2. In fact, this identifica-
tion is a diffeomorphism.

Lemma 9.1. Taking two consecutive flag invariants of a pentagon gives a dif-
feomorphism from C onto the open unit square (0, 1)2. In particular, every (x, y) ∈
(0, 1)2 arises as a list of 2 consecutive flag invariants of a convex pentagon.

Proof: When we normalize our pentagon so that it has points p1, p2, p3, p4, p5 as
in the the proof of Lemma 3.2, we can identify C with the space of choices of p5 in
the domain D = (0, 1)× (1,∞). The map

(x, y) →
(
x− 1

x− y
,

x

x+ y − 1

)
,

which comes from computing the consecutive flag invariants associated to p5, is a
diffeomorphism between D and (0, 1)2. The inverse map is given by

(x, y) →
(

xy − y

2xy − x− y
,

xy − 1

2xy − x− y

)
.

Were we to choose different consecutive flag invariants, we would get the same re-
sult, by projective invariance and by the self-dual nature of pentagons. �

Corollary 9.2. A pentagon is convex if and only if any 2 consecutive flag
invariants of the pentagon lie in (0, 1)2.

Proof: We have already explained that a pentagon has flag coordinates in (0, 1)2

provided it is convex. If a nonconvex pentagon had flag coordinates in (0, 1)2 then
its flag coordinates would coincide with those of some convex pentagon, by the
previous result. But this is a contradiction, because the flag coordinates determine
the pentagon. �
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9.2. The Gauss Group Acting on the Unit Square

We now study how the Gauss recurrence G, defined in §3.8, acts on (0, 1)2.

Lemma 9.3. The open square (0, φ−1)2 contains a fundamental domain for the
action of G on (0, 1)2 − (φ−1, φ−1).

Proof: Let r = (φ−1, φ−1). Note that G(r) = r. Let s be the line segment joining
r to (1, 1). Recall that R(x, y) = (y, z). Note that R is just a reflection in the line
extending s. We compute that G3(s) = RG2(s). From the formula

(9.1) G2(x, x) = (
1

1 + x
, 1− x2).

We see that γ = G2(s) is a curve which connects r to (1/2, 0) and remains inside
(0, φ−1)2 except at r.

Figure 9.1: Fundamental domain for the action of G.

But then a fundamental domain for the action of Γ on (0, 1)2−{r} is contained
in open region bounded by the coordinate axes and G2(γ) and G3(γ). This region
is contained in (0, φ−1)2. �

9.3. A Positivity Criterion

We consider real polynomials in the variables x1, ..., xk. For our purposes in
this monograph, we take k = 2. However, the proof in the lemma below goes by
induction on k, and there is no harm in presenting the general case. The criterion
presented here is very useful for proving Theorem 1.3 but not very useful in general.
We will discuss a more powerful criterion in §11.

Given a multi-index I = (i1, ..., ik) ∈ (N ∪ {0})k we let

(9.2) xI = xi11 ...x
ik
k .

Any polynomial F ∈ R[x1, ..., xk] can be written succinctly as

(9.3) F =
∑

aIX
I , aI ∈ R.

If I ′ = (i′1, ..., i
′
k) we write I ′ ≤ I if i′j ≤ ij for all j = 1, ..., k. We call F very weak

positive dominant (VWPD) if

(9.4) AI :=
∑

I′≤I

aI′ ≥ 0 ∀I,
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We call F weak positive dominant if F is WVPD and the total sum,
∑
aI , is

positive. We call F positive dominant if AI > 0 for all I.

Lemma 9.4. The following is true.

(1) If P is VWPD, then P ≥ 0 on [0, 1]k.
(2) If P is WPD, then P > 0 on (0, 1)k.
(3) If P is PD, then P > 0 on [0, 1]k.

Proof: The proof goes by double induction and breaks into 6 = 3 × 2 cases. We
first prove each of the above statements for k = 1, by induction on the degree.
Then we prove the general case of each of the above statements by induction on k.

Case 1A: We first prove Statement 1 when k = 1. The case deg(P ) = 0 fol-
lows from the fact that a0 = A0 ≥ 0. Let x ∈ [0, 1]. We have

P (x) = a0 + a1x+ x2x
2 + · · ·+ anx

n ≥
a0x+ a1x+ a2x

2 + · · ·+ anx
n =

(9.5) x(A1 + a2x+ a3x
2 + · · · anxn−1) = xQ(x) ≥ 0.

The final inequality is induction on the degree: Q is VWPD and has degree n− 1.

Case 2A: Now we prove Statement 2 when k = 1. In this case we have P > 0
when deg(P ) = 0. Equation 9.5 holds word for word, except for the following im-
provement: When x ∈ (0, 1) we get xQ(x) > 0 because Q is WPD of degree n− 1.

Case 3A: Now we prove Statement 3 when k = 1. If P is PD then P is also
WPD, so the previous argument shows that P > 0 on (0, 1). When x = 0 we
have P (0) = a0 > 0. Finally, referring to Equation 9.5, we have P (1) = Q(1) > 0
because Q is PD of degree n− 1.

Case 1B: Now we prove the general case of Statement 1. Suppose the the co-
efficients of P are {aI}. We write

(9.6) P = f0 + f1xk + ...+ fmx
m
k , fj ∈ R[x1, ..., xk−1].

Let Pj = f0 + ...+ fj . A typical coefficient in Pj has the form

(9.7) bJ =

j∑

i=1

aJi,

where J is a multi-index of length k − 1 and Ji is the multi-index of length k
obtained by appending i to J . From equation 9.7 and the definition of VWPD, the
fact that P is WVPD implies that Pj is WVPD for all j.

By induction on k, we get Pj ≥ 0 on [0, 1]k−1. But now, if we hold x1, ..., xk−1

fixed and let t = xk vary, the polynomial g(t) = P (x1, ..., xk−1, t) is VWPD. The
point here is that the sum of the first j coefficients of g(t) is precisely Pj(x1, ..., xk−1).
Hence, by the single variable case, g ≥ 0 on [0, 1]. Since this is true for any choices
of the other variables, we see that P ≥ 0 on [0, 1]k.

Case 2B: Now we prove the general case of Statement 2. Since P is also VWPD,
the same argument as in Case 1A shows that the single variable polynomial g is
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VWPD for any choice of variables x1, ..., xk−1 ∈ [0, 1]k−1. Now we use the extra
information. When P is WPD, the polynomial Pk is also WPD, because the total
sum of the coefficients of Pk is the same as the total sum of the coefficients of P .
But then Pk(x1, ..., xk−1) > 0 when x1, ..., xk−1 ∈ (0, 1)k−1. But this nonzero value
is precisely the value of the sum of the coefficients of g for this choice of variables.
Hence g is WPD when (x1, ..., xk−1) ∈ (0, 1)k−1. Hence g(t) > 0 for t ∈ (0, 1) and
all (x1, ..., xk−1) ∈ (0, 1)k−1. This is what we wanted to prove.

Case 3B: The proof is the same as Case 2B except that this time Pj is PD for all
j. Hence g(t) is PD for any choice of x1, ..., xk−1 ∈ [0, 1]k−1. Hence g(t) > 0 for all
t ∈ [0, 1] and (x1, ..., xk−1) ∈ [0, 1]k−1. This is what we wanted to prove. �

Remark: In the argument below we only use the WPD case of the above lemma.
However, in later chapters we will also deal with the other cases. It seemed worth
treating all three cases at once.

9.4. The End of the Proof

Let f be the first pentagram invariant, written in flag coordinates. If the first
two flag invariants of P are x and y, then the Gauss Recurrence from Equation 3.16
gives the remaining flag invariants as (1−x)/(1−xy) and 1−xy and (1−y)/(1−xy).
Hence

(9.8) f(P ) =
xy(1− x)(1− y)

1− xy
.

Using Mathematica [W], we compute that

f(H(P )) =
(−1 + xy)(−3− x+ xy)(−3− y + xy)

(4 + x+ y)(−5− x+ y + 4xy + x2y)(−5 + x− y + 4xy + xy2)

(9.9) × (−4 + x+ y + 2xy)(−3 + 2xy + x2y)(−3 + 2xy + xy2)

(6− x− 6xy + x2y2)(6− y − 6xy + x2y2)

We have split things up this way simply because the equation is too long to fit on
one line. We compute that

(9.10) f(H(x, y))− f(x, y) =
Υ(x, y)

D(x, y)

D(x, y) is some polynomial whose formula we do not care about and

Υ(x, y) = −x
10

y
9 − 3x

10
y
8
+ 3x

10
y
7
+ x

10
y
6

−x
9
y
10 − 10x

9
y
9 − 4x

9
y
8
+ 66x

9
y
7 − 34x

9
y
6 − 16x

9
y
5 − x

9
y
4

−3x
8
y
10 − 4x

8
y
9
+ 124x

8
y
8
+ 227x

8
y
7 − 537x

8
y
6
+ 107x

8
y
5
+ 79x

8
y
4
+ 7x

8
y
3

+3x
7
y
10

+ 66x
7
y
9
+ 227x

7
y
8 − 504x

7
y
7 − 1761x

7
y
6
+ 2132x

7
y
5
+ 16x

7
y
4 − 140x

7
y
3 − 12x

7
y
2

+x
6
y
10 − 34x

6
y
9 − 537x

6
y
8 − 1761x

6
y
7
+ 814x

6
y
6
+ 6231x

6
y
5 − 4496x

6
y
4 − 481x

6
y
3
+ 95x

6
y
2
+ 6x

6
y

−16x
5
y
9
+ 107x

5
y
8
+ 2132x

5
y
7
+ 6231x

5
y
6 − 1564x

5
y
5 − 12565x

5
y
4
+ 5114x

5
y
3
+ 660x

5
y
2 − 18x

5
y

−x
4
y
9
+ 79x

4
y
8
+ 16x

4
y
7 − 4496x

4
y
6 − 12565x

4
y
5
+ 6034x

4
y
4
+ 15227x

4
y
3 − 2941x

4
y
2 − 273x

4
y

+7x
3
y
8 − 140x

3
y
7 − 481x

3
y
6
+ 5114x

3
y
5
+ 15227x

3
y
4 − 12842x

3
y
3 − 10404x

3
y
2
+ 684x

3
y

−12x
2
y
7
+ 95x

2
y
6
+ 660x

2
y
5 − 2941x

2
y
4 − 10404x

2
y
3
+ 12650x

2
y
2
+ 3057x

2
y − 27x

2

+6xy
6 − 18xy

5 − 273xy
4
+ 684xy

3
+ 3057xy

2 − 5076xy + 27x

−27y
2
+ 27y + 324.
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Lemma 9.5. D(x, y) > 0 provided that Υ(x, y) > 0 on (0, 1)2 − (φ−1, φ−1).

Proof: We have Since P and H(P ) are both convex, both f(P ) and f(H(P )) lie
in (0, 1). Hence

|f(H(P ))− f(P )| ≤ 1,

so D(x, y) can only vanish when Υ vanishes. So, if Υ only vanishes at (φ−1, φ−1),
then either Υ and D always have the same sign, or always have opposite signs. We
check at a single point that they have the same sign. �

Now we are going to use our positivity criterion to deal with Υ. The criterion
doesn’t apply right away. We have to fool around with the polynomial a bit. This
is why we proved Lemma 9.3.

Define

(9.11) Υ1(x, y) = Υ

(
1− x

φ
,
1− y

φ

)
.

Note that Υ1 > 0 on (0, 1)2 if and only if Υ > 0 on (0, φ−1)2. But then, by
Lemma 9.3 and symmetry, we see that Υ > 0 on (0, φ−1)2 if and only if Υ > 0 on
(0, 1)2 − {r}, where r = (φ−1, φ−1). So, to finish the proof, we just have to prove
the following lemma.

Lemma 9.6. Υ1 > 0 on (0, 1)2.

Proof: Listing out the lowest order nontrivial terms, we have

Υ1(x, y) = a20x
2 + a11xy + a02y

2 + . . . ,

(9.12) a20 = a02 = 320− 120
√
5, a11 = 460− 220

√
5.

Since a00 = a10 = a01 = 0 and a11 < 0, we have A11 < 0. This means that Υ1 is
not WPD.

Define

(9.13) Υ2(x, y) = Υ1(x, y) +
a11
2

(x− y)2.

We have Υ2 ≤ Υ1. We check by direct calculation that Υ2 is WPD. With respect
to Υ2 we have either Aij = 0 or Aij ≥ 550−230

√
5. The total sum is

∑
aij = 324. �

Corollary 9.7. For all p ∈ (0, 1)2, the sequence {Hn(p)} converges exponen-
tially fast to the regular class.

Proof: Let r be the regular class. Let pn = Hn(p) and let fn = f(pn). Note that
{fn} is non-decreasing. It follows directly from Equation 9.8 that that the level
sets f−1[f1, 1] are compact. Hence {pn} stays within a compact subset of (0, 1)2.
On a subsequence, we have pn → q for some q in this compact set. By construction
fn → f(q). But if q 6= r then we must have fn → f(H(q)) > f(q), and this is a
contradiction. Hence q = r. This completes the proof of convergence.

We already mentioned that r is an attracting fixed point for H, with multiplier
2φ−5. Hence, the convergence happens exponentially fast. Once pn is sufficiently
close to r, we have ‖pn+1 − r‖ < ‖pn − r‖/5. Our bound comes from the fact that
2φ−5 < 1/5. �
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9.5. The Action on the Boundary

For later purposes, it will be useful to know how H acts on the boundary of
[0, 1]2. The reason we omit the point (1, 1) from our result is that H blows up at
this point.

Lemma 9.8. H maps ∂[0, 1]2 − {(1, 1)} into (0, 1)2.

Proof: We will consider the two vertical sides. The case of the horizontal sides
follows from symmetry. We compute
(9.14)

H(0, y) =

(
18

30 + y − y2
,

6− y

2(5− y)

)
, H(1, y) =

(
(5− y)(3 + y)

(6− y)(4 + y)
,

6− y

2(5− y)

)

One can see that both coordinates are in (0, 1) when y ∈ [0, 1]. �

Remark: Note that the restriction of H to the vertical line x = 1 is completely
defined, and maps (1, 1) into (0, 1)2.

9.6. Discussion

For N ≥ 6. Let f = OnEn be the product of the flag invariants. It is possible
that Theorem 1.3 works on C6 without the claim about equality. We have already
seen in §7.5 that the map H∗H has other fixed points in C6 besides the regular class.
If f(H(P )) > f(P ) for all non-regular P ∈ C6 then by duality f(H∗(P )) > f(P )
for all non-regular P ∈ C6 But then f(H∗H(P )) > f(P ) for all non-regular P ∈ C6,
and this contradicts the existence of these other fixed points.

On C7 there are some counterexamples to Theorem 1.3 and probably similar
things go wrong for larger values of N . (I didn’t test it.) In spite of this, it seems
reasonable to make the following conjecture.

Conjecture 9.9. For each N there is some even power k = kN such that

(9.15) f(Hk(P )) ≥ f(P ) ∀ P ∈ CN

with equality if and only if P is the regular class. Probably one can even take k = 2
in all cases.



CHAPTER 10

The Basic Domains

10.1. The Space of Pentagons

For the rest of the monograph, we identify P with a subset of R2. The subset
is R2 − Ξ, where Ξ is the union of the the following curves:

(10.1) {x = 0}, {x = 1}, {y = 0}, {y = 1}, {xy = 1}.
R2 − Ξ has 12 components, which we call Pj for j = 1, ..., 10 and C and C∗. These
last two stand for the convex classes and the star-convex classes respectively. Figure
10.1 shows the picture.

45

7

8

Figure 10.1: The components

The following result extends Lemma 9.1 and gives another proof of it.

Lemma 10.1. Ψ is a homeomorphism P onto R2 − Ξ.

Proof: If p ∈ P then the points and lines of p are in general position, so that

Ψ(p) = (x, y) ∈ (R2 − {0, 1})2.
The second coordinate of G(x, y) is (1−x)/(1−xy). So, if xy = 1 then G(x, y) 6∈ R2.
Hence, Ψ(p) ⊂ R2 − Ξ.

By considering just 4 pentagons and their relabelings, it is a simple matter to
see that the image of Ψ contains points in all 12 components of R2 − Ξ. Now Ψ
is a local homeomorphism, and also if {pn} is a sequence of points exiting P then
Ψ(pn) exits R2 − Ξ. Hence Ψ is a proper map from P into R2 − Ξ. But now it
follows from Invariance of Domain that Ψ is a homeomorphism from P to R2−Ξ. �

81
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10.2. The Action of the Gauss Group

The dihedral group acts as the group of dihedral relabelings of a labeled pen-
tagons. With our identification, this action is given by the Gauss group Γ. Since
we know in advance that Γ permutes the components of P, we just have to check
a few points to figure out the combinatorics of the action.

Γ preserves C and C∗. The element G ∈ Γ, the Gauss recurrence from Equation
3.16, has the following action on the other pieces: 1 → 3 → 5 → 7 → 9 and
2 → 10 → 4 → 6 → 8. The whole group Γ permutes the odd components and also
permutes the even components.

The set of non-convex classes is denoted

(10.2) N = P − C.
Now we are going to define a fundamental domain for the action of Γ on N . The
reason for this wierd domain will become clear in the next section. The domain T
is a union of 3 unbounded regions in R2, but is is convenient to think of it as a
connected subset of (R ∪∞)2.

∂T is the union of three curves:

• The unbounded segment of the line y = x which joins (1, 1) to (−φ,−φ).
This segment is fixed by R. This is the curve labeled 0 in Figure 10.2.

• The unbounded subset of the line x = 1 which joins (1, 0) to (1, 1). This
is the curve labeled 1 in Figure 10.2.

• The unbounded arc
(
+φ−1 + φ+1t

−φ−2 + φ+2t
,
−φ−0 + φ+0t

+φ−1 + φ+1t

)
, t ∈ [0, t].

This arc, which is labeled 2 in Figure 10.2, is fixed by G−1RG. Here
we have written 1 = φ−0 = φ+0 and generally tried to bring out the
symmetry in the formula.

1

Figure 10.2: The fundamental domain T for Γ acting on N
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Lemma 10.2. T is a fundamental domain for the action of Γ on N .

Proof: We write

T = T1 ∪ T4 ∪ T∗,
where T k ⊂ Pk for k = 1, 4 and T∗ ⊂ C∗. The element R preserves P1 and reflects
across the diagonal. Hence T1 is a fundamental domain for the action of R on P1.
Since the boundary of T4 contained in the interior of C4 is fixed by G−1RG, we
see that T4 is a fundamental domain for the action of G−1RG on P4. Finally, T∗
is bounded by arcs which are fixed by R and G−1RG. Hence T∗ is a fundamental
domain for the action of Γ on C∗. Given how Γ permutes the components of P, we
see that T is a fundamental domain for the action on N . �

10.3. Changing Coordinates

Here we repeat the formula for the map B in equation 1.2.

(10.3) B(x, y) = (b(x), b(y)), b(t) = φ3
(

φ+ t

−1 + φt

)

We define T = B(T ) and so on. T is a wierd set, but we designed it to make
T beautiful.

T(0,0)

,6( )
6

, 46 -
( ), 4-

( )
4-

φφ

φφ

φφ

,2( )
2
φφ

, 6
( )4-

φφ

1

Figure 10.3: T and C. Here T is the union of B(T1) (light grey) and B(T4)
(medium grey) and B(T∗) (dark grey).
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T is a Euclidean triangle with vertices

(10.4) (0, 0), (φ6, φ6), (φ6,−φ4).
Figure 10.3 shows the picture. The sides are labeled to indicate how B maps in
∂T : The diagonal side of ∂0T . The vertical side is ∂1T . The other side is ∂2T .
The triangle is shaded to indicate how B maps in the different pieces of T . In
(R ∪ ∞)2 the regions T1 and T4 meet along y = ∞, which is mapped to B to
y = φ2. Likewise, T1 and T∗ meet along x = ∞ which is mapped by B to x = φ2.

We set

(10.5) G = BGB−1, R = BRB−1, Γ = 〈G,R〉.
Note that R(x, y) = R(x, y) = (y, x).

Remark: We use boldface notation with the risk of causing some clash with con-
ventionally used symbols. For instance, N = B(N ) usually stands for the set of
natural numbers. We hope that this will not cause confusion. The context should
be clear when we are considering objects associated to polygon spaces and maps
and when we are considering numbers of various kinds.

Since T is a fundamental domain for the action of Γ on N , we see that T is
a fundamental domain for the action of Γ on N . What we mean is that every Γ
orbit O in N is such that O ∩ T is nonempty and contains at most one point in
the interior of T . Generically, O ∩ T is exactly one interior point of T .

10.4. Convex and Star Convex Classes

The set C, corresponding to the points of C, is the union of the 4 unbounded
sectors what we have suggested by the shading, together with the line at infinity.
The map B blows up the regular class (φ−1, φ−1), so the domain C is a little bit
funny. We will never deal directly with this domain.

To avoid ever dealing directly with C, we introduce the map

(10.6) Θ = B−1H.

The map Θ has the property that generically Θ(p) ∈ C when H(p) ∈ C. We use
the map Θ because C is a bounded domain. We always want to work with pairs
(X,F ) where X is a bounded domain in R2 and F is defined and finite on X.

The set C∗, corresponds to the points of P which are star-convex. We have

(10.7) C∗ ∩ T = T ∗.

Here T ∗, the dark-shaded triangle in Figure 10.3, has vertices

(10.8) (0, 0), (φ2, φ2), (φ2,−1).

Γ acts as a group of diffeomorphisms on C∗ and the restriction of B to C∗ is a
diffeomorphism onto its image. Hence Γ acts as a group of diffeomorphisms on C∗

and T ∗ is a fundamental domain for this action.

10.5. The Semigroup

We are interested in the semigroup generated by H and by the 10 elements of
Γ. Typically a semigroup of rational maps can be quite wild, but we first explain
why this semigroup is practically the same thing as the semigroup of powers of H.
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Lemma 10.3 (Commuting Maps). H commutes with each element of Γ,

Proof: There are two proofs, one conceptual and one computational. Conceptually,
all that is going on is that for γ ∈ Γ, the composition γHγ−1 is simply the 3-fold
operation of changing coordinates, applying H, and then changing back. The
underlying geometric operation is the same as if we had just applied H.

Computationally, it suffices to prove that HR = RH and HG = GH, and
this is checked by an explicit calculation that we omit. See §21.3 for the equations
of all the maps involved. �

In light of the Commuting Maps Lemma, we can introduce a simple notation
which records the name of every element in the semigroup. Define

(10.9) Hijk = RiGjHk, i ∈ {0, 1}, j ∈ {0, 1, 2, 3, 4}, k ∈ {0, 1}.

The 10 maps Hij0 belong to Γ and the 10 maps Hij1 are what we call primary
maps .

We let S denote the semigroup generated by the 10 maps of Γ and the 10
primary maps. Every element h of S which is not a generator can be written as

(10.10) h = hm ◦ ... ◦ h1,

where the maps on the right are generators – some could be elements of Γ and some
could be primary. In practice, our decompositions will have the property that the
maps on the right are all primary.

Remarks:
(i) Our computer program lists out the formulas for the elements of Γ and also for
the primary maps. That is, our computer program lists out the formulas for the 20
maps Hijk with k = 0, 1.

(ii) All the maps in S have coefficients in Z[
√
5]. However, we find it more con-

venient to work with the larger ring R = Z[1/2,
√
5,
√
13] because several of the

important points associated to our maps have coordinates in R. See §8.3 and §21.4.
(iii) The reason we introduce S rather than just work with powers of H is twofold.
First, S is a more canonical object. To define H we had to make a choice of co-
ordinate system. S allows us to consider all coordinate systems at once. Second,
we will sometimes switch elements of S in order to avoid maps which blow up. For
instance, it might turn out that H blows up in some domain of interest to us while
some other primary map does not, and so we will use the other primary map in
place of H. We will formalize this point of view presently.

We say that a generator hk is defined and finite on some open set V if the
denominators of the coordinate functions of h are nonzero throughout V . We say
that h is defined and finite on an open set U if h1 is defined and finite on U and
h2 is defined and finite on h1(U) and h3 is defined and finite on h2h1(U), and so
on. We say that h is defined and finite at a point if it is defined and finite in a
neighborhood of that point. As we just remarked, we define things this way so as
to avoid dealing with blowups.
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10.6. A Global Point of View

We will take a more global point of view in Part 3 of the monograph, and here
we discuss some of the underpinnings of that points of view.

Let M denote the space (RP 1)2 blown up at (1, 1), (∞, 0) and (0,∞). Here
we think of RP 1 as R ∪ ∞. We will prove, in a step-by-step way, that Γ acts
as a group of diffeomorphisms of M . The experienced algebraic geometer would
doubtless find a more efficient proof of this fact. I work things out very concretely
so that a reader unused to calculations with blow-ups can follow along.

We say that map Φ : X → Y acts nicely if it is defined and continuous every-
where on X. Define the map

(10.11) F = RG(x, y) =

(
1− x

1− xy
, y

)

Lemma 10.4. Γ acts as a group of diffeomorphisms on M provided that F acts
nicely on M .

Proof: Given the smooth nature of the blow-up construction and the action of Γ,
we get the following result: If Γ acts as a group of homeomorphisms of M then Γ
also acts as a group of diffeomorphisms. Note that Γ is generated R and F . Since
we created M by blowing up an R-invariant manner, we know that R acts nicely
on M . If F acts nicely on M then we have a set of generators which acts nicely
on M . But then every element of G acts nicely. But then Γ acts as a group of
homeomorphisms on M . �

Our remaining goal is to show that F : M → M acts nicely. We will use
symmetry to simplify the problem. Let F ∗(x, y) = (y/x, y). Let M∗ denote the
space obtained from (RP 1)2 by blowing up at (0, 0) and (∞,∞).

Lemma 10.5. F acts nicely on M provided that F ∗ acts nicely on M∗.

Proof: Let F1 = F and M1 = M . Let M2 denote (RP 1)2 blown up at (0, 0),
(1, 1), and (∞,∞). Let

F2 = g1F1g
−1
1 , g1(x, y) = (1/x, y).

The map g1 : M1 → M2 is a homeomorphism. Hence, F1 acts nicely on M1 iff F2

acts nicely on M2.
Let M3 denote (RP 1)2 blown up at (−1,−1), (0, 0) and (∞,∞). Let

F3 = g2F2g
−1
2 , g2(x, y) = (x− 1, y − 1).

The map g2 : M2 → M3 is a homeomorphism. F2 acts nicely on M2 iff F3 acts
nicely on M3. We have

(10.12) F3(x, y) =

(
− y

x
, y

)
.

This map acts nicely at (−1,−1) (without blowing up) so F3 acts nicely on M3

provided that F3 acts nicely on M∗. But clearly F3 acts nicely on M∗ iff F ∗ acts
nicely on M∗. �

Now we simplify some more. Let M∗∗ ⊂ M∗ denote the subset obtained by
blowing up R2 at the origin.
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Lemma 10.6. F ∗ acts nicely on M∗ provided that F ∗ :M∗∗ →M∗ acts nicely.

Proof: Consider the dihedral group D of homeomorphisms of M∗ whose elements
are the 4 maps µ±,±(x, y) = (x±1, y±1). Every orbit of D intersects M∗∗. Hence,
it suffices to prove that the maps

µ±,± F ∗ µ±,± :M∗∗ →M

act nicely. These 4 maps are really just 2, namely (x, y) → (x/y, y) and (x, y) →
(y/x, y). By symmetry it suffices to check the second of these onM∗∗, namely F ∗. �

The next result finishes the proof.

Lemma 10.7. F ∗ :M∗∗ →M∗ acts nicely.

Proof: F ∗ acts nicely on the subset of R2 where x 6= 0. When x = 0 and y 6= 0,
we have F ∗(0, y) = (∞, y), which is a perfectly good point in M∗. Finally, F ∗ is

defined and continuous at the set Ô of points of M∗∗ lying over (0, 0). If ps ∈ Ô is
the point representing the line of slope s through the origin, then F ∗(ps) = (s, 0)
when s 6= 0 and F ∗(p0) = p0. So, F

∗ :M∗∗ →M∗ acts nicely. �

Now we explain what happens when we change coordinates. Let M be the
space obained by blowing up (RP 1)2 at the points

(10.13) (φ6, φ6) = B(1, 1), (φ2,−φ4) = B(∞, 0), (−φ4, φ2) = B(0,∞).

The map B : M → M is a diffeomorphism. Hence the group Γ acts as a group
of diffeomorphisms of M and the space obtained from T by blowing up the vertex
(φ6, φ6) is a fundamental domain for the action of Γ on M −C. Here C = B(C)
is the set of points representing convex pentagons. Figure 10.4 shows how the
blowup turns the triangle T into a quadrilateral. Originally T and C touched at
the point (φ6, φ6), but now they touch along a segment that is part of the blowup
of this point. Moreover C changes from a piecewise analytic square to a piecewise
analytic pentagon.

(0,0)

,6( )
6

, 46 -
( )φφ

φφ

Figure 10.4: The Fundamental Domain blown up
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Figure 10.5 shows the global picture. The region labeled (00) is (a homeomor-
phic copy of) T . The region labeled (ij) is Hij0(T ). Both H100 and H120 act
as (topological) reflections across the sides of T incident to the origin. The small
pentagonal piece is (a homeomorphic copy of) C, the set of points representing
convex pentagons. It attaches to the big 15-gon along a 5 line segments, one of
which is created when (φ6, φ6) is blown up. The big grey arrows indicate how the
sides are identified.
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13

04

11

01

14
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12

C

E
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D

C B

Figure 10.5: Global picture of the group action



CHAPTER 11

The Method of Positive Dominance

11.1. The Divide and Conquer Algorithm

Let So denote the interior of the set S.
In this chapter we explain the method of positive dominance. This is a com-

putational method for showing that a polynomial is positive (or non-negative) on a
polytope. I have not seen this method before in the literature. In the single variable
case, the best method would probably be Sturm sequences. The advantage of the
method of positive dominance is that it generalizes easily to higher dimensions.

Now we restrict ourselves to polynomials in R[x, y], though much of what we
say generalizes to the k-variable case. The method of positive dominance is built
on Lemma 9.4, which says the following about F ∈ R[x, y].

• If F is weak positive dominant, then F > 0 in (0, 1)2

• If F is positive dominant, then F > 0 in [0, 1]2

The notions of WPD and PD are based on various sums of the coefficients of F , as
described in §9.3. We ignore the VWPD case of Lemma 9.4 because we don’t need
it. The converse of Lemma 9.4 is false. In this chapter we explain how to improve
the criterion in Lemma 9.4 into a powerful machine.

We find it more convenient to work with triangles then squares, because it is
easy to triangulate a polygon into triangles whereas one can rarely decompose a
polygon into finitely many squares. Let Σ0 be the triangle with vertices

(11.1) (0, 0), (0, 1), (1, 1).

Points (x, y) ∈ Σ0 satisfy the inequalities 0 ≤ x ≤ y ≤ 1. We call Σ0 the standard
triangle. There is a nice polynomial map Φ : [0, 1]2 → Σ0 given by

(11.2) Φ(x, y) = (xy, y).

Φ is a homeomorphism between the interiors of the two sets, but collapses some
points on the boundary of the square.

Now suppose that P ∈ R[x, y]. Let Σ denote some triangle. We call the pair
(P,Σ) WPD if there is some affine isomorphism A : Σ0 → Σ such that the map

(11.3) P ◦ Φ ◦A
is WPD. We make the same definition for PD. Note that there are 6 possible affine
maps from Σ0 to Σ, so there is some flexibility in our definition

Lemma 11.1. The following is true.

(1) If (P,Σ) is WPD then P > 0 on Σo.
(2) If (P,Σ) is PD then P > 0 on Σ.

Proof: This follows straight from the definitions and Lemma 9.4. �
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Remark: If the vertices of Σ have coordinates in a ring R, and P has coefficients
in R, then P ◦Φ ◦A also has coefficients in R. This will be very important for the
computational aspects of our computations.

Now we explain the positive dominance algorithm, or PDA for short. We would
like to show that some polynomial P is positive on some polygon X. Before we
start, we define our method for subdividing one triangle into 4 smaller ones. Figure
11.1 shows the construction. The extra vertices in the figure are at the midpoints
of the edges of the large triangle.

Figure 11.1: subdivision of a triangle

Let X1, ..., Xm be the list of vertices of X. We always assume that X is star-
shaped with respect to X1, though this assumption is just for convenience. Here is
the algorithm.

(1) We starts with a list LIST of triangles. The initial members of LIST are
the triangles (X1, Xi, Xi+1) for i = 2, ...,m− 1.

(2) Let T be the first triangle on LIST. We delete T from LIST and check
whether (P, T ) is PD.

(3) Suppose (P, T ) is PD. We return to Step 2 if LIST is nonempty and
otherwise halt.

(4) Suppose (P, T ) is not PD. We append to LIST the 4 triangles in the
subdivision of T and then return to Step 2.

If the algorithm halts then it produces a partition of X into triangles on which P
is PD. This implies that P > 0 on X.

The Weak Version: To get sharp results, we often need to use the algorithm
above using WPD in place of PD. The reason is that sometimes the function of
interest vanishes on some vertices of the domain. In this case the PDA will not
work, and we need the weak version. We call this the WPDA. The WPDA has
one annoying complication. The algorithm does not quite show that P > 0 on the
given domain. It might a priori happen that P = 0 on some of the edges of the
partition, even if these edges lie in the interior of the domain. In the few cases
when we really need to get strict inequality with the WPDA, we will resort to one
of two tricks which we describe below.

Edges Our tests are geared towards two dimensional polygons, but we can also
use them to test whether a function is positive on an open or closed interval. We
can verify that a function is positive on a closed interval [p1, p2] by applying the
PDA to the degenerate triangle Σ whose vertices are p1, p2, p2. All the definitions
make sense. For positivity on an open interval (p1, p2) can use the WPDA, check
that the partition has at least 3 intervals, and check that the function is PD on
each interval of the partition lying in the interior of (p1, p2).
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11.2. Positivity

So far, our discussion works in any setting where we can do exact arithmetic.
Now we explain a feature of our calculations which is specific to the ring

(11.4) R = Z[1/2,
√
5,
√
13].

Our algorithms are predicated on our ability to tell the sign of some element a ∈ R.
In this section, we explain how to do this. I am indebted to Pat Hooper, who
explained a very nice trick for doing this. Pat said that he, in turn, learned the
trick from Vincent Delacroix.

As a first step, we replace a by some

(11.5) b = 2ka ∈ Z[
√
5,
√
13].

We take k as small as possible. As a warm-up, suppose first that b ∈ Z[
√
5]. We

write

(11.6) b = m+ n
√
5, m, n ∈ Z.

The only nontrivial cases occur when m and n are both nonzero and have opposite
signs. In these cases, we have the following rules.

• If m > 0 and n < 0 then b and m2 − 5n2 have the same sign.
• If m < 0 and n > 0 then b and m2 − 5n2 have opposite signs.

Both rules derive from the identity

b =
m2 − 5n2

m− n
√
5
.

Now we go back to the general case. We write

(11.7) b = m+ n
√
13, m, n ∈ Z[

√
5].

We already know how to tell the signs of m and n. The only nontrivial cases occur
when both these numbers are nonzero and have opposite signs. In these cases, we
have the following rules.

• If m > 0 and n < 0 then b and m2 − 13n2 have the same sign.
• If m < 0 and n > 0 then b and m2 − 13n2 have opposite signs.

The justification for these rules is as above. Since m2 − 13n2 ∈ Z[
√
5], we use the

warm-up method to determine the sign of these numbers.

11.3. The Denominator Test

11.3.1. The Basic Test. Let X be a polygon and let F be a rational map.

(11.8) F = (F1, F2), Fj =
Nj

Dj
,

We will use either the PDA to show that D1 > 0 and D2 > 0 on X or will use
the WPDA (plus a trick) to show that D > 0 and D2 > 0 on X minus some of its
vertices. We call this test the denominator test .
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11.3.2. The Subtraction Trick. We will encounter some situations where
F blows up at one or two vertices of X. In all these cases Xo ⊂ T o, where T is our
fundamental domain, and the offending vertices will lie in the two edges ∂0T and
∂1T of T which are incident to the origin. See Figure 10.3. We define

(11.9) g(x, y) = φ−9(x− y)(φ2x+ y),

This function is positive on T − ∂0T − ∂2T . We take the following 3 steps.

(1) We use the WPDA to check that Dj − g ≥ 0 on Xo and this shows that
Dj > 0 on X − ∂0T − ∂2T .

(2) We check that Dj is WPD on each edge of X that lies in ∂0T ∪ ∂2T This
shows that Dj > 0 on the interiors of such edges.

(3) We check that Dj > 0 on any vertices of X which lie in ∂0T ∪ ∂2T and
are not the offending vertices.

For later reference, we call this the subtraction trick .

11.3.3. The Variation Trick. There will be two cases where the subtraction
trick does not work. In these cases, we produce two new domains Y and Z by
varying a vertex p of X in such a way that X ⊂ Y and X ⊂ Z. For each j we use
the WPDA (three times) to show that Dj > 0 on a partition X∗ (respectively Y ∗,
Z∗) relative to X (respectively Y , Z). The partitions are combinatorially identical.
We perturb p so that there is no point of Xo which lies in an edge of all three
partitions.

Figure 11.2: Constructions for the variation trick

The left side of Figure 11.2 shows how the partitions X∗ and Y ∗ intersect when
X is a triangle. The two highlighted points are the only points in Xo common to
the edges of X∗ and Y ∗. In general, there would be finitely many such points.
When we also consider Z∗, there are no points in common.

Our argument shows that Dj > 0 on Xo. We then deal with the edges and
vertices as in the subtraction trick. For later reference, we call this the variation
trick .

There is more we want to say about the variation trick. When our domain
X is a polygon with more than 3 sides, we triangulate X by connecting all the
vertices to the vertex x1 of X. When we do the variation trick, we vary x1, so that
each triangular domain is affected. We do enough variations so that we arrange the
situation above (namely X ⊂ Y,Z) for each of the triangles in the triangulation.
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11.4. The Area Test

Let X ′ either be X or X minus some of its vertices. Suppose we already know
that F is defined and finite on X ′, and we want to show that ± det(dF ) ≥ C on
X ′ for some sign choice.

Remark: We want to make it clear that we are not testing the two inequali-
ties det(dF ) ≥ C and − det(dF ) ≥ C. This is almost absurd. Rather, ± det(dF )
denotes the choice of +det(dF ) or − det(dF ) that we have decided to test.

We write

(11.10) ± det(dF )− C =
∆

D1
1D

2
2

,

where ∆ is a polynomial that depends on F and C. We then use the WPDA to
check that ∆ > 0 on Xo. If follows from continuity that ∆ ≥ 0 on X ′. Hence
± det(dF ) ≥ C on X ′. We call all this the area test .

Our main use of the area test will be to show that ± det(dF ) > 0 on X ′. This
will guarantee that F is a local diffeomorphism on X ′, because dF never vanishes.
In all but 4 cases we will use the PDA to show that ± det(dF ) > 0 on X. In 3 of
the 4 exceptional cases, we will use the WPDA to show that ± det(dF )− φ−2 ≥ 0
on Xo, and this shows that ± det(dF ) > 0 on X ′. In the remaining exceptional
case, we will use the WPDA and the variation trick to show that det(dF ) > 0 on
X ′.

11.5. The Expansion Test

Remark: We only use the PDA for the tests in this section, so there are no tricks
we need to use.

Let X and F be as in the previous two sections. We explain how to check that
F : X → R2 is an expanding map, and hence a diffeomorphism onto its image.
The basic idea is to compare the L2 norm of the differential with the determinant
of the differential.

We find it convenient to use the variables (x1, x2) for points in R2. Given two
positive constants C1 and C2, we introduce the polynomials Ψ1 and Ψ2, defined as
follows:

(11.11)
Ψj

D2
j

= Cj −
(
∂Fj

∂x1

)2

−
(
∂Fj

∂x2

)2

.

We use the PDA to check that Ψj > 0 on X. This proves that

(11.12)

2∑

i=1

2∑

j=1

(
∂Fi

∂xj

)2

< C1 + C2.

on X.
We recognize the left hand side as the square of the L2 norm of dF . Thus we

can say that

(11.13) ‖dF‖2 <
√
C1 + C2.
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Geometrically, this means that dF expands no vector more than
√
C1 + C2 on X.

Remark: It would be simpler mathematically to directly bound ‖dF‖2 without
splitting things up into two polynomials, but computationally it is much worse. The
sum of the squares of dF is a truly enormous rational function. The key advantage
to our approach is that the two functions (∂1Fj)

2 and (∂2Fj)
2 have the same de-

nominator, so when their squares are added, the size of the polynomial is not much
larger than the terms separately. This fact about the denominators comes from the
quotient rule

∂

(
P

Q

)
=
∂P Q− ∂Q P

Q2
.

There are no derivatives in the denominator, so it doesn’t matter which partial
derivative we use.

Lemma 11.2. Suppose, on X, that | det(dF )| > C0 and ‖dF‖2 <
√
C1 + C2. If√

C1 + C2 < C0, then F is an expanding map on X.

Proof: Let V be any unit tangent vector, based at some point where the inequal-
ities hold. Let W be a unit vector which is orthogonal to V . Let Π be the unit
square whose sides are V and W . The parallelogram dF (Π) has area at least C0.
On the other hand, ‖dF (W )‖ ≤ √

C1 + C2 < C0. But the area of dF (Π) is at least
‖dF (V )‖‖dF (W )‖. This forces ‖dF (V )‖ > 1, as desired. �

Under these circumstances, we call the quintuble (X,F,C0, C1, C2) expansive.
If such a quintuple is expansive, then F is a diffeomorphism on X and an expanding
map.

11.6. The Confinement Test

Let F and X ′ be as in previous sections. Suppose we have a quadruple
(F,X ′, p, q), where F is defined and finite on X ′ and p, q ∈ R2 are distinct points.
Let L = (pq) be the line containing p and q. Here we describe how we verify that
F (X ′) lies in one of the two closed half-planes bounded by L.

Let I(x, y) = (−y, x) denote 90 degree rotation. Define Λ(x, y) = Ax+By+C,
where

(11.14) r = p+ I(q − p), A = r1 − p1, B = r2 − p2, C = p · (p− r).

Here p = (p1, p2), etc. A short calculation, which we omit, shows that Λ = 0 on L.
We consider the rational function

(11.15) Λ ◦ F =
Z

D1D2
, Z = ZF,X,p,q

We use the WPDA to check that D1, D2 ≥ 0 on X ′ and either Z ≥ 0 on X ′ or
Z ≤ 0 on X ′. In either case, this forces F (X ′) to lie in one of the two closed
halfplanes bounded by L. The point here is that F (X ′) crossed L, then Z would
take on both signs on X ′. We call this this the halfplane test .

The halfplane test is the basis for one of our two main geometric tests. Let
(F,X ′, Y ) be as above, with Y a convex polygon. Here we describe a test which
verifies that

(11.16) F (X ′) ⊂ Y
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when F is defined and finite on X ′. Let v1, ..., vk be the successive vertices of Y .
We apply the halfplane test to the quadruples (F,X, vi, vi+1) for each i = 1, ..., k
(with indices taken cyclically) and also we check that F maps some point of X into
the interior of Y .

The Strong Variant: There will be two special situations where we need to
know that F (X) ⊂ Y o. In this case we will use the PDA on X for all the tests
mentioned in this section.

11.7. The Exclusion Test

Remark: For the test in this section we only use the WPDA. We do not care
about strict inequalities here.

Here is the second of our big geometric tests. Suppose that (F,X ′, Y ) is a triple
where X and Y are polygons and Y is convex. Suppose that F is defined and finite
on X ′. Here we explain how to prove that

(11.17) F (X ′) ∩ Y o = ∅.
In other words, we are excluding F (X) from Y o. We call this the exclusion test .

Let (F, T, p, q) be a quadruple, where T is a triangle p, q ∈ R2 are two dis-
tinct points. We call (F, T, p, q) nice if one of the two polynomials ±ZF,T,p,q from
Equation 11.15 is defined and non-negative on a dense subset of T , and there is an
interior point t ∈ T such that F (t) lies on the other side of L = (pq) as Y . Under
these circumstances, L separates F (T ) from Y o.

Consider the following algorithm:

(1) Start with a list LIST of triangles. Initially, LIST contains the triangles
coming from the subdivision of X.

(2) Let T be the first triangle on LIST. We delete T from LIST and then test
whether (P, T, Yi, Yi+1) is nice for some i.

(3) Suppose some quadruple is nice. We go back to Step 2 if L is nonempty
and otherwise halt.

(4) Suppose no quadruple is nice. We append to L the 4 triangles obtained
from subdividing T , then go back to Step 2.

If this algorithm halts, it produces a partition of X into triangles {Tk} with the
property that each image F (Tk) is separated from Y o by a line extending some
edge of Y . This implies that F (X ′) ∩ Y o = ∅.

11.8. The Cone Test

We say that a cone C in R2 is the region in R2 bounded by two lines through
the origin of unequal slope. If the two lines are perpendicular, we call the cone right
angled . For instance, the cone ∨ from the previous section is a right-angled cone. If
C strictly contains a right-angled cone, we call C obtuse. If C is strictly contained
in a right-angled cone, we call C acute. We define C⊥ to be the cone bounded by
the lines perpendicular to the lines bounding C. We have C = C⊥ if C is a right
cone. If C is acute (respectively obtuse) then C⊥ is obtuse (respectively acute).

Given a cone C, we say that a basis for C is a pair nonzero vectors V1 and
V2 contained in the lines bounding C which have the following property: A vector
W lies in C if and only if W is either a non-negative or a non-positive linear
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combination of V1 and V2. For instance, if ∨ is the cone of vectors having slope
whose absolute value is at least 1, then then {(1, 1), (−1, 1)} is a basis for ∨. Here
∨ is a right-angled cone.

Let X ′ be as above. Suppose that f : X ′ → R2 is smooth and well defined on
X ′. Suppose that C and C ′ are cones. Here is how we check that dfp(C) ⊂ C ′ for
all p ∈ X ′. We first choose a basis {V1, V2} for C and a basis {V ′

1 , V
′
2} for (C ′)⊥.

In all cases, we use the WPDA to check that

(11.18) dfp(Vi) · V ′
j ≥ ǫ, ∀i, j, ∀p ∈ X ′.

for some ǫ > 0. In practice we take ǫ = φ−2. By choosing a positive constant,
we get the stronger result that dfp maps C strictly inside C ′ – i.e., into a strictly
smaller cone. Moreover, dfp(V ) is nonzero for all nonzero V ∈ C. Almost all our
calculations use the right-angled case.

As a special case, we might want to show that dfp(V ) ⊂ C ′ for some particular
vector V . In this case we set V1 = V2 = V and make the above check. We also call
this the cone test.

Cone Notation: Here is our notation for cones. We let ∨(a, b) denote the closed
cone of lines through the origin whose slope increases from a to b, possibly passing
through ∞. For instance ∨(1,−1) is the standard light cone consisting of lines
through the origin whose slope is at least 1 in absolute value. ∨(−∞,−1/2) is the
cone of lines through the origin whose slope is less or equal to −1/2. The only time
we will deviate from this notation is that we will sometimes write ∨ = ∨(1,−1) for
the standard light cone.

11.9. The Stretch Test

We will have one occasion to check that the differential df stretches distances
by a factor of 5 for all vectors V ∈ ∨, the standard cone. Since we only use this test
once, we will be very specific about it. However, the reader could imagine variants.
The following lemma justifies our test.

Lemma 11.3. Let T : R2 → R2 be linear, and let {v1, v2} be an orthonormal
basis. If ‖T (vj)‖ ≥ λ for j = 1, 2 and T (v1) makes an acute angle with T (v2) then
‖T (w)‖ ≥ λ‖w‖ for any w which is a positive combination of v1 and v2.

Proof: By scaling, it suffices to prove the case when λ = 1. Write w = a1v1+a2b2.
Let v′j = T (vj) and w

′ = T (w). We have

‖w′‖ = a21‖v′1‖2 + a22‖v′2‖2 + 2a1a2(v
′
1 · v′2) ≥ a21 + a22 = ‖w‖2.

This does it. �

For the stretch test, we set V1 = (1, 1) and V2 = (−1, 1) and for each j = 1, 2
we use the PDA to check one of two statements.

• Setting (X,Y ) = df(Vj) we have Y − 8 > 0.
• Setting (X,Y ) = df(Vj) we have −Y − 8 > 0.

In either case we see that ‖df(V )‖/‖V ‖ ≥ 8/
√
2 > 5. So, Lemma 11.3 applies to

the orthornormal basis {V1/
√
2, V2/

√
2}. We call this the stretch test .



CHAPTER 12

The Cantor Set

12.1. Overview

The goal of chapter is to prove Theorem 1.5. In other words, we will construct
the invariant Cantor set JC and analyze its properties. We will work in the B-
coordinates until the very end. The B coordinates are defined in Equation 1.2 and
discussed in depth in §10.

Recall from §10 that T is our triangular fundamental domain for the Gauss
group Γ. We will find a topological disk D and a union D1 ∪ ...∪D6 of 6 pairwise
disjoint topological disks with the following property. For each j, the map H :
Dj → R2 is a diffeomorphism onto its image, and D ⊂ H(Dj). We will use
this property to create the Cantor set, as discussed in §6.2. When we analyze the
metrical and measure-theoretic properties of our construction we will get all the
claims in Theorem 1.5.

Figure 12.1: Schematic picture of the disks.

Figure 12.1 shows a schematic picture of the disks. It turns out that there

is a special orbit Γ̂(s) on which the primary maps in the semigroup S blow up.
This orbit is also shown schematically in Figure 12.1. It plays a special role in our
constructions.

When we refer to pieces in our partition we will always use the symbols ♣Q,
♣R, etc. When we refer to polygonal subsets of the moduli space which interact
with the partition but are not part of the partition, we use the notation ♠Y , ♠Z,
etc. Finally, when we refer to any subset of the Julia set in B-coordinates, we
use the notation ♥A, ♥B, etc. These conventions are designed to avoid conflicts in
notation, and to jog the reader’s memory about the meaning of the various symbols
we use. In §21 we list the vertices of our partition pieces.

97
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12.2. The Big Disk

The main partition piece in this chapter is ♣Q, a convex quadrilateral obtained
from the triangle with vertices

(0, 0), (1, 1), (φ,−1/φ).

by chopping off (for technical reasons) a tiny corner near the vertex (φ,−1/φ). The
fundamental domain T shares two sides with ♣Q. Our big disk D is

(12.1) D =
⋃

γ∈Γ

γ(♣Q).

Figure 12.2 shows how ♣Q sits inside T , our fundamental domain. The lightly
shaded triangle is the set of star convex points in T . Figure 12.3 below shows D.

Q

Q

T
Figure 12.2: The sets ♣Q and T .

Lemma 12.1. D is a topological disk with piecewise analytic boundary. More-
over, Γ acts as a group of diffeomorphisms on D.

Proof: Since ♣Q lies entirely inside the set of points representing star convex
pentagons, the whole disk D has this property as well. Hence Γ acts as a group of
analytic diffeomorphisms of D. Now we check that D is a topological disk. First,
the sides of ♣Q incident to the origin are each fixed by an element of Γ. Second,
using the weak exclusion test, we check that γ(♣Q) and ♣Q have disjoint interiors
for all nontrivial γ ∈ Γ. These two facts show that the Γ images of ♣Q fit together
like slices in a pizza to make a topological disk. The boundary is clearly piecewise
analytic. �
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Figure 12.3 shows an accurate picture of D.

Figure 12.3: The disk D.

12.3. The Six Small Disks

In order to define our 6 smaller disks, we introduce partitions

(12.2) ♣Q = ♣R ∪ ♣S ∪ ♣T,

(12.3) ♣S = ♣S1 ∪ ♣S2 ∪ ♣S3.

(12.4) ♣T = ♣T1 ∪ ♣T2 ∪ ♣T3 ∪ ♣T4 ∪ ♣T5.

We explain in §12.8 why our partition has the structure it does. Basically, the pieces
♣R, ♣S, and ♣T function as single units, but in order to make some technical
estimates we split these pieces up.
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Figure 12.4: The partition of ♣Q.

We list all the vertices of our partition in §21.5. The point s turns out to be
the only point in ♣Q where all the primary maps blow up. The point t turns out
to be the only point in the closure of the Julia set on the diagonal edge of ♣S1.
(We ignore t in this chapter.) It turns out that

(12.5)
⋃

γ∈Γ

γ(♣R ∪ ♣T )

is the union of 6 topological disks. These disks are:

(12.6) D1 = Γ(♣R), Dk = Gk−2(♣T ∪R(♣T )), k = 2, 3, 4, 5, 6.

Here R is reflection in the main diagonal and G = BGB−1 where G is the Gauss
Recurrence from Equation 3.16.

Lemma 12.2. D1, ...,D6 are pairwise disjoint topological disks.

Proof: By symmetry it suffices to prove that D1 and D2 are topological disks,
that D1 and D2 are disjoint, and that D2 and Dj are disjoint for all j ∈ {3, 4, 5, 6}.

The fact that D1 is a topological disk has the same proof as the result for D.
The result for D2 is fairly obvious: ♣T is a polygon lying beneath the diagonal,
except for one edge that is in the diagonal, and R reflects ♣T in the diagonal.

The orbit Γ(♣S) separates D1 from D2. For j ∈ {3, 4, 5, 6}, the disks D2 and
Dj are disjoint because D2 is entirely contained in ♣Q ∪ R(♣Q), a union of two
consecutive fundamental domains for Γ acting on D. �
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12.4. The Diffeomorphism Property

Now that we have our disks, we prove that the restriction of any primary
element to any disk Dk is a diffeomorphism onto its image which maps Dk over
D. Call this the diffeomorphism property . We also prove that the primary maps,
where defined and finite, carry points of D −⋃

Dk outside of D.
Note the following symmetry:

• Any 2 primary maps agree up to post-composition by an element of Γ.
• D is invariant under Γ.
• Γ acts as a group of diffeomorphisms on the space C∗ of star convex
classes, as discussed in §10.4.

Thanks to this symmetry, to establish the diffeomorphism property for all Dk it
suffices to prove for k = 1, 2 that there is a primary map hk such that

• hk : Dk → R2 is a diffeomorphism onto the image.
• D ⊂ hk(Dk).
• hk(Dk) ⊂ C∗.

If hk has all these properties, we call hk good with respect to Dk.

Lemma 12.3. H111 is good with respect to D1.

Proof: Let h = H111. Let e be the edge of ♣R that is not an edge of ♣Q.

(1) We use the denominator test to check that h is defined and finite on ♣R.
(2) We check that (h,♣R, 26, 120, 40) is expansive. Hence h is an expanding

diffeomorphism on ♣R.
(3) We use the exclusion test to check that f(♣R) ∩ (T −C∗) = ∅ for all 10

primary elements f . Hence h(D1) ⊂ C∗.
(4) We use the exclusion test to show that h(e) ∩ ♣Q = ∅. Hence h maps e

outside of ♣Q.

Figure 12.4 shows an accurate picture.
The sets ♣R and ♣Q both have the vertex (0, 0). The sides of ♣R and ♣Q

incident to (0, 0) lie in the sides of T incident to (0, 0). Moreover, h maps the sides
of ♣R into the sides of T (switching top and bottom). Our result now follows from
dihedral symmetry and from all the structure we have established. �

R
Q

h(R)

Figure 12.4: ♣R and ♣Q and h(♣R).
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For our next two results, we introduce the convex pentagon ♠U which has the
property that D ⊂ ♠U and that all points of D lie in ♠Uo except the vertex (1, 1).
We check this as follows. First we use the strong confinement test to show that
γ(♣Q) ⊂ ♠Uo for all γ ∈ Γ except the identity and R. The two sets ♣Q and
R(♣Q) are polygons, and we see directly that ♣Q−{(1, 1)} and R(♣Q)−{(1, 1)}
lie in ♠Uo. We list the vertices of ♠U in §21.5. The approximation is very tight in
certain places where we need it, and otherwise loose.

U

Figure 12.5: D and ♠U .

Lemma 12.4. Let p ∈ D − ⋃
Dj be any point not in the set Γ(s). Then any

primary map h which is defined and finite at p maps p outside D.

Proof: Since D is Γ invariant, it suffices to show that there are primary maps
h1, h2, h3 so that hj is defined on ♣Sj − s and hj(♣Sj − s) ⊂ R2 −D. We set

(12.7) h1 = H031, h2 = H141, h3 = H111.

We use the denominator test to check that h3 is defined on ♣S3. For j = 1, 2 we use
the denominator test coupled with the subtraction trick to check that hj is defined
and finite on ♣Sj − s. Let ♣S′

j = ♣Sj − s. We use the exclusion test to check that
hj(♣S′

j) ∩♠Uo = ∅. Hence hj(♣S′
j) is disjoint from D − {(1, 1)}. We also use the

exclusion test to check that hj(♣S′
j) is disjoint from the square of radius 1 centered

at (1, 1). Hence hj(♣S′
j) ∩D = ∅. �
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Lemma 12.5. H101 is good with respect to D2.

Proof: Let h = H101.

(1) We use the denominator test to check that h is defined and finite on ♣T .
(2) We check that (h,♣T, 10, 45, 45) is expansive. Hence h is an expanding

diffeomorphism on ♣T .
(3) We check that f(♣T )∩(T −C∗) = ∅ for all 10 primary elements f . Hence

h(D2) ⊂ C∗.
(4) Three of the edges of ♣T lie in the D − ⋃

Dj . By Lemma 12.4 and
symmetry, h maps these three edges outside of D.

(5) We use the exclusion test to check that h(e)∩♠Uo = ∅ for the remaining
non-diagonal edge e of ♣T .

(6) By symmetry, h maps the diagonal edge of ♣T into the diagonal.

In summary, the restriction of h to ♣T is a diffeomorphism which maps the diag-
onal edge of ♣T into the diagonal and all remaining edges of ♣T disjointly from
D − {(1, 1)}. From this, and bilateral symmetry, D ⊂ h(D2). �

The multilayered Figure 12.6 shows an accurate picture of the previous lemma.
On the left hand side, the small white shape is ♣T . The dark grey shape is the
half of D below the diagonal. The large medium grey shape is h(♣T ). It is hidden
behind the dark grey piece. The right hand side of the figure shows a closeup. The
reader can see much better pictures using the computer program.

Figure 12.6: ♣T and h(♣T ).
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12.5. The Main Argument

Let H = BHB−1, where H is the projective heat map. Define

(12.8) Kk = H−1(D) ∩Dk.

Since H is a primary map, the restriction of H to Dk is a diffeomorphism onto its
image. Hence Kk is a piecewise analytic disk for each k = 1, ..., 6. We use Kk in
place of Dk because we have more control over the image: H(Kk) = D.

We let ♥K denote the subset of points p ∈ K1∪ ...∪K6 such that Hn(p) ∈ D

for all n. The set ♥K is evidently H-invariant.
Let µ denote the planar measure on D which is Γ-invariant and agrees with

Legesgue measure on D ∩ T . The measure µ is absolutely continuous with respect
to Lebegue measure. Below we will prove

Lemma 12.6 (Measure Expansion). For each k = 1, ..., 6, the restriction of H
to Kk expands µ by a factor of at least 7.

Let K(n) denote the set of points p ∈ ♥K such that Hn(p) ∈ D. As discussed
in §6.2, and in view of the results proved in the previous section, K(n) consists
of 6n topological disks. In view of the Measure Expansion Lemma, each of these
disks has µ measure O(7−n). Hence K(n) has µ measure O(6n/7n), a quantity
which tends to 0 with n. Being the nested intersection of sets of arbitrarily small µ
measure, we see that ♥K has µ measure 0. Since µ is absolutely continuous with
respect to Lebesgue measure, we see that ♥K has Lebesgue measure 0 as well.

Our next result refers to the expansion hypotheses discussed in §6.2.3.
Lemma 12.7 (Metric Expansion). There is some η > 1 and some tangent

bundle function ρ on D such that the restriction of H to any disk of K(2) expands
ρ by at least a factor of η.

We have established the same hypotheses as in §6.2. We conclude from the
construction there that ♥K is a Cantor set and the restriction of H to ♥K is
conjugate to the 1-sided shift on 6 symbols.

Remark: It might have been nicer to be able to just work with the Euclidean met-
ric for the results above, but I couldn’t quite manage it. The underlying difficulty
is that Γ does not act isometrically or by area-preserving maps on D. Actually, the
funny measures and metrics I use make the proofs easier. In the end, we just make
Euclidean measurements, but we use the funny measure and metric to maximally
exploit symmetry.

It only remains to pull everything back to P using the change of coordinates
map B. We define JC = B−1(♥K). Everything in sight takes place inside
the subset of the configuration space consisting of star-shaped classes, and B is
a diffeomorphism there which conjugates H to H. Therefore, JC and ♥K are
homeomorphic via an ambient diffeomorphism, and the action of H on JC is
conjugate to the action of H on ♥K. Hence JC is a H-invariant Cantor set of
measure 0 and the restriction of H to JC is conjugate to the 1-sided shift on 6
symbols. This completes the proof of Theorem 1.5 modulo the expansion results
mentioned above.

The rest of the chapter is devoted to proving the expansion results.
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12.6. Proof of the Measure Expansion Lemma

Lemma 12.8. H expands µ by a factor of at least 7 when restricted to K1.

Proof: Since µ is Γ-invariant, it suffices to prove this result for the primary map
of our choosing. We choose H111. Since K1 = Γ(♣R), it suffices by symmetry to
prove our result for the restriction of H111 to ♣R. We have H111(♣R) ⊂ T , as
above. Hence

(12.9) H111(♣R ∩K10) ⊂ ♣Q.
So, we can simply make our analysis using Lebesgue measure. We use the area test
to show that H111 satisfies | det dH111| ≥ 7 on ♣R. �

Lemma 12.9. For each k = 2, 3, 4, 5, 6, the restriction of H to Dk expands µ
by at least a factor of 7.

Proof: By symmetry, it suffices to prove that

H : ♣T ∩K2 → D

expands µ by a factor of at least 7. In the region ♣T ∩ K2 we have λ = µ, so
it looks like we are on track to use the same symmetry as in the previous lemma.
However, this time our luck runs out because the image of this set under H does
not lie in the region of D which agrees with λ.

We fix the problem by proving that the restriction of every primary map to
♣T ∩ K2 expands λ by at least 7. Since λ = µ on a fundamental domain for
the action of Γ on D, and since µ is Γ invariant, this last result implies that the
restriction of every primary map, including H, to ♣T ∩ K2 also expands µ by a
factor of 7.

Let X be any of the pieces of ♣T and let h be any primary element. We check
that (X,h) is clean for every piece X of ♣T and every primary h. Next, we use the
strong area test for each pair and show that | det dh| > 7 on X. �

12.7. Proof of the Metric Expansion Lemma

First we need to define the function ρ on the tangent bundle of D. We would
like to just take the Γ invariant Riemannian metric which agrees with the Euclidean
metric in the fundamental domain D∩T . However, this does not really make sense
because there are problems with piecing the metric together across the boundaries.
We have to broaden our definitions to make sense of the construction we want.

There is a canonical fundamental domain FD for the action of Γ on the tangent
bundle; it is the lift of the fundamental domain D ∩T for the action of Γ on D. A
point (p, V ) lies in FD iff either p lies in the interior of D ∩T or else p lies on one
of the two edges e0 = ∂0T ∩D or e2 = ∂2T ∩D and does not point out of D ∩ T .
Note that FD is, so to speak, an orbifold with mirrors. There are elements γ0 and
γ2 which fix e0 and e2 pointwise. These elements act on the tangent bundle so as
to pointwise fix the corresponding boundary components of FT .

We let ρ be Γ-invariant function on the tangent bundle which agrees with
the function induced by the Euclidean norm on FT . This definition is piecewise
smooth. Thanks to the mirrors, this definition is everywhere continuous as well.
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Lemma 12.10. H is ρ expanding on K1.

Proof: Similar to Lemma 12.8, it suffices to show that H111 expands the Euclidean
metric on ♣R. We have already seen this in the proof of Lemma 12.3. �

Lemma 12.11. ♣T4 and ♣T5 are disjoint from K(2).

Proof: See Figure 12.4 for a picture of ♣T4 and ♣T5. We first check using the
denominator test that all the primary maps are defined and finite on ♣T4 and ♣T5.
Using the exclusion test, we check for all i ∈ {4, 5} and all j ∈ {1, 2, 3} and all
primary h that h(♣Ti)∩♣Tj = ∅. Likewise, we check that h(♣Ti)∩♣R = ∅. This
shows that H(♣T4) and H(♣T5) are disjoint from D1 ∪ ... ∪D6. �

Note K2 ∪ ... ∪K6 is the Γ orbit of ♣T . So, to finish the proof of the Metric
Expansion Lemma, it suffices to prove that H is locally ρ-expanding on ♣Tj∩K(2)
for j = 1, 2, 3. We can ignore ♣T4 and ♣T5 by the previous result.

Lemma 12.12. H is ρ-expanding on ♣Tj ∩K(2) for j = 1, 2.

Proof: We consider ♣T1 first. By symmetry it suffices to prove that H111 is
locally ρ-expanding on ♣T1∩K(2). We use the exclusion test to show that h(♣T1)
is disjoint from ♣T as long as h is a primary map other than H111 and RH111.

(12.10) H111(♣T1 ∩K(2)) ⊂ K2.

Note that ρ equals the Euclidean metric on K2. To finish our proof, we just
have to show that H111 is Euclidean expanding on ♣T1. We check that

(♣T1,H111, 15 + φ, 45, 220)

is expansive. Thus H111 is Euclidean expanding by a factor of at least

15 + φ√
45 + 220

≈ 1.02

on ♣T1. We make for same checks for ♣T2 as we did for ♣T1. This time

(♣T2,H031, 28, 350, 90)

is expansive. This H031 is Euclidean expanding by a factor of at least

28√
350 + 90

≈ 1.33

on ♣T2. �

Lemma 12.13. H is locally ρ-expanding on ♣S3 ∩K(2).

Proof: We would like to proceed as in the previous two cases, but this time our
luck runs out and a result like Equation 12.10 does not hold. We fix the problem by
proceeding as in Lemma 12.9. We check that the following quintuples are expansive:

(♣S3,H001, 20, 195, 195), (♣S3,H011, 20, 95, 295), (♣S3,H021, 24, 300, 270),

(♣S3,H031, 20, 195, 195), (♣S3,H041, 20, 195, 195).
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Since R ∈ Γ is a Euclidean isometry, the checks above show that every primary
map is Euclidean expanding on ♣S3. The closest call gives an expansion factor of
at least

24√
300 + 270

≈ 1.005.

By the same symmetry as in Lemma 12.9, we conclude that each primary element
is ρ-expanding on ♣S3 ∩K(1). But then, a forteriori , the map H is ρ-expanding
on ♣S3 ∩K(2). �

This completes our proof of the Metric Expansion Lemma. Our proof of The-
orem 1.5 is done.

12.8. Discussion

Here we discuss why our partition looks like it does. The triangle ♣R and the
pentagon ♣T are the fundamental pieces used to define our 6 disks. The piece
♣S is a buffer between the triangle and the pentagon. The reason why we have 3
♣S-pieces rather than 1 is that the union of the ♣S-pieces is highly nonconvex and
our tests run much better on convex polygons.

We partitioned ♣T into smaller pieces because our methods are not sharp
enough to treat ♣T as a single piece. It is true that we proved above that some
primary map is Euclidean expanding on ♣T . However, what we would really need
to prove is that all primary maps are Euclidean expanding on ♣T . Our methods
could not get this. So, we partitioned ♣T into 5 smaller pieces. We couldn’t get
the expansion result on ♣T4 and ♣T5 but they turn out to be disjoint from the
Cantor set. We found this partition of ♣T after quite a bit of trial and error.

All this careful partitioning, as well as the very close estimates on the expansion
constants, is the price I pay for using the crude Expansion Test defined in §11.5.
What would I have done if I couldn’t jiggle the constants to make the lemmas
in the preceding section succeed? The answer is that I would have enhanced the
Expansion test so that it could measure expansion not just with respect to the
Euclidean metric but also with respect to any suitably defined inner product. The
easiest extension would be to allow inner products represented by rational matrices.

We would have gotten better results if we instead used the inner product with
respect to which the differential action of Γ at the regular class be an action by sim-
ilarities. Call this the adapted inner product . The auxiliary linear transformation T
used to create Figure 1.4 carries the adpated inner product to the dot product. The
problem with using the adapted inner product is that it is defined over a quartic
number field rather than Q, so I would have needed to beef up my calculations to
handle it. One work-around would be to instead use a rational approximation to
the adapted quadratic form. Perhaps this approach would have saved the trouble
of subdividing ♣T into smaller pieces. In the end, I chose to work carefully with
the partition rather than complicate the Expansion Test.

There is one more point I want to discuss. Referring to Figure 12.5, we think
of ♠U ∪R(♠U) as a polygonal approximation to D. It might have been simpler to
approximate D with a single convex polygon, but we couldn’t find one which was
close enough to D to be useful.





CHAPTER 13

Towards the Quasi Horseshoe

13.1. The Target

This chapter contains the first half of the proof of Theorem 1.6. In the end, we
want to show that all points of J − JC with well-defined orbits land in a certain
Cantor band JA. The set JA is contained in the set

(13.1) B−1(Γ(♣P )),

Where ♣P is the union of 8 quadrilaterals shown in Figure 13.1. We list the vertices
of these quadrilaterals in §21.6.1. When we restrict suitable choices of the primary
maps to ♣P (and make a tiny modification) we get a quasi-horseshoe.

Q

p

Figure 13.1: ♣P sitting inside T .
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For comparison, Figure 13.1 also shows the set ♣Q and also the lightly shaded
set of points representing star convex pentagon classes. We also show 4 special
points p, q, r, and (1, 1) on T . The point p is the top vertex of T and the points
q and r turn out to be cone points in the sense of Theorem 1.8. The Cantor bands
we eventually find in ♣P continue leftward and then pinch down to q and r. We
list coordinates for these special points in §21.4.

Definition: Let q ∈ R2 be some point.

(1) q is pre-convex if there is some h ∈ S such that B−1h(q) ∈ C.
(2) q is pre-♣P if there is some h ∈ S such that h(p) ∈ ♣P .
(3) q is pre-bad if p ∈ Λ and Hn(p) ∈ {p,q} for some n.

Remark: Condition 3 is different from Conditions 1 and 2 because Condition 3
defines a specific countable set of points on the diagonal boundary of T .

Here is the goal of this chapter.

Theorem 13.1. Each point of T −D0 is pre-convex, pre-♣P , or pre-bad.

13.2. The Outer Layer

Figure 13.2 shows 8 polygons

♣A,♣B,♠C,♠D,♠E,♣F,♣G,♣H.
The polygons ♠C, ♠D, ♠E lie outside the fundamental domain. We only show
the intersection of ♠D with the picture window. The whole piece ♠D is enormous;
the whole tile is fairly close in size and shape to the square [−250, 0]2. We list
the vertices in §21.6.2. The white dot on the right boundary of ♣G will have
significance, much later, in the proof of 17.3.

C
D

Q

H

G

A

BE

F
N

D

Figure 13.2: The Outer Layer
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Lemma 13.2. All the points in the 8 above polygons are preconvex except p, q, r.

Proof: Let Θ = B−1H, as in Equation 10.6. Our proof here repeatedly uses
Corollary 9.2. Corollary 9.2, when combined with the definition of preconvexity ,
has the following consequence: If Θ(p) ∈ (0, 1)2 then p is pre-convex.

• We use the denominator test and the variation trick to check that Θ is
defined and finite on ♣A− p− q.

• We use the denominator test and the subtraction trick to check that Θ is
defined and finite on ♣G− q − r and ♣H − q.

• We use the (plain) denominator test to check that Θ is defined and finite
on the remaining pieces.

We use the strong variant of the confinement test to check that

(13.2) Θ(♣B ∪ ♠C), Θ(♠D) ⊂ (0, 1)2.

We use the (weak) confinement test to check that Θ(♣A − p − q) is contained in
the square of sidelength 1− 2φ−4 centered at (1/2, 1/2). Hence

(13.3) Θ(♣A− p− q) ⊂ (0, 1)2.

We now use the confinement test to check that

(13.4) H031(♠E), H141(♣F ), H021(♣G− q − r), H131(♣H − q) ⊂ ♠D.

This completes the proof. �

Remark: We will not have to use the strong version of the confinement test again.
So, the remaining confinement tests use the WPDA, without any tricks, as described
in the previous chapter. Also, the exclusion test uses the WPDA without any tricks.
We mention this so that the reader knows exactly which tests we are performing.

13.3. The Inner Layer

Now we will finally encounter some pre-♣P points. Figure 13.5 shows the
collections of pieces labeled♣I,♣J,♣K,♣L. This time each letter stands for several
pieces, according to the following scheme. There are essentially 4 rows of pieces, and
each tile gets an index according to the row it sits in. The top row gets index 1 and
the next row gets index 2, etc. Thus, the four ♣J pieces are ♣J1,♣J2,♣J3,♣J4.
We list the coordinates of these pieces in §21.6.3. These pieces flank the main set
of interest, ♣P . Figure 13.3 also shows ♣P . It is the union of the 8 lightly shaded
pieces.
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F

H

G I
J

Figure 13.3: The inner layer

Lemma 13.3. All points of ♣I ∪♣J ∪♣K ∪♣L. other than q and r are either
pre-convex or pre-♣P .

Proof: We define the union of the previous pieces: ♣X = ♣A∪ ...∪♣H. We also
define the primary elements:

(13.5) h1 = H111, h2 = H041, h3 = H141, h4 = H021.

Finally, we define auxiliary polygons ♠Y1 and ♠Y2 which have the following prop-
erties:

(13.6) ♠Y1 ⊂ ♣P ∪ ♣X, ♠Y2 ⊂ ♣P ∪ ♣X ∪ ♣I.

These polygons are taken to be nearly as large as possible. We list the vertices for
these polygons in §21.6.3. Figure 13.4 shows a fairly accurate picture.

For k = 1, 2, 3, 4 we check that hk is defined on ♣Ik. Then we use the confine-
ment test to show

(13.7) hk(♣Ik) ⊂ ♠Y1.

Next, letting ♣V stand for any of ♣J,♣K,♣L, we check that hk is defined and
finite on ♣Vk − q − r and that

(13.8) hk(♣Vk − q − r) ⊂ ♠Y2.

By construction, each point of ♠Y1 is either preconvex or pre-♣P . Hence, each
point of ♣I is either preconvex or pre-♣P . But then each point of ♠Y2 is either
preconvex or pre-♣P . Hence, each point of ♣J,♣K,♣L, except q and r, is either
preconvex or pre-♣P . �
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p

Y1

1
(I  )1

Y2

h  (J  )4 4

h  (J  )3 3

p

Figure 13.4: ♠Y1 and ♠Y2 and some representative images.

Figure 13.4 shows a pretty accurate drawing of the pieces ♠Y1 and ♠Y2. Note
that the piece ♠Y2 continues behind the darker pieces on the right hand side of
Figure 13.4.

13.4. The Last Three pieces

To finish the proof of Lemma 13.1 we need to deal with 3 exceptional pieces.
Figure 13.5 shows the pieces ♣M,♣N,♣O,♣Q. We are not interested in ♣Q but
we draw it to illustrate how the other pieces fit around it. Figure 13.5 also indicates
the locations of some of the pieces we have already considered, to help give a better
picture for how these last pieces fit in. We list the coordinates of the vertices in
§21.6.4.

Q
M

O
J

J

F

B
E

C

G

Figure 13.5: The pieces ♣M,♣N,♣O,♣Q.
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Lemma 13.4. All points of ♣M are pre-convex.

Proof: We introduce a quadrilateral♠Y3 which is contained in♣A∪♣H−p−q. We
check that H111 is defined and finite on ♣M and we check that H111(♣M) ⊂ ♠Y3.
We list the coordinates of ♠Y3 in §21.6.3. �

The rest of our proofs use the element h = H101. Note that (1, 1) is a fixed
point of h. This makes the rest of our arguments more subtle.

Lemma 13.5. All points of ♣N except (1, 1) are pre-convex.

Proof: The union ♠Y = ♣N ∪ ♣B ∪ ♣F ∪ ♠C ∪ ♠E is a convex polygon and
obviously contains ♣N . We use the confinement test to show that h(♣N) ⊂
♠Y . We then check that the quintuple (♣N,h, 36, 240, 110) is expansive. Let
p ∈ ♣N − {(1, 1)}. Since h fixes the vertex (1, 1) and is an expanding map, the
infinite sequence {hk(p)} cannot remain in ♣N forever. Hence, there is some k
such that hk(p) ⊂ ♠Y −♣N . But all points in this latter set are pre-convex. �

Now we come to the last piece ♣O. This one is the most interesting.

Lemma 13.6. h(♣O) ⊂ (T −D0)∪ {(1, 1)}. Moreover, h is an expanding map
on ♣O.

Proof: Let ♠Y be the triangle whose vertices are (1, 1) and the two vertices of T on
the vertical edge. We have ♠Y ⊂ T −D0∪{(1, 1)}. We use the confinement test to
show that h(♣O) ⊂ YP . Finally, we check that (♣O, h, 43, 240, 200) is expansive. �

Now we show that every point of ♣O is either preconvex pre-♣P or pre-bad.
Let p ∈ ♣O. We check that all the primary maps blow up at q and p and moreover
that h(r) = p. So, if some power of h maps p into q ∪ r, then p is pre-bad.
Otherwise, thanks to the expanding nature of h, there is some k such that hk lies
in one of the other partition pieces of T −D0 and is either preconvex or pre-♣P
by one of the results above.

We have now dealt with all the partition pieces. This proves Theorem 13.1.

Remark: There is a little more we want to say. h maps the diagonal edge of
♣O into the diagonal edge of T . For this reason, the set of points which are
mapped into q∪r by powers of h – in other words, the full preimage of q∪r under
powers of h – is just a countable collection on the diagonal edge of T between (1, 1)
and r, which accumulates on (1, 1). These points turn out to play an important
role in the proof of Theorem 1.10.



CHAPTER 14

The Quasi Horseshoe

14.1. Overview

We continue with the notation from the previous chapter. ♣P = {♣P j
i } de-

notes the union of 8 special quadrilaterals. The upper index j = 1, 2 indexes quads
going from left to right. The lower index i = 1, 2, 3, 4 indexes quads going from top
to bottom. Each ♣P j

i is an adapted quadrilateral in the sense of §6.5. Let
(14.1) ♣P j = ♣P j

1 ∪ ♣P j
2 ∪ ♣P j

3 ∪ ♣P j
4 .

So, ♣P 1 and ♣P 2 are the left and right halves of ♣P . Let
(14.2) ♣Pj = ♣P 1

j ∪ ♣P 2
j

For each j, these two sets share a timelike edge. Even though ♣Pj is a hexagon, it
counts as a quad according to the definition in §6.5.

We define the following 4 primary elements:

(14.3) h1 = H111, h2 = H041, h3 = H141, h4 = H021.

We use the strong denominator and area tests to show that hj is defined, finite,

and a local diffeomorphism on ♣Pj . We now (attempt to) define F : ♣P → R2 by
saying that F = hj on ♣Pj .

There is a technical problem. Since ♣P1 and ♣P2 share a common boundary,
we do not know whether to define F = h1 or F = h2 there. The same goes for
♣P3 and ♣P4. However, we will prove below that h1 and h2 both map ♣P1 ∩♣P2

into the union of pieces containing only pre-convex points. The same goes for h3
and h4 acting on ♣P3 ∩ ♣P4. By continuity, the same holds for a thin tubular
neighborhood of these arcs. We move the vertices of our quads inward by some
tiny amount, say 10−100, so that they are pairwise disjoint. We redefine ♣P to be
the union of the modified quads. Now we can define F : ♣P → R2 unambigiously.
We keep the definition of ♣P 1 and ♣P 2 the same as we want these two halves to
fit perfectly with the rest of our tiling.

Here is the goal of the first part of the chapter.

Theorem 14.1. F : ♣P → R2 is a quasi-horseshoe.

Following the proof of Theorem 14.1, we prove proving Theorem 1.6. The main
difference between Theorem 1.6 and Theorem 14.1 is that Theorem 14.1 concerns
a map defined piecewise by the action of 4 different elements of the semigroup S

whereas Theorem 1.6 concerns the action of the single map H on the space P.

14.2. Existence of The Quasi Horseshoe

Recall that ∨ is the standard light cone, defined in §6.5. We first check that F
is quasi-hyperbolic on ♣P .
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Lemma 14.2. For any p ∈ ♣P , the differential dhp maps ∨ strictly inside itself
and expands distances in ∨ by a factor of at least 5.

Proof: For each of the 8 quadrilaterals comprising ♣P , we check the first state-
ment using the cone test and the second statement using the stretch test. See §11.8
and §11.9. �

Now we establish the interlacing property. We define

(14.4) ♣X = ♣A ∪ ♣B ∪ ♣F ∪ ♣G ∪ ♠C − p− q − r.

Figure 14.1 shows ♣P ∪♣X as well as auxiliary quadrilaterals ♠Y 1,♠Y 2,♠Z. We
list the vertices for these pieces in §21.6.5.

Y1

C

B

A

F

G

H

Y2

Z

Figure 14.1: The sets ♣X and ♠Y 1 and ♠Y 2 and ♠Z.
Our analysis in the previous chapter shows that every point of ♣X is pre-

convex. The reason we keep ♣P 1 and ♣P 2 unperturbed is that then these pieces fit
together perfectly with ♣X, forming a pair of bridges connecting the disconnected
components of ♣X.
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Lemma 14.3. For i = 1, 2, we have hi(♣Pi) ⊂ ♣P 1 ∪♣X. Moreover, hi(♣Pi)
interlaces ♣P 1

1 ,♣P 1
2 ,♣P 1

3 ,♣P 1
4 .

Proof: For j = 1, 2, we use the confinement test to check that

hi(♣P j
i ) ⊂ ♠Y 1

for i = 1, 2 and j = 1, 2. Next we check that ♠Y 1 ⊂ ♣P 1 ∪ ♣X. (This is just
a relation between polygons.) Finally, we use the exclusion test to check that hi
maps both horizontal edges of ♣P j

i outside the quadrilateral ♠Z, one above and
on below. Since this works for ♣P 1

i and ♣P 2
i , it works for their union, ♣Pi. (The

above/below choice can’t switch between the two halves, by continuity.) �

Lemma 14.4. For i = 3, 4, we have hi(♣Pi) ⊂ ♣P 2 ∪♣X. Moreover, hi(♣Pi)
interlaces ♣P 2

1 ,♣P 2
2 ,♣P 2

3 ,♣P 2
4 .

Proof: The proof is as in Lemma 14.3 except that we use ♠Y 2 in place of ♠Y 1.
�

This shows that F : ♣P → R2 is a quasi-horseshoe, and completes the proof
of Theorem 14.1.

14.3. The Invariant Cantor Band

The rest of the chapter is devoted to proving Theorem 1.6. Here is the result
stated again. In this result, JC is the Cantor set from Theorem 1.5.

Theorem 14.5. J contains a measure 0 forward-invariant Cantor band JA
such that

J = JC ∪
∞⋃

k=0

H−k(JA).

JA is an open subset of J in the subspace topology. The action of H in a neigh-
borhood of JA is the 10-fold covering of a quasi-horseshoe.

In this section we define JA and show that it is a measure 0 Cantor band. Let
F : ♣P → R2 be the quasi-horseshoe from Theorem 14.1. Let ♥A be the Cantor
band guaranteed by the results in §6.5. Every point of ♣P −♥A is pre-convex and
♥A has measure 0.

The set ♣P lies in the interior of the fundamental domain T and above the
line y = φ2. For this reason, the restriction B−1 : ♣P → R2 is a diffeomorphism.
Hence B−1 is a diffeomorphism in a neighborhood of ♣P .

Recall that P is the space of projective classes of pentagons. The Gauss group
Γ acts on P as a group of diffeomorphisms. We define

(14.5) JA =
⋃

γ∈Γ

γ ◦B−1(♥A).

JA is the union of 10 pairwise disjoint Cantor bands of measure 0. Hence JA has
measure 0.
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14.4. Covering Property

In this section we show that the action of the projective heat map H in a
neighborhood of JA is a 10-fold covering of a quasi-horseshoe. Mostly, the proof
just amounts to saying what we actually mean. The set

(14.6) U = ΓB−1(♣P ) = B−1Γ♣P
is a Γ-equivariant neighborhood of JA in P. The map B : U → Γ♣P is a diffeo-
morphism, by symmetry and by the remarks above aboutB being a diffeomorphism
in a neighborhood of B−1♣P . The neighborhood U has 10 components, each dif-
feomorphic to the topological disk ♣P . We let π : U → ♣P be the composition of
B with the quotient map from Γ♣P to ♣P .

By construction, π is a 10-fold covering map that carries each H orbit in JA
to an F -orbit in ♥A. This is the second point of Theorem 1.6.

Remark: The orbit-respecting property is also true through out all of U , and
not just on JA, but we lose the covering property as soon as the point exits Γ♣P .

14.5. Subspace Property

In this section we prove that JA is an open subset of J in the subspace
topology. Let N be the space of nonconvex pentagon classes. We have J ⊂ N by
Theorem 1.3. Given p ∈ N , there is a point q ∈ T such that q = B(γ(p)) for some
γ ∈ Γ. We have seen in §10 that T is a fundamental domain for the action of Γ on
B(N ). We call q an associate of p.

Lemma 14.6. No associate of a point in J is preconvex.

Proof: Recall that C is the space of convex projective classes. Suppose q ∈ T is a
preconvex associate of p ∈ J . Then there are primary elements h1, ..., hm so that

B−1hm...h1(q) ∈ C.
The map on the left side is defined and finite in a neighborhood Uq of q and maps

this entire neighborhood into C. Since B−1 is defined and finite at q, we can choose
Uq small enough so that B−1 is also defined and finite on Uq.

Say that p ∈ R2 is N -good if every word of length N in B,B−1, G,R,H is
well defined and finite on p. The set of N -good points is open dense for all N .
Choose some constant N much larger than n and approximate q by an N -good
point q′ ∈ Uq. If we choose Uq small enough then p′ = B−1(q′) is so close to one of
the points in Γ(p) that Hn(p′) ∈ N . Since q′ is N -good, we have

B−1hm...h1(q
′) = γHm(p′)

for some γ ∈ Γ. But the left side is in C and the right side is in N . This is a
contradiction. �

Choose an arbitrary p ∈ JA. We just need to show that there is some small
open set U of P such that U∩J = U∩JA. By symmetry, we can take p ∈ B−1(♥A)
and U ⊂ B−1(♣P ). Let q ∈ J ∩∆. The point p = B(q) ∈ ♣P is associated to q.
Hence p is not pre-convex, by Lemma 14.6. Since q ∈ ♣P and q is not pre-convex,
we must have q ∈ ♥A. Hence p ∈ JA.
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14.6. Attracting Property

To finish the proof of Theorem 1.6 we establish the following equation.

(14.7) J = JC ∪
∞⋃

k=0

H−k(JA).

Here JC is the Cantor set from Theorem 1.5. Equation 14.7 is equivalent to the
statement that every point in J − JC is mapped into JA by some power of H.

This result relies on two technical results. The first technical result is similar
in spirit to Lemma 14.6. In particular, it uses the notation of associate points
defined in connection with Lemma 14.6. We say some words about the first of
these lemmas in advance of stating the lemma, to help explain what it means.
Suppose we have some subset V ⊂ R2 and we want to decide when some high
power of H maps a point of J into V. We suppose that B is a diffeomorphism
from an open neighborhood of V to an open neighborhood of V which carries V to
V . We want to transfer our knowledge of the action of the semigroup S on V back
to V. Our result uses the notation just established.

Lemma 14.7. Suppose p ∈ J , and q is an associate of p. If h(q) ∈ V for some
h ∈ S, then there is some γ ∈ Γ and some m such that γHm(p) ∈ V.

Proof: Since J is Γ-invariant, as is the notation of associates, we can assume
without loss of generality that q = B(p). If q ∈ V there is nothing to prove.
Consider the case when q does not lie in V . In this case, h is some nontrivial
composition of m primary elements h1, ..., hm. We have

hm...h1(q) ∈ V .

Here h is defined and finite in a neighborhood of q.
To steamline the proof, we write a ∼ a′ if a and a′ are a, a′ ∈ R2 are extremely

close. As in Lemma 14.6, we choose N much larger than m and let p′ be an N -good
point with p ∼ p′. By continuity,

B−1h(q) ∼ B−1h(q′) = γHm(p′) ∼ γHm(p).

Letting p′ → p we get B−1(q) = γHm(p), the desired conclusion. �

Here is the first corollary of Lemma 14.7.

Lemma 14.8. The associate of a point in J is not pre-bad.

Proof: Let p ∈ J be the point and let q ∈ T be an associate point. In Lemma
14.7 we take V = p ∪ q, the points from Theorem 13.1. We have

(14.8) B−1(p) = (1, 1), B−1(q) = (ψ,ψ), ψ =
1 +

√
13

2
.

We take
V = {(1, 1)} ∪ {ψ,ψ}.

By Lemma 14.7, we see that γHm(p) ∈ V for some γ ∈ Γ and some m. But then
Hm(p) lies in the Γ orbit of V. But no point in the Γ orbit of V has a well-defined
orbit. Hence p does not have a well defined orbit. But all points in J have well-
defined orbits, by definition. This is a contradiction. �
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Now we establish Equation 14.7. Let p ∈ J − JC. We know that p has some
associate point q ∈ T . There are 3 cases.

Case 1: Suppose q 6∈ D. Theorem 13.1 tells us that q is either pre-convex or
pre-♣P or pre-bad. Lemma 14.6 says that q is not pre-convex. Lemma 14.7 says
that q is not pre-bad. Hence q is pre-♣P . Taking V = ♣P in Lemma 14.7 we see
that some forward iterate of p has an associate in ♣P . So it suffices to assume that
q ∈ ♣P . Since q is not pre-convex, q ∈ ♥A and p ∈ JA. This completes the proof
when p has an associate that is not in D.

Case 2: Suppose q ∈ D. From the work in §6.2 and §12.5 we have the following
situation.

• The Cantor set JC is the nested intersection of the sets K(n). Here K(n)
consists of 6n disjoint disks, each containing 6 disks of K(n+ 1).

• K(0) = D is the big disk we discussed at length in §12.2.
• K(1) ⊂ D1 ∪ ... ∪D6, the 6 disks discussed in §12.3.
• H maps K(m + 1) to K(m) and H maps each point of D −K(1) into

R2 −D provided H is defined at this point.
• The point s is the special point defined in connection with Figure 12.4,

and mentioned in Lemma 12.4.

Replacing p by a suitable image of p under the Gauss group, we can assume
that q = B(p). Since p 6∈ JC, there is somem ≥ 0 such that q ∈ K(m)−K(m+1).
Since all the primary elements are defined and finite on the sets K(1),K(2), ..., we
see that Hm(q) ∈ D −K(1). Replacing p by Hm(p), we can assume that

(14.9) q = B(p) ∈ D −K(1).

There are now two sub-cases.

Case 2A: Suppose q ∈ ⋃
Dk − K(1). Since all primary maps are defined and

finite on
⋃
Dk we have

(14.10) H(q) ∈ R2 −D.

Since D is Γ-invariant, we see that H(p) cannot have an associate in D. Replacing
p with H(p) we reduce to Case 1.

Case 2B: If q 6∈ ⋃
Dk. Then q ∈ D − ⋃

Dk. We have scramble here because
H might blow up at q. We aim to apply Lemma 12.4. Since p has a well-defined
H-orbit and q = B(p), and B conjugates H to H, the condition q ∈ Γ(s) would
force p ∈ Γ(s), where s = B−1(s). But points in Γ(s) do not have well-defined
orbits. In short, q 6∈ Γ(s).

By Lemma 12.4, there is some primary element h, well defined and finite at q,
such that

(14.11) h(q) ∈ R2 −D.

Any associate of H(p) is in the same Γ orbit as h(q). But, since D is Γ-invariant,
this means that H(p) cannot have an associate in D. Replacing p by H(p) we again
reduce to Case 1.

This completes the proof of Equation 14.7. Our proof of Theorem 1.6 is done.
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CHAPTER 15

Sketches for the Remaining Results

In this chapter we will provide detailed sketches for the structural results in
§1.5. Some readers would probably appreciate getting an account of the ideas
behind the proofs without having to wade through the details. Overall the ideas
are pretty simple, once the complicating details are stripped off. We persist in the
practice of prepending a ♥ to any subset of the Julia set in B-coordinates.

15.1. The General Setup

Before we get started with the sketches, we recall the general setup.
Our basic map is H = BHB−1 where H is the projective heat map from

Equation 1.1 and B is the change of coordinates map from Equation 1.2. We
consider the action of H on the manifold M obtained by blowing up (R ∪∞)2 at
the three points

(φ2,−φ4), (−φ4, φ2), (φ6, φ6).

The Gauss group Γ acts as a group of diffeomorphisms of M . Here we have
Γ = BΓB−1, where Γ is the order 10 group discussed in §3.8. The group Γ is
generated by R(x, y) = (y, x) and G = BGB−1, where G is the Gauss recurrence
defined in Equation 3.16. We recall the notation

(15.1) Hijk = RiGiHk

The elements Hij1 are called the primary elements .
Let T be the fundamental domain from Part 2, the triangle with vertices

(0, 0), (φ6,−φ4), (φ6, φ6).

A fundamental domain for the action of Γ on M is obtained by blowing up T at
the vertex (φ6, φ6). (The other blow-up points do not lie in T .) The result is a
quadrilateral, in which 3 of the sides are Euclidean line segments and the fourth
side is a segment of the exceptional fiber lying over the (φ6, φ6). We call this
fundamental domain T as well. See Figures 10.4 and 10.5.

We let ♥J denote the closure of the set of points in M which have well-defined
H orbits and which do not converge to (∞,∞), the point representing the regular
class. The set ♥J is the Julia set . It is the main object of study in this part of the
monograph.

First we recall some important subsets we have already identified. D is the
big disk used in the proofs of Theorem 1.5 and 1.6. So far, we have identified a
Cantor set ♥JC ⊂ ♥J ∩D and the Cantor band ♥JA ⊂ ♥J −D. Here ♥JC and
♥JA are the images under B of the sets JC and JA from Theorems 1.5 and 1.6
respectively. We also have the smaller Cantor band ♥A = ♥JA ∩ T . The Cantor
band ♥JA is the Γ orbit of ♥A.
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15.2. The Solenoid Result

Here we sketch the proof of Theorem 1.10, which says that ♥J contains a set
which, when blown up at all its cone points, is homeomorphic to the 5-fold cover
of the 2-adic solenoid. The set in Theorem 1.10 is ♥J − D together with the 5
vertices of D. The details are done in §16 and §17.

Let F : ♣P → R2 be the quasi-horseshoe from Theorem 14.1. The domain ♣P
of F is the union of 8 quadrilaterals shown in Figure 13.1. The Cantor band ♥A
consists of those points x ∈ ♣P such that Fm(x) ∈ ♣P for all n = 1, 2, 3, ....

The domain ♣P is flanked on either side by some of the other pieces of the
partition, namely the pieces ♣I,♣J,♣K,♣L. These pieces are further subdivided
– e.g. ♣L = ♣L1 ∪ ♣L2. Let ♣P ∗ denote the union of all these pieces, including
♣P . Thus ♣P ⊂ ♣P ∗. We have associated primary maps to each of the pieces in
♣P , and we now define F : ♣P ∗ → R2 simply by letting the associated primary
element act on each piece. The set ♣P ∗ comes in 4 rows, and the same primary
element acts in each row.

We define

(15.2) ♥A∗ = F−1(♥A) ∪ F−2(♥A).

It turns out that ♥A∗ is precisely the set of points x ∈ ♣P ∗ so that Fn(x) ∈ ♣P
for all n > 2. The remaining points in ♣P ∗ are preconvex. In other words

(15.3) ♥A∗ = ♥J ∩ ♣P ∗.

We analyze ♥A∗ by looking at the properties of the differential dF . In the next
section we will go in to more detail on this point.

It turns out that ♥A∗ is obtained from ♥A just by extending the strands of
♥A until they hit the boundary of T on either side. Figure 15.1 shows a schematic
picture. ♣P is the shaded region. ♣P naturally comes in 4 layers. The pieces of
♣P ∗ are not drawn.

r

Figure 15.1: ♥A and ♥A∗

We establish the following structure:



15.2. THE SOLENOID RESULT 125

(1) The strands of ♥A∗ hit the right edge ∂1T of T transversely in a Cantor
set ♥A∗

R.

(2) The top half of ♥A∗ pinches down to a point q on the left boundary ∂0T
of T .

(3) The top half of the bottom half of ♥A∗ pinches down to a point r on the
left boundary of T .

(4) The bottom half of the bottom half of ♥A∗ intersects the partition piece
♣O in a Cantor set ♥A∗

L.

Let h = H101. We already know that h : ♣O → T is expanding. We check
that h(♥A∗

L) = ♥A∗
R. We set ♥A∗

k = h−k(♥A∗
0) for k = 0, 1, 2, .... The right ends

of ♥A∗
k+1 match the left ends of the bottom fourth of ♥A∗

k for all k. Figure 15.2
shows a schematic picture of how these pieces fit together. In Figure 15.2, the
biggest dark piece is ♥A∗

0. The top big dark triangle represents the top half of
♥A∗

0. The second big dark triangle represents the top half of the bottom half of
♥A∗

0. The big dark rectangle represents the bottom half of the bottom half of ♥A∗
0.

The other pieces are interprested similarly.

(1,1)

q

r

h   (q)

h   (r)

Figure 15.2: ♥A∗
0 ∪ ... ∪ ♥A∗

6 shown schematically.

A Cantor cone is the cone on a Cantor set. We will show that
⋃♥A∗

k is an
infinite union of Cantor cones having their cone points on the left edge of T . The
set ♥J ∩T −♣Q is this union, together with one half-open arc that goes along the
bottom. The endpoint (1, 1) of this arc is a vertex of D. When we blow up all the
cone points and adjoin (1, 1), we get a product S × [0, 1] where S is a Cantor set
and p is a single deleted point. The action of Γ induces some identifications on the
ends of S × [0, 1]. When we check the identifications we find that the quotient is
the BJK continuum. When we take the 10-fold cover we get the 5-fold cover of the
2-adic solenoid.
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15.3. Local Structure

Here we sketch the proof of Theorem 1.8, which says that ♥J is the union of a
Cantor set (namely ♥JC), a countable collection of Cantor bands, and a countable
collection of cone points. The details are done in §18.

There is one notational remark we make before getting started. The disk D

is a subset of M but none of the exceptional fibers of M intersects D. For this
reason the blowdown map π : M → (R ∪∞)2 is a diffeomorphism on D. For this
reason we will often confuse D and π(D). They are essentially the same set.

Call a point of ♥J a band point if it has a neighborhood which intersects ♥J in
a Cantor band. Our work in the proof of Theorem 1.10 shows that ♥J−D consists
entirely of cone points and band points. We just have to show that ♥J ∩D−♥JC
consists entirely of cone points and band points.

As a first step, we will show that the set

(15.4) π(♥J) ∩R2 −D

consists of cone points and band points. The set in Equation 15.4 is almost the
same set as the set ♥J ∩π−1(R2)−D. The only difference is that we have to make
sure that nothing strange happens when we blow down the exceptional fibers.

Once we know that the set in Equation 15.4 consists entirely of cone points and
band points, we will use the maps and partition pieces that we used in the proof of
Theorem 1.5. We will have three general situations. The first situation is that there
is some partition piece ♣X and some primary map h : ♣X → R2 −D which is a
local diffeomorhism. In this case, we can conclude that ♥J ∩ ♣X consists entirely
of cone points and band points, because

h(♥J ∩ ♣X) ⊂ π(♥J) ∩R2 −D.

The second situation we have is like the first, except that h is not a local
diffeomorphism. In these cases, we will find a foliation of ♣X by straight line
segments such that h maps each segment to a non-singular curve that is transverse
to any of the arcs in ♥J contained in h(♣X). In this situation we will also be able
to conclude that ♥J ∩ ♣X consists entirely of cone points and band points. We
will analyze this situation using the cone test from §11.

We can almost get away with just the first situation, but we run out of luck
when we deal with the piece ♣S1 from the proof of Theorem 1.5. We will have to
divide ♣S1 into 7 pieces and treat each one separately. The two out of 7 which
require the second situation are painful to deal with.

The methods above take care of every point of ♥J −♥JC except for 5 special
points in a single Γ orbit. By symmetry, we just have to analyze the local structure
around one more point. We do this at the end. Again, it is rather painful. In short,
we prove Theorem 1.8 by pulling back the information we get from Theorem 1.10
in an inductive way.

Our methods establish the stronger fact that all the strands of ♥J are C1-arcs
and many of the cone points are what we call basic. By this we mean that the
tangent vectors of the strands make sense even at the cone point, and one can
continue the strands through the cone point uniquely in a C1 way. In other words,
when we blow up at the cone point, the subset of ♥J near the point becomes a C1

Cantor band. These basic cone points come from pulling back the ones in ♥J −D.
This C1 structure is a key ingredient in the proofs of the remaining results.
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15.4. The Embedded Graph

Here we sketch the proof of Theorem 1.9, which says that ♥J contains a home-
omorphic copy of the infinite graph G suggested by Figure 1.5. The details are done
in §19.

Our construction refers to Figure 15.3, which shows a schematic picture. The
outer grey pentagon represents the disk D. The black vertices are the 5 fixed points
of H which are neither the regular nor the star-regular class. (We call these the
irregular fixed points.) The 6 inner grey pentagons represent the 6 disks D1∪...D6.
The black pentagon represents a set Γ(Y ), which we describe below. The shaded
triangle represents the portion contained in T .

Our argument has 3 main parts. In the first part we isolate a single embedded
arc X ⊂ ♥J . This is the arc connecting points a1 and a2. Figure 15.3. We call X
the generator .

Figure 15.3: The arc X and the loop Γ(Y ).

In the second part, we look at the closure of a certain infinite union of preimages
of X under elements of our semigroup. We call this set Y . We show that Y is
an embedded arc in ♥J which connects the two irregular fixed points of H, and
that the orbit Γ(Y ) is an embedded loop. In §20 we will show that this loop is
canonical, in the sense that it bounds that smallest disk that contains ♥J ∩D.

In the third part, we consider the 6 pre-images of Γ(Y ). The region bounded by
Γ(Y ) and these 6 smaller loops is topologically a disk with 6 smaller disks removed.
We find a collection of 30 arcs running through this topological disk in a pattern
that matches the left side of Figure 1.5. We really just find a certain collection Z

of 3 arcs. The remaining arcs are in the orbit Γ(Z). We regognize Γ(Y ∪ Z) as
a copy of the seed for G shown on the left side of Figure 1.5. We get G itself by
taking all the preimages under H.
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15.5. Path Connectivity

Here is a sketch of our proof of Theorem 1.11, which shows that ♥J is path
connected. The details are done in §20.

We already know that the closure of ♥J−D is path connected. Let ♥G denote
the homeomorphic copy of the graph G from Theorem 1.9. The set ♥G is also path
connected, and it meets the closure of ♥J − D at the 5 irregular fixed points of
H. So, to finish the proof, we just have to show that every point of ♥J ∩D can
be connected to a point of ♥G by a path.

As a first step, in §20 we show that the disk L bounded by Γ(Y ) contains
♥J ∩ D. (We already mentioned this above.) This result is nice to know on its
own, and also it helps eliminate some of the places where additional connected
components of ♥J might be hiding. After we know that ♥J ∩ D ⊂ L, we know
that any additional connected component must lie in L.

We will see that we just have to consider points inside L and outside the
preimates of H−1(L). Every point of ♥J in this set is either a cone point or a
band point. In either case we just follow along a strand of ♥J which contains the
point and we prove that the path we take must end of ♥G.

Here we explain the main idea of the approach. Suppose we have some path
component Ψ which is not connected to ♥JC. We choose some C1 band point in
Ψ and continue the strand containing it in both directions. We will show that we
can always continue the strand through cone points. This gives us an extended
strand β which is either a C1 loop or a C1 bi-infinite path. At the same time, we
will always have a primary element h : β → R2 such that h(β) ⊂ ♥J −D. We will
show that ♥J − D has no C1 loops and also that no bi-infinite path in ♥J − D

can be a subset of R2. This gives a contradiction: h(β) cannot exist.

15.6. The Postcritical Set

Here we sketch a proof that the map H is not post-critically finite. We show
this for H instead, which is equivalent. We work in the manifold M . Unlike the
sketches in previous chapters, these are all the details we will supply.

The critical set is the set Y ⊂ R2 where dH is singular. Since the elements of
Γ act on M by diffeomorphisms, the critical set in M is the same for every primary
map, including H. We look carefull at the partition piece ♣K2 which lies to the
left of the set P containing the quasi-horseshoe.

Lemma 15.1. Y contains a connected smooth arc which intersects more than
one strand of ♥J ∩ ♣K2.

Proof: We work with the primary element h = H041. This map is defined on all of
♣K2 and maps it into R2 avoiding the blowup points. So, we can decide whether
dH is singular just by treating h as a smooth map from a subset of R2 into R2.
To prove what we want, we find 2 vertical line segments ν+, ν− ∈ ♣K2 such that

• det(dh) < 0 on ν− and det(dh) > 0 on ν+.
• One endpoint of ν± lies above some of the strands of ♥A and the other

endpoint lies below the same strands.

One can take ν+ to be the right edge of ♣K2 and ν− to be the bottom 3/4 of the
left edge of ♣K2. �



15.7. NO RATIONAL FIBRATION 129

Our smooth arc of Y cannot be everywhere tangent to ♥J because it intersects
more than one strand. So Y contains a smaller smooth arc which intersects a strand
of ♥J transversely.

The forward image of Y under a suitable composition of primary elements,
specifically H2

111, is a continuous curve which intersects the Cantor band ♥A in
infinitely many arcs. The argument used in Lemma 6.7 shows that, for any n, some
forward image of Y contains union of n smooth arcs Y 1, ...,Y n with the following
properties.

(1) Each Y j stretches entirely across ♥A.
(2) Each Y j is timelike.
(3) For some strand σ, not the top or the bottom strand, the intersection

points Y 1 ∩ σ, ...,Y n ∩ σ are all distinct and within 1/n of each other.

In this case, we can find a continuous family of parallel lines (all nearly parallel to
σ and near the intersection points) which each intersect the forward image of Y in
n distinct points. But then, by Bezout’s Theorem, there is no upper bound on the
degree of Y . This makes it impossible for Y to lie in a finite union of algebraic
curves.

15.7. No Rational Fibration

Here we sketch a proof that there is no nontrivial pair (f, h) where f : R2 → R

and h : R → R are rational and fH = hf . Again, these are all the details on this
we are going to provide.

We will argue by contradiction. Suppose that f : R2 → R is such a map. The
main property we will use is that H maps fibers of f into fibers of f . preserves the
fibers of f .

♥J −D has a decomposition into C1 arcs and cone points. Suppose first that
f is constant along the C1 arcs of ♥J −D.

Lemma 15.2. f takes on the same value on any two C1 arcs of ♥J which meet
at a cone point and have the same tangent line at the cone point.

Proof: Consider the behavior of f at a cone point (x0, y0). In local coordinates
we have

(15.5) f(x, y) =
P0(x− x0, y − y0) + P1(x− x0, y − y0)

Q0(x− x0, y − y0) +Q1(x− x0, y − y0)

Where P0 and Q0 are homogeneous polynomials obtained by collecting the lowest
order terms. P1 and Q1 are the higher order terms. Since f is constant along the
C1 arcs of ♥J −D, we see that f has uncountably many well defined directional
limits as (x, y) → (x0, y0). Not all the directional limits can be 0 because then f
would be identically 0. This situation forces P0 and Q0 have the same degree. So,
if (x′, y′) is chosen so that (x0, y0) is the midpoint of the segment joining (x, y) to
(x′, y′), we have

(15.6)
P0(x

′ − x0, y
′ − y0)

Q0(x′ − x0, y′ − y0)
=
P0(x− x0, y − y0)

Q0(x− x0, y − y0)
.

So, f(x, y) = f(x′, y′) up to terms which vanish when these points converge to the
cone point. �
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The previous result tells us that f is constant on one of the infinite C1 paths
mentioned above. These paths are dense in ♥J−D, and this forces f to be constant
on ♥J −D. But then f is constant.

So, f is not always constant along the arcs of ♥J −D. But then there is some
level curve which, at least in some small open set, is smooth and transverse to ♥J
at some point of ♥J − D. Pushing forward by H finitely many times, we can
find a level curve λ which is transverse to ♥JA. Suppose for convenience that λ is
transverse to ♥A. (It is more convenient to work with ♥A rather than one of the
other Γ translates which comprise ♥JA, but not essential to the argument.)

Now we argue as in §15.6. When we push forward our transverse curve by a
high power of H, it intersects the same strand of ♥A many times, transversely.
This makes the image of the curve have arbitrarily high degree. On the other hand,
the push-forward of the curve supposedly is just some other level curve for the
fibration. This is a contradiction.



CHAPTER 16

Towards the Solenoid

16.1. The Four Strips

The goal of the next 2 chapters is to prove Theorem 1.10. We follow the sketch
given in §15.2. In this chapter we produce the set ♥A∗ from §15.2.

F

H

G I
J

Figure 16.1: Figure 13.5 repeated.

Figure 16.1 shows a repeat of Figure 13.5. This figure is central to our analysis.
We organize the pieces shown in Figure 16.1 into 4 rows, as follows.

(1) ♣P ∗
k = ♣Lk ∪ ♣Kk ∪ ♣J1 ∪ ♣Pk ∪ ♣Ik for k = 1, 2.

(2) ♣P ∗
k = ♣Jk ∪ ♣Pk ∪ ♣Ik for k = 3, 4.

We call these 4 sets strips . We omit the points q and r from ♣P ∗ because they
play a special role in the constructions.

Define

(16.1) ♣P ∗ =

4⋃

i=1

♣P ∗
i .

131
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♣P ∗ is precisely the “Inner Layer” of pieces we considered in §13.3. As in §14, we
define

(16.2) h1 = H111, h2 = H041, h3 = H141, h4 = H021.

and we let F : ♣P ∗ → R2 be such that the restriction of F to ♣P ∗
i is hi. As in §14,

we adjust the vertices by a tiny constant so that the 4 strips are pairwise disjoint.
(We don’t move q or r however.) This avoids conflicts in the definitions on the
common boundaries.

Letting ♥A be the Cantor band corresponding to the quasi-horseshoe from
Theorem 14.1, we define

(16.3) ♥A∗ =

(
F−1(♥A) ∪ F−2(♥A)

)
∩ ♣P ∗.

First we study the structure of ♥A∗ and then we pull ♥A∗ back using inverse
powers of the primary element h = H101. When we are done, we will have have
our contable collection of Cantor cones.

16.2. Two Cantor Cones

16.2.1. The Right Half. We first study the restriction of F to ♣I. Say that
a Cantor product is a space homeomorphic to the product of a closed interval and
a Cantor set. A Cantor band is what you get when you remove all the endpoints
of the strands from a Cantor product.

Lemma 16.1. ♥A∗∩♣I is a Cantor product whose strands connect one vertical
side of ♣I to the other. All the stands in ♥A∗∩(♣I∪♣P ) have slope in the interval
[−1/2, 1/2].

Proof: We now make 4 observations.

(1) We use the area test to check that F is a local diffeomorphism on ♣I.
(2) From the work in §14, the set F (♣I) is contained in a quadrilateral ♠Y1

which interlaces ♣P . See Figure 14.1.
(3) From the work in §14, the set F (♣I)−♣P consists of pre-convex points.
(4) We use the exclusion test to check that F maps the top and bottom edges

of each piece of ♣I outside the quadrilateral ♠Z. See Figure 14.1. Since
♣P ∗ ⊂ ♠Z we see that F stretches each piece of ♣I completely over ♣P ∗.

Figure 16.2 shows a schematic picture for the top piece ♣I1. The picture is similar
schematically for the other 3 pieces.

Figure 16.2: A schematic picture of ♣I1 and F (♣I1) and ♣P .
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From Item 1, we conclude that F−1(♥A) ∩ I ′ is locally a Cantor band. Here
I ′ is some small open set which contains ♣I. (We consider I ′ so we don’t have to
talk specially about the vertical sides of ♣I.) From Item 2, we conclude that each
strand of F−1(♥A) ∩ ♣I can only exit ♣I through a vertical side of ♣I. From
Item 3 and the forward invariance of ♥A, we conclude that F−2(♥A) ⊂ F−1(♥A).
Hence F−1(♥A) ∩ ♣I = ♥A∗ ∩ I. From Item 4 we conclude that no strand of
♥A∗ ∩ ♣I intersects the top or bottom of a piece of ♣I. From all this we see that
♥A∗ ∩ I ′ is a Cantor band. Hence ♥A∗ ∩ ♣I is a Cantor product which has its
endpoints on the vertical sides of ♣I.

For the claim about the slopes, we use the cone test to show that

(16.4) dF (∨(1/2,−1/2)) ⊂ ∨
throughout ♣I ∪♣P . Since the strands of ♥A are spacelike with respect to ∨, this
proves what we want. �

16.2.2. The Bottom Left. Now we see what F does to ♣J3 and ♣J4. Note
that ♣J3 has r as a vertex, and this point requires special treatment.

Lemma 16.2. ♥A∗∩♣J4 is a Cantor product whose strands connect the vertical
sides of ♣J4.

Proof: The proof is just like we gave above, except that in place of Item 2 we
use the statement that F (♣J4) is contained in a quadrilateral which interlaces the
polygon ♣P ∪ ♣I, as shown schematically in Figure 16.3. �

F

Figure 16.3: A schematic picture of ♣J4 and F (♣J4) and ♣P .
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Lemma 16.3. The closure of ♥A∗ ∩ (♣J3 − r) is a Cantor cone whose strands
connect the right vertical side of ♣J3 to the cone point r

Proof: The proof is again the same except that we need to be clear what we mean
by the top and bottom sides. We declare the top side of ♣J3 to be the single side
which connects r to the vertical side of ♣P . We declare the bottom “side” of ♣J3
to be the union of the other 2 sides which connect r to the vertical side of ♣P .
Figure 16.4 shows what we mean. With this definition in place, we check in the
same way that F stretches ♣J3 over ♣P ∗ in the same sense as F stretches F4 over
♣P , except that the map is not defined at r. The same arguments as above now
finish the proof. The strands must limit on r because they cannot exit the top or
bottom sides, and these sides both limit on r. �

r

bottom
Figure 16.4: The piece ♣J3

16.2.3. The Top Left. Finallly, we see what F does to the pieces

♣L,♣K,♣J1,♣J2
in Figure 16.1. Our luck runs out because dF is sometimes singular in these pieces.
See the discussion in §15.6. We will use a different trick.

Lemma 16.4. Let ♣X be one of ♣J1,♣J2,♣K1,♣K2. Then ♥A∗ ∩ ♣X is a
Cantor product whose strands connect the vertical sides of ♣X.

Proof: We check that F stretches ♣X over ♣P and that F (♣X) interlaces one of
the two columns of squares in ♣P . Since ♣X has two opposite vertical edges, we
can consider the foliation of ♣X by vertical line segments. Let σ be such a segment.
We use the cone test to check for each p ∈ ♣X that dFp(0, 1) never has slope in
(−1, 1). That is, dFp(0, 1) is not spacelike. Since ♥A consists of spacelike curves,
we see that F (σ) is a smooth nonsingular arc which passes through the top and
bottom of ♣P and is always transverse to ♥A. Hence F−1(♥A) ∩ ♣X is a Cantor
set. Since the strands of ♥A are continuously differentiable and dFp(0, 1) varies
smoothly we see by transversality that the intersection σ∩♥A∗ varies continuously
with σ. This shows that ♣X ∩♥A∗ is a Cantor product whose strands connect one
vertical side of ♣X to the other. �
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Lemma 16.5. Let ♣X be either ♣L1 or ♣L2. The closure of ♥A∗ ∩ (♣X − q)
is a Cantor cone whose strands connect the vertical side of ♣X to q.

Proof: This has the same proof as for the previous result. This time ♣X is a
triangle with a vertical side, a top side, and a bottom side. We use the weak cone
test this time. �

Our next result is essentially an application of transversality.

Lemma 16.6. The strands of ♥A∗−q−r are C1. That is, they are continuously
differentiable.

Proof: The strands of ♥A∗ ∩♣I are C1 because the strands of ♥A are C1 and F
is a local diffeomorphism on ♣I. Hence the strands of ♥A∗ ∩ (♣P ∪ ♣I) are C1.
This remains true even when they cross the interface between ♣I and ♣P , because
F is smooth in a neighborhood of ♣I ∩ ♣P .

The strands of ♥A∗ ∩ ♣J3 and ♥A∗ ∩ ♣J4 are C1 because F is a local dif-
feomorphism on these pieces, and the strands in the range ♥A∗ ∩ (♣P ∪ ♣I) are
C1.

For the remaining pieces, those on the top left, ♣Ji and ♣Ki and ♣Li for
i = 1, 2, we need a different argument. For each remaining piece we have shown
in the preceding lemmas that dF (0, 1) is timelike. We have also shown that the
the strands of ♥A are spacelike. In other words, the smooth map F is transverse
to each strand of ♥A in the sense of [GP, §1, Sect. 5]. The theorem about
smooth transversality at the end of this section has the same proof when the target
manifolds – in our case the strands of ♥A – are C1, and in this case the conclusion
is that the inverse images of these strands are C1 arcs.

The only thing left to examine is that happens at the vertical interfaces be-
tween the two pieces. In each case, we are using the same map on each side of the
interface, and the map extends to be smooth in a neighborhood of the interface.
So, the strands of ♥A∗ are C1 even where they cross from one piece to the next. �

16.3. Using Symmetry

Taking a look at Figure 16.1 and comparing the things we proved about ♥A∗

we see that all the pieces of ♥A∗ fit together to make a union of 2 Cantor cones
and a Cantor band, as shown in Figure 16.5. In the figures below we depict the
Cantor cones and Cantor products as solid objects. The Cantor product connects
the right side of ♣I4 to the left side of ♣J4. The left side of ♣J4 is the same as the
right side of the piece ♣O from §13.4.

Lemma 16.7. Every point of ♣P ∗ −♥A∗ except q and r is preconvex.

Proof: From the work in the previous chapter, all points in ♣P have well defined
orbits, and all points in ♣P −♥A are preconvex. Every point in p ∈ ♣P ∗ − q − r

has the property that F 2(p) lies in the union of ♣P and pieces consisting entirely of
preconvex points. So, by definition, p is preconvex unless p ∈ ♥A∗. This establishes
our claim. �
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r

Figure 16.5: The set ♥A∗.

Lemma 16.8. ♥J −D is the Γ orbit of ♥A∗ ∪ (♥J ∩ ♣O)− {(1, 1)}.

Proof: Our analysis in §13 shows that every point of T − ♣O − ♣Q − ♣P ∗ is
preconvex, except for the points on the diagonal lying in the preimage of p and q.
All these exceptional points lie in ♣O. Combining this information with Lemma
16.7, we see that

♥J ∩ (T −♣Q) ⊂ ♥A∗ ∪ (♥J ∩ ♣O).

The set T −♣Q is not closed. It omits the two edges of ♣Q lying in the interior of
T . But all points on these edges lie in ♣F,♣M,♣N from §13. From the analysis
there, all these points are preconvex except (1, 1). So, ♥J ∩ (T − ♣Q) also lies in
♥A∗ ∪ (♥J ∩ ♣O) − {(1, 1)}. This lemma now follows from the fact that T is a
fundamental domain for the action of Γ. �
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Now we will describe the set ♥A∗∪(♥J∩♣O)−{(1, 1)}. Let h be the restriction
of the primary element H101 to ♣O. In Lemma 13.6, we showed that h is an
expanding map on ♣O which fixes the vertex (1, 1). Moreover,

(16.5) h(♣O) ⊂ T −♣Q ∪ {(1, 1)}.
Therefore

(16.6) closure(♥J ∩ (T −♣Q)) = ♥A∗ ∪ (♥J ∩ ♣O) = {(1, 1)} ∪
∞⋃

k=0

h−k(♥A∗).

We set

(16.7) ♥A∗
k = h−k(♥A∗).

Now we see how these pieces fit together.
Let ♣∂1O and ∂1T respectively denote the vertical edges of ♣O and T .

Lemma 16.9. h(♣∂1O) ⊂ ∂1T and ♥A∗ ⊂ h(♣O).

Proof: We check by direct calculation that h maps the vertical line x = φ2 into
the vertical line x = φ6. Since h(♣O − {(1, 1)}) ⊂ T , we have h(♣∂1O) ⊂ ∂1T ).
This establishes the first claim.

For the second claim, we also note that h(φ2, φ2) = (φ6, φ6), and that h maps
the diagonal edge of ♣O into the diagonal edge of T . Finally, we use the confine-
ment test to show that h maps the third edge of ♣O into the union ♣B ∪ ♣F .
These are pieces which lie beneath ♥A∗. See Figure 13.5. Hence h maps ♣O − r

completely over a region in T which contains ♥A∗. �

Note that ♥A∗ ∩ ♣∂1O and ♥A∗ ∩ ∂1T are both Cantor sets. Since h is a
homeomorphism from ♣∂1O into a segment σ ⊂ ∂1T which contains ♥A∗ ∩ ∂1T in
its interior, and since all other points on σ −♥A∗ are preconvex, we must have

(16.8) h(♥A∗ ∩ ♣∂1O) = ♥A∗ ∩ ∂1T .
Equation 16.8 tells us that h glues the left side of the Cantor product in ♥A∗ to
the right side of ♥A∗. Figure 16.6 shows what this looks like schematically.

Figure 16.6: How h glues the sides of ♥A∗

Pulling back by h, and using Equation 16.8, we see that the right side of ♥A∗
1

coincides with the left side of the Cantor product in ♥A∗. Moreover, the strands
in the union are C1 even at the points where they are glued together. The reason
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is that ♥J contains a C1 Cantor band ♥A∗∗ which contains a neighborhood of the
right ends of ♥A∗

0, and h−1(♥A∗∗) contains a neighborhood of the points where
♥A∗

0 and ♥A∗
1 are glued together.

Pulling back by h repeatedly, we get Figure 15.2. We repeat this picture here
for convenience.

(1,1)

q

r

h   (q)

h   (r)

Figure 16.7: ♥A∗
0 ∪ ... ∪ ♥A∗

6 shown schematically.

From this description, we see that the closure of ♥J ∩ (T − ♣Q), namely the
set in Equation 16.6, is a countable union of Cantor cones together with one arc.
The limit arc is the union of the point (1, 1) and all the bottom arcs of the sets
♥A∗

k. Figure 16.7 indicates this bottom arc. Every strand in sight is C1.

16.4. The Limiting Arc

We have persistently excluded the point (1, 1) from consideration. Here we
explain one of the difficulties with this point. Even though the strands of ♥A∗

k

converge to the limiting arc which runs along the bottom of Figure 16.7, the tangent
lines to these arcs along the diagonal do not converge. We will see in the next
chapter that the tangent lines to strands of ♥A∗

k converge to the line of slope −1
whereas the tangent line to the limiting arc at (1, 1) has slope +1. This fact derives
from the fact that (1, 1) is a fixed point of H and the differential dH the line of
slope 1 as its dominant eigen-direction. See §7.4.
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Figure 16.8: Near the limiting arc.

Figure 16.8 shows a schematic picture of the strands of ♥J near (1, 1), together
with their images under the reflection R. The limiting arc and its image under the
reflection R meet at a cusp. This is what Figure 16.8 shows. The reader can see a
much better picture using the program and zooming into the point (1, 1).





CHAPTER 17

The Solenoid

17.1. Recognizing the BJK Continuum

In this chapter we finish the proof of Theorem 1.10. We continue following the
outline given in §15.2. In the last chapter we showed that ♥J ∩ T −♣Q is a union
of countably many Cantor cones ♥S0,♥S1,♥S2, ... and a single half-open limiting
arc, ♥S∞. The point (1, 1) is the endpoint of ♥S∞. We note that T −D = T −♣Q.
We use these two sets indistinguishably.

Let R2
p denote the blowup of R2 at a point p. Let π : R2

p → R2 be the blow
down map. We call p ∈ ♥J a basic cone point if the strands of ♥J have well-
defined tangent vectors at p and if the lifted set ♥Jp in R2

p is a C1 Cantor band in

a neighborhood of the exceptional fiber π1(p).
We say that a line L through p skewers the Cantor cone if L is not tangent to

any of the strands of ♥J at p. In other words, the lift ♥Jp is disjoint from the point
in the exceptional fiber representing L. Below we will prove the following result.

Lemma 17.1. for each j = 0, 1, 2, ... the cone point of ♥Sj is a basic cone point,
and ♥Sj is skewered by the line of slope −1.

Let ♥Ŝj denote the Cantor product obtained by blowing up the cone point of
♥Sj . Let ♥S be the union of all these Cantor products together with the limiting
arc. We include the point (1, 1) in ♥S, and we topologize ♥S so that the limiting

arc ♥Ŝ∞ is the limit of the sets ♥Ŝj as j → ∞.
We identify ♥S with

(17.1) [0, 1]×Z2.

So that the point in ♥Ŝk correspond to those elements of Z2 with sequences of the

form 0...01, with k initial 0s. The arc ♥Ŝ∞ is [0, 1]× {0}.
Now we explain how Γ acts on our space ♥S. Note first that Γ acts as a group

of diffeomorphisms in a neighborhood of our union
⋃♥Sj . If we blow up finitely

many of the cone points, then the action of Γ extends to a group of diffeomorphisms
on the resulting space. If we blow up at all the cone points and eliminate the 5-
points in the orbit Γ(1, 1) – i.e. the accumulation set of the blow-up points – then
again Γ acts as a group of diffeomorphisms. By restriction, Γ acts as a group of
homeomorphisms on the space ♥S − Γ(1, 1), the space obtained by deleting the
5 special points from ♥S. But the space ♥S is just the 5-point compactification
of this “punctured space” and the action of Γ naturally extends to a group of
homeomorphisms on ♥S.

Now we analyze the quotient. ♥S/Γ and then we take the 10-fold cover. As in
Figure 10.3, let ∂0T and ∂1T respectively denote the diagonal and vertical sides of
T . See Figure 10.3.
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Recall the two involutions on Z2 defined in §6.7. The involution I0 reverses all
the digits after the first 1 is encountered. For instance,

I0(0010101110...) = 0011010001...

The involution I1 reverses all the digits.

Lemma 17.2. The action of R on ∂0T induces the action of the involution I0
from §6.7 on {0} ×Z2.

Proof: The element R fixes ∂0T pointwise and acts as a reflection. Hence R fixes
the cone point of ♥Sk and reverses the ordering on the strands of ♥Sk. That is, R
maps the tangent line to the top strand to the tangent line of the bottom strand,
and so on. Crucially, what makes this work is that, by Lemma 17.1, the line of
slope −1 through the cone point, which is preserved by R, skewers ♥Sk. So, the
involution does not fix any of the tangent lines to the strands. This shows that the

action of on the left endpoints of strands of ♥Ŝk induced by R is the same as the
action of I0 on the corresponding subset of {0} × Z2. Hence the action of R on
∂0T induces the action on ♥S∩∂0T corresponding to the action of I0 on {0}×Z2. �

Lemma 17.3. The action of H130 on ∂1T induces the action of the involution
I1 from §6.7 on {1} ×Z2.

Proof: A direct calculation, which we omit, shows that H130 stabilizes the vertical
edge ∂1T and reverses this edge, fixing the point (φ6, φ2). This is the white dot
shown on the right boundary component of ♣G in Figure 13.2. (Use the pointer
function of the computer program for a graphic demonstration of this.) Let ♥Σ0

denote the union of the right endpoints of ♥S0. Let ♥Σ1 denote the union of the
right endpoints of the remaining Cantor bands, and the right endpoint of ♥S∞.
The set ♥Σ0 lies above the piece ♣G and ♥Σ0 lies below ♣G. Hence ♥Σ0 lies
above (φ6, φ2) and ♥Σ1 lies below (φ6, φ2). Again, see Figure 13.2.

Since the only points in ∂1T in ♥J are those in the Cantor cone A∗, we see
that H130 an involution of a Cantor band neighborhood of ♥Σ0 ∪ ♥Σ1 and this
involution swaps ♥Σ0 with ♥Σ1, reversing the top to bottom order. Hence, the in-
volution induced by H130 on ♥S∩∂1T corresponds to the action of I1 on {1}×Z2.
�

From these two results, we recognize ♥S/Γ as the BJK continuum described
in §6.7.

17.2. Taking Covers

We continue with the notation from the previous section. We have just shown
that ♥S/Γ is the BJK continuum. Hence ♥S is a 10-fold cover of the BJK con-
tinuum. Looking at Figure 17.1, which shows ♥S schematically, we see that ♥S is
actually the 5-fold cover of the 2-adic solenoid (as opposed to some other 10-fold
cover of the BJK continuum.) This completes the proof of Theorem 1.10, modulo
the analysis of the cone points.
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Figure 17.1: The 10-fold cover

17.3. Connectivity and Unboundedness

Before we move on to the analysis of the cone points there is more we want
to say more about the structure of ♥J − D. These properties will be important
in our proof that ♥J is path connected. The following result is a precursor to our
theorem that ♥J is path connected.

Lemma 17.4. ♥J −D is path connected.

Proof: Let S denote the 5-fold cover of the 2-adic solenoid. Each maximal curve
in S is dense in S. Moreover, at most one direction of such a maximal curve can
encounter one of the special points corresponding to the vertices of the disk D. For
this reason, if we start with a point of ♥J −D we can follow it around in a C1 way,
through the cone points, until it lands in the Cantor cone ♥S0. But then we can
continue until we hit the cone point of ♥S0. Hence, every point of ♥J −D can be
connected to the point q, which is the cone point of ♥S0. �
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Lemma 17.5. Every infinite C1 path in ♥J − D exits R2. More strongly, a
C1 path in the closure of ♥J −D cannot go through 11 consecutive tiles in the set
Γ(T ) without exiting R2.

Proof: The element H020 maps R × {∞} to a connected curve which contains
the top vertex (φ6, φ6) of T and also a point on the bottom edge of T . Call this
arc α. Note that H030 = H−1

020. Every C1 arc of ♥J − C which cuts across the
fundamental domain T (i.e. enters on one side and leaves on another) must cross
α. Hence, any C1 arc of ♥J − C which cuts across H030(T ) must exit R2. Any
infinite C1 path of ♥J − D must cut across H030(T ), and indeed any C1 path
of ♥J −D which enters 11 consecutive tiles in Γ(T ) must cut across every tile in
Γ(T ), including H030(T ). �

17.4. The Canonical Loop

In this section we will isolate a particular closed loop in ♥J−D. This loop will
be important in the proof of Theorem 1.9. Even though the cover of the solenoid
has no closed loop, when we blow it down to ♥J − D we get a closed loop. Our
closed loop is not C1, however. There are no C1 loops in ♥J −D.

The loop we have in mind is the Γ orbit of two arcs in T . One of the arcs
connects (1, 1) to the vertical side of T . This is the arc we have been calling the
limiting arc. The other arc connects the point q to the vertical side of T . These
two arcs have little arrows pointing to them in Figure 17.1.

The Γ orbit of these two arcs is a topological circle which is C1 except at 10
points, namely the the Γ orbit of q and the vertices of D. The 5 cone points and
the 5 vertices alternate. The path has a “kink” at each cone point, and a “cusp”
at each vertex point. We call this loop the canonical loop.

17.5. Using Symmetry for the Cone Points

To finish the proof of Theorem 1.10 we prove Lemma 17.1. In this section we
reduce Lemma 17.1 to a simpler result. The cone points of our Cantor cones cone
in two infinite families.

(17.2) h−k(p), k = 1, 2, 3, ... h−k(q), k = 0, 1, 2, ...

Here

• p = (φ6, φ6) is a vertex of the triangle T . We call p the apex of T . This
is one of the 3 points we blow up to get the space M .

• q has a complicated formula, but q = B(ψ,ψ), where ψ = (1 +
√
13)/2.

• r = (φ2, φ2).

• The map h is the restriction of the primary element H101 = RH to the
piece P in the partition.

Lemma 17.1 is a consequence of the following result.

Lemma 17.6. The point p is a basic cone point for π(♥J) and the point q is a
basic cone point for ♥J . The lines of slope −1 through p and q are not tangent to
any of the strands of π(♥J) or ♥J respectively.



17.6. THE FIRST CONE POINT 145

Here π : M → (R ∪ ∞)2 is the blowdown map. The map h is an expanding
diffeomorphism in a neighborhood of the piece P , which contains the remaining
cone points. Moreover h(r) = p, and the remaining cone points are the pre-images
of q and r under j. Hence, all these points are basic cone points.

Since h commutes with the reflection R in the diagonal, the differential dh
maps lines of slope −1 to lines of slope −1. So, the line of slope −1 is never tangent
to one of the strands of our Cantor cones at a cone point. This proves Lemma 17.1
The rest of the chapter is devoted to proving Lemma 17.6.

17.6. The First Cone Point

In this section we analyze π(♥J) in a neighborhood of p. We will first study
how ♥J looks in a neighborhood of the exceptional fiber π−1(p) and then we will
blow down and see how π(♥J) looks in a neighborhood of p. We will flip back and
forth between the original coordinates and the B-coordinates.

We start with the original coordinates. Recall thatM is the manifold on which
the Gauss group Γ acts. M is obtained from (R∪∞) by blowing up at (1, 1), (∞, 0)
and (0,∞). From the formula

(17.3) H140(x, y) =

(
x,

y − 1

xy − 1

)
,

we see that H140 maps the exceptional fiber π−1(1, 1) to the vertical line x = 1.
Applying B we see that H140 maps the exceptional fiber π−1(p) to the vertical line
L which is the lift of x = φ6. Note that this vertical line contains an exceptional
point on π−1(p). In short, there is a diffeomorphism of M which carries the
intersection of ♥J with a neighborhood of π−1(p) to the intersection of ♥J with
a neighborhood of L. Figure 17.2 shows how (the finite points of) a neighborhood
of L projects into R2. Figure 17.2 also shows a line X whose lift to M misses this
neighborhood entirely.

Figure 17.2: A neighborhood of the line L and a line X whose lift misses it.
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Lemma 17.7. L intersects ♥J transversely in a Cantor set consisting entirely
of finite points.

Proof: L is the lift of the line extending the vertical edge ∂1T of T . In the
previous chapter we showed that ♥J ∩∂1T −{p} is precisely the Cantor set of right
endpoints of A∗. We also know that this intersection is transverse, by Lemma 16.1.

The set L−T is simply a boundary of the space C of convex classes and hence
does not intersect ♥J . See Lemma 9.8.

It remains to see how L∩π−1(p) intersects ♥J . As we observed in the remark
following the proof of Lemma 9.8, the map H is entirely defined on the line x = 1
and maps the point (1, 1) into (0, 1)2, the set of points representing the convex
classes. Hence H maps the exceptional point on L into the space C = B((0, 1)2).
In other words, the exceptional point of L is not in ♥J . �

It follows from transversality that a neighborhood of L in M intersects ♥J
transversely in a Cantor band. Hence a neighborhood of π−1(p) intersects ♥J in a
Cantor band which is transverse to π−1(p). Applying the blowdown map, we see
that p is a basic cone point for the set π−1(♥J).

Lemma 17.8. The point of π−1(p) corresponding to the line of slope −1 is not
a point in ♥J . In other words, the line of slope −1 through p is not tangent to any
arc of π(♥J).

Proof: Let p−1 denote the point in π−1(p) corresponding to the line of slope −1.
We have H140(p−1) = (φ6, φ2). This point lies outside the region ♣P ∗ from the
previous chapter. In particular, it does not lie in A∗. Hence the line of slope −1
through p is not tangent to π(♥J). �

This proves the first half of Lemma 17.6.

17.7. The Second Cone Point

Now we study the structure of ♥J in a neighborhood of q. Of the pieces of
our partition having q as a vertex, the only ones containing points which are not
preconvex are ♣L1 and ♣L2. Therefore, in a neighborhood of q the only points of
♥J are contained in ♣L ∪R(♣L).
(17.4) h1 = H111, h2 = H041.

These are the primary maps we associated to the “strips” ♣P ∗
1 and ♣P ∗

2 in the
previous chapter. Note that ♣L1 ⊂ ♣P ∗

1 and ♣L2 ⊂ ♣P ∗
2 .

In Lemma 16.5 we analyzed the bahavior of hj on ♣Lj − q, or rather we
explained that the situation was the same as in Lemma 16.4. That is, hj maps
each vertical segment of ♣Lj into a timelike curve which runs transverse to the
Cantor band ♥A and remains inside T ∪ ♠C. Recall that ♠C does not interesect
♥J . Hence ♥J = h−1

j (♥A) inside ♣Lj .

Lemma 17.9. Each coordinate function of hj has a simple blowup at q.

Proof: Consider h1 = H111 first. Recall that ψ = (1 +
√
13)/2 and q = B(ψ,ψ).

Since B is a diffeomorphism and (ψ,ψ) is not a blowup point for the Gauss group,
the statement that the coordinate functions of H111 have simple blowups at q is the
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same as the statement that the coordinate functions of H111 have simple blowups
at (ψ,ψ). This is a direct calculation, which we omit. The proof for h2 is similar. �

Let R2
q be the blowup of R2 at q and let π be the blowdown map. hj lifts to

a smooth map ĥj : Ŝ → R2. Here Ŝ = π−1(S), where S is the intersection of a

sufficiently small disk with ♣L ∪R(♣L). The reason why the range is R2 is that
the image hj(♣Lj − q) is uniformly bounded.

The vertical line foliation of S lifts to a smooth foliation of Ŝ in which one of
the leaves λ is a subset of the exceptional fiber. ĥj : ♥Ŝj → R2 maps each curve,

except perhaps λ, to a timelike curve. Moreover, the restriction of ĥj to λ is a

regular map because hj has a simple blowup at q. So, by continuity, ĥj(λ) is not

spacelike. Hence ĥj maps every leaf in the foliation to a smooth regular curve that
is transverse to ♥A.

The same argument as in Lemmas 16.4 and 16.6 shows that ĥ−1
j (♥A) is a C1

Cantor band transverse to λ. Since this holds for each j, there is a C1 Cantor band

in Ŝ whose blowdown is ♥J ∩ S. This proves that q is a basic cone point.

Lemma 17.10. The line of slope −1 through q is not tangent to any of the
strands of ♥J .

Proof: Let q−1 denote the point in the exceptional fiber of R2
q corresponding to

the line of slope −1. We compute that ĥ1(q−1) and ĥ2(q−1) both lie in the bottom
edge of T . They are the same point, namely

(17.5) (φ2t,−t), t =
6 + 4

√
5− 4

√
13− 2

√
65

−9− 5
√
5 +

√
13 +

√
65

No point on the bottom edge of T outside of ♣Q belongs to ♥J . This completes
the proof. �





CHAPTER 18

Local Structure of the Julia Set

18.1. Blowing Down the Exceptional Fibers

In this chapter we prove Theorem 1.8. We follow the sketch given in §15.3.
Again ♥J is the Julia set and D is the big disk used in the proof of Theorem 1.5.
Let π : M → (R ∪∞)2 be the blowdown map. We persistently confuse the disks
D and π−1(D) because D is disjoint from the blowup points. ♥J as a subset of
M .

We already know that every point of ♥J −D is either a band point or a basic
cone point. All the cone points here are Γ images of the ones covered by Lemmas
17.1. In particular, every point of ♥J ∩ π−1(R2) −D is either a band point or a
basic cone point. We would like to see that every point of ♥π(J)∩R2−D is either
a cone point or a band point. Note that ♥π(J) ∩R2 and ♥J ∩R2 coincide except
at the blow up points. We have already seen that the blow up point (φ6, φ6) is a
cone point. We just have to check that the two other blowup points (−φ4, φ2) and
(φ2,−φ4). are either cone points or band points. By symmetry it suffices to check
the first of these two points. We will show that a = (−φ4, φ2) is a cone point.

The element H030 blows a up to the line λ1 given by the equation y = φ2. Let
λ2 ⊂ T denote the set of points which are Γ equivalent to λ1. It turns out that

(18.1) λ2 = (λ1 ∪R(λ1)) ∩ T .

The reason for this is as follows:

(1) The element H100 = R preserves λ1 ∪R(λ1) and, around their point of
intersection, locally swaps the vertical and horizontal segments of λ2.

(2) The element H120 preserves R(λ1), fixes the bottom endpoint of the ver-
tical segment of λ2, and reverses the direction.

(3) The element H130 preserves λ1, fixes the right endpoint of the horizontal
segment of λ2, and reverses the direction.

One might say that the action of Γ folds λ1 ∪ R(λ1) onto λ2. This fact depends
on the special nature of λ1; it does not work this way for other horizontal lines.
Figure 18.1 below shows a picture of λ2. The bottom half of T is also shown, as
are approximate drawings of the partition pieces ♣F,♣G,♣J3,♣J4,♣O.

The set λ2 is exactly the set of interfaces between the shaded regions in Figure
10.3. Let Cλ2 denote the corner of λ2. This is the point (φ2, φ2). Let Hλ2 denote
the horizontal segment of λ2 minus Cλ2. Let V λ2 denote the vertical segment of
λ2 minus Cλ2. We consider these three subsets of λ2 in turn.

149
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(0,0)
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2
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Figure 18.1: The set λ2.

(1) The segment Hλ2 lies in ♣G, a piece which does not intersect ♥J .

(2) The segment V λ2 lies in the same line as the vertical edge ♣O∩♣J4, and
the segment of V λ2 below ♣O∩♣J4 lies in ♣F , a piece disjoint from ♥J .
Hence V λ2 intersects ♥J transversely in the Cantor set which is the set
of right endpoints of the Cantor band A∗

1 from §16.1.

(3) Cλ2 is a cone point, as we have seen in the last chapter. The strands of
♥J emanating from this cone point all lie in ♣J3 and hence have negative
slope. This is to say that neither segment of λ2 is tangent to the strands
of ♥J at this point.

The projection from λ1 to λ2 is a 5-fold orbifold cover, folding at the two far
endpoints of Hλ2 and V λ2. Hence, from the analysis above, we conclude that
π−1(−φ4, φ2) is tranverse to 5 Cantor bands b1, ..., b5 and 5 cone points c1, ..., c5.
The sets π(bi) and π(cj) are each Cantor cones individually. Moreover, since all
these sets are disjoint along the exceptional fiber, the set of tangent lines to one
of the projections is completely disjoint from the set of tangent lines to any of the
others. Hence, the union

⋃
π(bi) ∪

⋃
π(ci) is still a Cantor cone.

Hence (−φ4, φ2) is a cone point for π(♥J)∩R2. Now we know that every point
of π(♥J) ∩R2 −D is either a band point or a cone point.

Before we move on to the next section we observe that the primary map H011

blows up the point

(18.2) t = (φ−2, φ−2)

to the same line y = φ2 that we have just considered. Hence t is also a cone point.
On the other hand, not all the primary maps blow up at t. For instance, the map
H031 does not. The point t is shown in Figure 12.4.
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18.2. Everything but one Piece

Now we will consider what happens in ♥J ∩D − ♥JC. Since all the blowup
points lie outside D we will frequently confuse the two sets ♥J ∩D and π(♥J)∩D.

In §12 we produced a union D1 ∪ ... ∪D6 of 6 topological disks together with
primary maps hj : Dj → R2 which map Dj over D and which act as a diffeomor-
phism on Dj .

Lemma 18.1. Theorem 1.8 is true provided that every point of

♥J ∩ (D −D1 − ...−D6)

is a cone point or a band point.

Proof: To establish Theorem 1.8 we have to prove every point of ♥J ∩D −♥JC
is a cone point or a band point. Let D∗ = D1 ∪ ...∪D6. Let F : D∗ → R2 be the
map which agrees with hj on Dj . Every point p ∈ D∗−♥JC has the property that

there is some m such that Fm(a) ∈ R2 − D∗. But Fm is a local diffeomorphism
at a. If we knew that every point of π(♥J)∩ (R2 −D∗) is either a band point or a
cone point, then we know that a is a band point or a cone point. We already know
that π(♥J) ∩ (R2 −D) is a cone point or a band point. This just leaves points in
π(♥J) ∩ (D −D∗), and ♥J = π(♥J) inside D. �

Figure 18.2 repeats the picture of the partition used in the proof of Theorem
1.5.

Figure 18.2: The partition of ♣Q.
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We have D − (D1 ∪ ... ∪ D6) ⊂ Γ(♣S). By symmetry, we just have to show
that each point of ♥J ∩ ♣S Is a cone point or a band point. Recall that ♣S =
♣S1 ∪ ♣S2 ∪ ♣S3.

Lemma 18.2. Each point of ♥J ∩ ♣S2 is either a cone point or a band point.

Proof: Let h = H141. Let ♣S′
2 = ♣S2 − s. We have already seen in our proof

of Theorem 1.5 that h is defined and finite on ♣S′
2. We use the area test to check

that det(dh) − φ−2 ≥ 0 on ♣S′
2. Hence h is a local diffeomorphism on ♣S′

2. We
also saw that h(♣S′

2) ⊂ R2 −D0. Hence every point of ♥J ∩ ♣S2 is either a cone
point or a band point. �

Lemma 18.3. Each point of ♥J ∩ ♣S3 is either cone point or a band point.

Proof: Let h = H031. We use the denominator test to check that h is defined
and finite on ♣S3. We already know that some primary element maps ♣S3 outside
D0 and by symmetry so does h. In short, h(♣S3) ⊂ R2 − D0. We use the area
test to show that det(dh) > 0 on ♣S3. Hence h is a local diffeomorphism on ♣S3. �

18.3. The Last Piece

It remains to show that each point in ♥J ∩ ♣S1 is either a cone point or a
band point. None of the primary maps is a local diffeomorphism on all of ♣S1.
We partition ♣S1 into 7 smaller pieces ♣S11....,♣S17 as shown in Figure 18.3. The
label k denotes ♣S1k. The polygons are shaded according to the role they play
in the proof. We list the vertices in §21.7. We have already seen that the point
t = (φ−2, φ−2) is a basic cone point.

13

4

5
7 6

2

Figure 18.3: The pieces ♣S11, ...,♣S17.
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We assign primary elements to these pieces as follows:

(1) h1 = H011.
(2) h2 = H111.
(3) h3 = H131.
(4) h4 = H111.
(5) h5 = H011.
(6) h6 = H011.
(7) h7 = H111.

Let ♣S′
1j = ♣S1j − s− t. We check for each j that hj is defined and finite on ♣S′

j .
In all cases (whether we need to or not) we use the weak denominator test coupled
with the subtraction trick.

18.3.1. The Local Diffeomorphisms.

Lemma 18.4. Each point of ♣S11 ∪♣S12 ∪♣S13 except possibly for s is a cone
point or a band point.

Proof: We use the strong area test to show that det(dh1) > 0 on ♣S11. We use the
weak area test to show that det(dh2) ≥ φ−2 on ♣S′

2. For ♣S′
3 be use the weak area

test combined with the variation trick to show that det(dh1) > 0 on ♣S′
3. Hence hj

is a local diffeomorphism on ♣S′
j for j = 1, 2, 3. The rest of the proof is as above. �

Remark: For later purposes we also check that h3(♣S13− s) does not contain one
of the 3 points in R2 which we blew up to create M . We use the confinement test to
show that h3(♣S13−s) is contained in the interior of the rectangle [0, φ2]× [−10, 0].
This rectangle is disjoint from two of the blowup points, and has the blowup point
(φ2,−φ4) on its right edge.

18.3.2. Avoiders.

Lemma 18.5. For j = 4, 5, the set ♣S1j − s− t is disjoint from ♥J .

Proof: We use the confinement test to check that

(18.3) h4(♣S′
4) ⊂ ♣B ∪ ♣F ∪ ♣N ∪ ♠C ∪ ♠E

The union on the right is convex. Figure 13.3 shows these pieces. We have shown
in §13 that these partition pieces are disjoint from ♥J .

Let ♠Y1 denote the rectangle of width 10 whose sides are parallel to the
coordinate axis and whose left side coincides with the right side of ♣G. Let
♠Y2 = ♣G ∪♠Y1. We are just prolonging ♣G somewhat. We use the confinement
test to check that h5(♣S15) ⊂ ♠Y2. So, it suffices to prove that ♠Y2 ∩♥J = ∅. We
use the confinement test to show that

H021(♠Y1) ⊂ ♠D.

We already know that ♣G∩♥J = ∅, and the last calculation tells us ♠Y1∩♥J = ∅.
Hence ♠Y2 ∩ ♥J = ∅. �
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18.3.3. First Painful Piece. Now we come to the first of two painful pieces.
To save words in our proofs, we remark here that we use the denominator test to
check that every map in sight is defined on the relevant domain.

Lemma 18.6. Every point of ♥J ∩ ♣S16 − s is a band point.

Proof: We introduce auxiliary quadrilaterals ♠Y and ♠Z whose vertices we list in
§21.8. Figure 18.4 shows ♠Y and how ♥J sits inside of it. We get ♠Z by slightly
enlarging H101(♠Y ). We check that

(18.4) H101(♠Y ) ⊂ ♠Z,
and

(18.5) ♠Z ⊂ ♣P3 ∪ ♣P4 ∪ ♣B ∪ ♣F ∪ ♣G ∪R(♣G)− q.

The pieces ♣P3 and ♣P4 are the bottom two rows of the quasi-horseshoe ♣P . The
pieces ♣F and ♣G − q are disjoint from ♥J . By symmetry R(♣G) − q is also
disjoint from ♥J . From all this we conclude that H101(Y ) ∩ ♥J ⊂ A, where A is
the Cantor band from the proof of Theorem 1.6. Hence h6(♣S16− s∩♥J) consists
entirely of band points.

Figure 18.4: The image h6(∂♣S16).

We foliate A16 (minus its top and bottom vertex) by horizontal line segments.
We know that the strands of A are spacelike. That is, their tangent lines never lie
in the standard lightcone ∨ = ∨(1,−1).

We check the following facts.

• dh6(1, 0) ⊂ ∨(−∞,−1/3) at all points in ♣S16 − s.

• dH101(∨(−∞,−1/3)) ⊂ ∨(−1/4, 4) at all points of ♠Y .

• Let h3 and h4 be the primary elements associated to ♣P3 and ♣P4. Then
dhj(∨(−1/4, 4)) ⊂ ∨ throughout ♣Pj .

We use the cone test in all cases.
These results imply that there is a semigroup element h so that h(♣S16 − s)

intersects ♥J only in the Cantor band A, and h maps the horizontal foliation to
timelike curves. Since the strands ofA are spacelike, we see that hmaps the strands
of the horizontal foliation transverse to A. This proves what we want. �
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18.3.4. Second Painful Piece. Before we deal with the last piece, we prove
a preliminary result. Referring to the partition piece ♣J3 used in the proof of
Theorem 1.6, we write

(18.6) ♣J3 = ♣J31 ∪ ♣J32,
We introduce 2 small polygons ♠Y1 and ♠Y2. Both these polygons are symmetric
with respect to reflection in the diagonal. Two of the vertices of ♠Y1 are the bottom
left and top right corners of ♣J3. This determines ♠Y1. One edge of ♠Y2 is the
left edge of ♣J3. This determines ♠Y2.

Y

G

J
31

Y2

1

J
32

Figure 18.5: The pieces ♣Y1,♣Y2,♣J31,♣J32,♣G.
Lemma 18.7.

(18.7) h7(♥J ∩ ♣S17 − t) ⊂
1⋃

i=0

Ri(♥J ∩ ♣J31).

Proof: We check that

(18.8) ♠Y1 ⊂
1⋃

i=0

Ri(♠Y2 ∪ ♣J31 ∪ ♣J32 ∪ ♣G).

We use the confinement test to show that

(18.9) h7(♣S′
17) ⊂ ♠Y1.

Next we check that H101(♠Y2) ⊂ ♣A. Since ♣A∩♥J = ∅, we have ♥J ∩♠Y2 = ∅.
By symmetry ♥J ∩R(♠Y2) = ∅. We check that

(18.10) H141(♣J32) ⊂ ♣B ∪ ♣F ∪ ♠C ∪ ♠E.
None of these partition pieces intersects ♥J , so we conclude that ♣J32 ∩ ♥J = ∅.
By symmetry R(♣J32) ∩ ♥J = ∅. Putting all this information together gives us
Equation 18.7. �
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Now for the last piece.

Lemma 18.8. Each point of ♥J ∩ ♣S17 is eiher a cone point or a band point.

Proof: We already know that ♥J ∩ ♣J3 is a Cantor cone. Hence the right hand
side of Equation 18.7 is the union of two Cantor cones meeting at the cone point
q. We foliate A17 by horizontal line segments above, and as in the previous result
we show that h7 maps these segments transverse to ♥J .

Here are the details of the transversality argument. We use the cone test to
show that h7 maps these horizontal segments to curves of positive slope.

On the other hand, we use the cone test to check that dH141(∨(0,∞)) ⊂ ∨
throughout ♣J31. Next, we check

(18.11) H141(♣J31 ∩ ♥J) ⊂ ♣I ∪ ♣P.
In view of the fact that all the strands of ♥J∩(♣I∪♣P ) are spacelike, we conclude
that the strands of ♥J have negative slope in ♣J31. By symmetry, the same holds
for the strands of ♥J in R(♣J31).

In conclusion, h7 maps the horizontal segments to curves of positive slope
whereas all the strands of ♥J they encounter have negative slope. This gives us
the transversality we need. �

Before we leave this section, we prove one more result about ♣S17 which will
be useful when we prove that ♥J is connected.

Lemma 18.9. ♥J does not intersect the boundary of ♣S17 except at the point
t or in the edge of ♣S17 contained in the bottom edge of T .

Proof: Some of the edges of ♣S17 are also edges of the adjacent tile ♣S15, and we
know that ♣S15 ∩ ♥J = t. So, Ψ cannot intersect any of these edges. For each re-
maining edge e of ♣S17, other than the bottom edge, we use the confinement test to
check thatH111(e) ⊂ ♠Y2, a piece we have already shown to be disjoint from ♥J . �

18.4. The Last Point

The only points of ♣S ∩ ♥J we have not dealt with is the point s. In this
section we show that s is a basic cone point. Our proof, unfortunately, is also
rather painful. We follow the same argument we used in §18.1, but here we have a
more complicated image to worry about.

A calculation shows that the two elements H031 and H141 both blow up s to
the horizontal line λ3, given by the equation y = y0, where

(18.12) y0 =
(−73− 120φ) + (35 + 55φ)ψ)

8
≈ 2.29518.

Figure 18.6 shows λ3. To finish the proof we have to show that λ3 intersects ♥J
transversely in a Cantor set. Our strategy is the same as what we did for the
blowup point (−φ4, φ2) above. We will take the Γ orbit of γ3 and see how this set
intersects ♥J ∩ T .

Without giving many details of the calculation, which we do using Mathemat-
ica, we explain how it is done. We compute that the image λ′3 = B−1(λ3) is the
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horizontal line y = y′0, where

(18.13) y′0 = −6− 5ψ, ψ =
1 +

√
13

2
.

We compute the Γ orbit of λ′ and then apply B.
We find that the Γ orbit of λ3 consists of the horizontal line λ3, the vertical line

λ4 = R(λ3) and two hyperbolas, λ5 and λ6. Both hyperbolas have horizontal and
vertical asymptotes, and these asymptotes intersect on the main diagonal. We just
have to understand how these 4 curves intersect J inside the fundamental domain
T . We will consider the 4 curves in turn.

18.4.1. The Horizontal and Vertical Lines. Figure 18.6 shows λ3 and λ4
as well as the surrounding partition pieces. (The pieces ♣F , ♣G, and ♣P are not
fully shown.)

J
J

31

32
O

G

N

F

P

3

Figure 18.6: λ3 and λ4 and the relevant pieces

For λ3, the only relevant pieces in the partition which intersect ♥J nontrivially
are ♣O and J31. We use the confinement test to check that

H101(λ3 ∩ ♣O) ⊂ ♣A.

Since ♣A ∩ ♥J = ∅, we see that λ3 ∩ ♣O ∩ ♥J = ∅.
We have already seen in the previous section that the strands of ♥J in ♣J31

have negative slope. Hence λ3 is transverse to ♥J in ♣J31. Hence λ3∩T intersects
♥J transversely in a Cantor set.

Now we consider λ4. Let h = H101. We already know that h(♣O) ⊂ T . We
use the confinement test to check that h(λ4 ∩ ♣O) lies to the right of the vertical
line through the rightmost point of ♣P . The only pieces in the partition to the
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right of this ♣P containing ♥J are those of ♣I. Hence
(18.14) h(λ4 ∩ ♥J) ⊂ ♣I.
We use the cone test to show that dh(0, 1) ⊂ ∨ on λ4 ∩ ♣O. Since all the strands
of ♥J ∩ (I ∪ ♣P ). are spacelike, we conclude that λ4 is transverse to ♥J .

18.4.2. The First Hyperbola. Figure 18.7 shows an accurate picture of part
of λ5. This hyperbola intersects T in the vertex (φ6, φ6) and a point (t, t) where
t ≈ −.87. In particular, λ5 only intersects T at the vertex (φ6, φ6).

T

Figure 18.7: λ5 and T

By symmetry, the tangent line to λ5 at (φ6, φ6) has slope −1. Since the group
Γ acts on the space M obtained by blowing up 3 points, including (φ6, φ6), we need
to consider the image of λ5 in M to figure out how the corresponding point of λ5
intersects ♥J . We have already observed that the point in M corresponding to the
line of slope −1 through (φ6, φ6) does not intersect ♥J . Hence, the corresponding
point of λ5 does not intersect ♥J . So, the corresponding point in the fiber above s
does not intersect ♥J . In short, λ5 contributes nothing to the structure of ♥J near
s. (Again, by construction we only need to understand how our curves intersect J
inside the fundamental domain T .)

18.4.3. The Second Hyperbola. The hyperbola λ6 has a messy equation,
but λ6 = B(λ′6) where λ

′
6 has the equation

(18.15) xy =
19 + 5

√
13

2
.

Figure 18.8 below shows a fairly accurate picture. λ6 intersects T in two connected
components, an upper branch and a lower branch. We first show that the upper
branch contributes nothing.

Lemma 18.10. One component of λ6 ∩ T lies entirely in ♣G. Hence this com-
ponent does not intersect ♥J .

Proof: The upper component of λ6 ∩ T is the graph of a convex decreasing func-
tion. Hence, it is contained in the triangle whose vertices are p1, p2, p3. Here p1
and p2 are respectively the left and right endpoints of the branch, and p3 is the
intersection of the vertical line through p1 and the horizontal line through p2. We
check that ♣G contains this triangle. �
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G

Y
N

O

Y
N

O

Figure 18.8: λ6 and T .

Now we consider the lower branch of λ6∩T . Let ♠Y and ♠Z be the quadrilat-
erals from Lemma 18.6. A calculation shows that some segment of λ6 is contained
in ♠Y and connects a point on the top edge of ♠Y to a point on the bottom edge
of ♠Y . Moreover, λ6 intersects the top edge of ♠Y in a point that lies outside T .
Also, the portion of λ6 ∩ T below ♠Y lies in the union ♣N ∪♣F . These partition
pieces ar disjoint from ♥J . From all this we conclude that

(18.16) λ6 ∩ ♥J ∩ T ⊂ ♠Y ∩ T .

The lines tangent to λ6 ∩♠Y ∩ T lie in ∨(−∞,−1) because all such points lie
below the diagonal. We use the cone test to check

(18.17) dH101(∨(−∞,−1)) ⊂ ∨(1/2,−1/2)

on the interior of ♣N ∪ ♣O, a set which contains ♠Y ∩ ∩T .
Recall from 18.6 that

(18.18) h(♠Y ) ⊂ ♠Z, ♠Z ∩ ♥J ⊂ ♣I ∪ ♣P.
By Lemma 16.1, all strands of♥J∩(♣I∩♣P ) have slopes in the interval (−1/2, 1/2).
So, we see that H101 maps λ6 ∩ ♠Y ∩ T transversely to ♥J . Hence λ6 ∩ ♠Y is
transverse to ♥J .

This completes the unpleasant proof that s is a cone point. Our proof of
Theorem 1.8 is done.
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18.5. Some Definedness Results

Here we state and prove some lemmas which are essentially just summaries of
the analysis done above. These lemmas will be useful in the next chapter.

Lemma 18.11. Suppose that α ∈ ♥J∩D is some band point. When we consider
the range of the primary maps to be the manifold M , every primary element is
defined at α and maps α to a band point.

Proof: Our analysis above shows that there is at least one primary element h such
that h(α) ⊂ R2 and h(α) is also a band point of ♥J . But then, and other primary
element is the composition of h with some diffeomorphism of M which preserves
♥J . �

Lemma 18.12. Suppose that α is a cone point of ♥J that lies in the interior of
D ∩ T . Then there is some primary element h such that h is a well defined map
from a neighborhood of α into R2 and h(α) is a cone point of π(♥J).

Proof: This is really just a summary of our analysis above. It follows immediately
from what we did. �



CHAPTER 19

The Embedded Graph

19.1. Defining the Generator

In this chapter we prove Theorem 1.9. We follow the outline given in §15.4.
Our first goal is to find the generator ♥X, which is a certain connected arc in
♥J ∩D. Our discussion of ♥X refers to Figure 19.1, which is essentially a copy of
Figure 17.1.

1

1

2

3

4
5

2

3

4

5

D

(1,1)

r
q

W1
X

Figure 19.1: The arc ♥W1 sitting inside ♥J −D.

Let ♥W denote the canonical loop described in §17.4. We can view ♥W as an
embedded pentagon whose 5 vertices are the 5 irregular fixed points of H. These
are the vertices of D, the Γ orbit of (1, 1). Let ♥W1 ⊂ ♥W be the arc of ♥W
which connects two consecutive irregular fixed points, in the cyclic order imposed
by ♥W . In other words ♥W1 is one fifth of ♥W . To pin ♥W1 down exactly, we
insist that one of the fixed points is (1, 1) and that ♥W1 starts out by running along
the bottom arc of ♥J ∩ T − D. In Figure 19.1, ♥W1 appears to be the union of
4 thick arcs, but the endpoints of these arcs are identified by the gluings to that
♥W1 is a single segment. Figure 19.2 shows ♥W1 schematically.

161
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Recall from §12.5 that we found disks K1, ...,K6 such that each Ki mapped
diffeomorphically onto the big disk D. We indexed these disks a certain way in
§12.5 but there was nothing special about the way we had done it. We specify the
indices of these disks now, perhaps in a different way, to suit our present purposes.

Now we discuss Figure 19.2. Let K1 be the disk which has the vertex (1, 1).
Figure 19.2 shows K1 and also our (new) choices for K2 and K3. The fundamental
domain T is shaded. The point a1 is the vertex of K1 adjacent to (1, 1) and lying
in T ∩D. Recall that ∂2T is the non-diagonal non-vertical edge of T . (See Figure
10.3.) We draw this edge horizontally in Figure 19.2 and label it with a 2. This
edge is fixed pointwise by the element γ = H120. The point γ(a1) is labeled a2.

c

Figure 19.2: the sets ♥W1 and ♥X and other relevant points.

We want to show that there is an arc ♥X which connects a1 to γ(a1) and has
the following properties.

• h(♥X) = ♥W1, where h = H031.
• γ(♥X) = ♥X, where γ = H120.
• ♥X is disjoint K3 ∪K4 ∪K5 ∪K5.
• ♥X intersects K1 only at a1.
• ♥X intersects K2 only at a2.

We will prove this result through a number of small steps.
We have h(a1) = (1, 1) and h is a diffeomorphism in a neighborhood of a1.

Hence, some subset of h−1(♥W1) starts at a1 and moves away from a1 along a
Cantor band. Let ♥I be the closure of the maximal arc like this, whose interior
consists entirely of band points. By Lemma 18.11, the map h is defined on the
interior of ♥I and h maps the interior of ♥I into ♥W1.

Lemma 19.1. ♥I cannot contain a point outside D.

Proof: Every point on ∂D ∩T lies in the ♣F ∪♣M ∪♣N , and these pieces inter-
sect ♥J only at (1, 1). Hence ♥J is disjoint from ∂D except at the 5 vertices. But
then ♥I has to exit D at a vertex. But these vertices are not band points. �
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Lemma 19.2. ♥I cannot stay inside T ∩D and connect two points of ♥JC.

Proof: We will suppose this happens and derive a contradiction. We note first
that the only points of ♥W1 in ♥JC are vertices of D, and these two vertices are
separated by a single cone point on ♥W1. We also recall that ♥W1 = ♥h(X).
Applying Lemma 18.11, we see that ♥W1 would connect 2 vertices of D without
intersecting a cone point. Given what we have already noted about ♥W1, this
situation is only possible h(♥I) doubles back on itself before crossing the cone
point. That is, h maps both endpoint of ♥I to the same point. We rule this out.

♥I cannot connect a1 to itself because then h would not be a local diffeomor-
phism in a neighborhood of a1. What other points of ♥JC can ♥I reach? Figure
19.3 shows the various possibilities. (Some of the possibilities shown in Figure 19.3
will be explained in later lemmas in this section.)

(1,1)

d

c
T2

Figure 19.3: The possibilities. for ♥X.

Because primary elements map the boundaries of the K-disks to the boundary
of D, we see that ♥J is disjoint from each of the K disk boundaries except at the
vertices. So, ♥I cannot enter any of the K-disks except at a vertex. There are only
2 vertices of K-disks in D∩T . These are the points a3 and a5. So, in this situation,
♥I either connects a1 to a3 or a5. We check that h(a3) = h(a5) = d 6= h(a1). This
is a contradiction. �
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Lemma 19.3. An interior point of ♥I cannot be on the boundary of T .

Proof: If this happens, then one of the two edges e of T incident to the origin
contains an interior point α ∈ ♥I. There is an involution γ ∈ Γ which fixes e
pointwise. By Lemma 18.11, we know that h(α) is a band point of ♥W1. On the
other hand, h(α) is a point of ♥W1 stabilized by an element of Γ. The only point
on ♥W1 stabilized by an element of Γ is the cone point. This is a contradiction. �

Lemma 19.4. ♥I cannot lie entirely in the interior of T .

Proof: Suppose that the endpoint α of ♥I is a cone point contained in the interior
of T . By Lemma 18.12 we know that there is some primary element h′ such that
h′(α) is a cone point of ♥π(W ) ∩R2. Here π is the blowdown map. But none of
the cone points of ♥π(W ) is a blowup point in R2. Indeed, these points are the
orbit of the point q in Figure 19.1. The coordinates of points in this orbit do not
lie in Z[φ] and hence are not any of the blowup points for the manifold M . (The
3 blowup points are listed in §15.1.) So, h′(α) is a cone point of ♥W . Such points
are stabilized by involutions in Γ. Hence α is also stabilized by an involution in Γ.
But then α cannot lie in the interior of T . This is a contradiction. �

Now we know that the interior of ♥I lies in the interior of T ∩D and that the
far endpoint of ♥I lies on one of the two sides of T emanating from the origin.

Lemma 19.5. The endpoint of ♥I cannot lie on the diagonal edge of T .

Proof: Let b2 be the endpoint of ♥I. This point must lie on the diagonal edge
of T which lies to the right of the piece ♣S14 from Figure 18.3, because ♥J does
intersect the right edge of ♣S14 except at the endpoint s. Figure 19.4 shows the
situation. We check that all primary maps are defined and finite on a neighborhood
of this segment. Hence h is defined in a neighborhood of b2.

2

S
14

Figure 19.4: A14 blocks ♥I from reaching t. for ♥X.

Since R(b2) = b2, the point h(b2) ∈ ♥W1 has a nontrivial stabilizer. This is
only possible if h(b2) is the cone point of ♥W1. But then, by symmetry, we have
h(R(♥I)) ⊂ ♥W1. But then, referring to Figure 19.3, the arc ♥I ∪R(♥I) connects
a1 to a4. But h(a4) = e, the wrong vertex of D. This this forces ♥W1 to connect
(1, 1) to e rather than c. �
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Now we know that the endpoint of ♥I lies on the edge ∂2T . Recall that ∂2T
contains one tricky point, namely s, where all the primary maps blow up. The point
s was the last point we analyzed in the previous chapter. The point s is a vertex of
♣S14, so we know that the endpoint of ♥I lies somewhere on ∂2T to the right of s.
The next lemma is delicate, because there does turn out to be a (different) strand
of ♥J connecting a1 to the point s.

Lemma 19.6. s is not the endpoint of ♥I.

Proof: The map h blows up s to the horizontal line λ3 treated in §18.4. We claim
that λ3 does not intersect ♥W1. But the endpoint of h(♥I) would be both in ♥W1

and in λ3. This contradicts the claim.
To establish the claim, we observe that our analysis in §18.4 shows that h(s)

intersects ♥W at most 4 times. Recall from §18.4 that the orbit Γ(λ3) intersects
T in 4 arcs. The only arcs which intersect ♥W are the vertical segment and the
second (arc of a) hyperbola. In both cases, there is only one interesection point,
and this point lies in the interior of ♥W1 on the bottom strand of ♥J ∩ T − D.
This gives potentially 4 intersection points of λ3 ∩ ♥W because 2 elements of Γ
map λ3 onto the line containing the vertical segment and two elements of Γ map
λ3 onto the second hyperbola. The 4 nontrival elements are

H010, H100, H030, H120.

Call these elements g1, g2, g3, g4. This analysis shows that

(19.1) λ3 ∩ ♥W ⊂
4⋃

i=1

g−1
i (♥W o

1 ).

None of the sets on the right hand side intersects ♥W1, as one can check by looking
at the action of Γ on the vertices of ♥W . This proves our claim. �

Now we know that the endpoint of ♥I is some point b1 ∈ ∂2T which lies to the
right of s. We use the area test to check that h is defined and a local diffeomorphism
in a neighborhood of the open segment joining the right endpoint of ∂2T to s. Hence
h is a diffeomorphism in a neighborhood of b1. In particular, h(b1) must be the
cone point of ♥W1. By symmetry, h(♥X) = ♥W1, where

(19.2) ♥X = ♥I ∪ γ(♥I).
This is Property 1. By construction γ(♥X) = ♥X. This is Property 2.

No point on the interior of ♥X is a point of ♥JC. Hence no interior point of
♥X is a vertex of a K-disk. We also know that ♥X can only enter a K-disk at a
vertex. Hence the interior of ♥X is disjoint from all the K-disks. This establishes
Properties 3-5. �

19.2. From Generator to Edge

Now we move to Part 2 of the proof. In §12.5 we had 6 diffeomorphisms
hi : Ki → D for i = 1, ..., 6. Here we consider the semigroup 〈h1, h2〉. With our
current labeling scheme, we have h1 = H101 and h2 = H141. Recall that γ = H120

is the involution that preserves the generator ♥X. We have γh1γ = h2.
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Let v1 = (1, 1) be the fixed point of h1 and let v2 be the fixed point of h2.
Let ♥JC12 denote the set of preimages of v1 ∪ v2 under the action of the semi-
group 〈h1, h2〉. There is a natural bijection between ♥JC12 and the set of infinite
sequences with terms in {1, 2}. The endpoints of ♥X are the two sequences 122...
and 211.... The points in ♥JC12 form a Cantor subset of ♥JC, and we identify this
Cantor set with the middle third Cantor set, C3. To describe the precise identifica-
tion, we take point in ♥JC12 and change all the 1’s to 0’s. This gives us the base
3 expansion of the corresponding point in C3. The endpoints of ♥X correspond to
the points 1/3 and 2/3. Under this identification, h1 is the dilation of C3 which
carries C3 ∩ [0, 1/3] to C3 and h2 is the dilation which carries C3 ∩ [2/3, 1] to C3.

The map φ : ♥JC12 → C3 is a homeomorphism. Indeed, φ is Holder continuous,
and so is the inverse. This follows from the metric expansion properties established
in §12.7.

D K1

K2

K11

K12

K21

K22

Figure 19.5: A few elements of ♥PX.

Let ♥PX denote the set of preimages of ♥X under 〈h1, h2〉. The elements
of ♥PX are in bijection with the components of [0, 1] − C3. For instance ♥X
corresponds to the interval [1/3, 2/3]. Moreover, the elements of ♥PX are pairwise
disjoint. For instance, h−1

1 (♥X) is disjoint from ♥X because h−1
1 (♥X) lies in the

interior of K1 whereas ♥X is disjoint from the interior of K1. Figure 19.5 shows
3 elements of ♥PX.

We pick some homeomorphism from ♥X to [1/3, 2/3] and then extend φ so
that φ(♥X) = [1/3, 2/3]. We then extend φ to ♥PX ∪ ♥JC12 by requiring that
φ conjugate the action of 〈h1, h2〉 to the corresponding action on [0, 1]. The image
φ(♥PX) is the union of the closures of the components of [0, 1]− C3.

Finally, we let ♥Y denote the closure of ♥PX. The continuity properties of φ
guarantee that φ extends to all of ♥Y . Since ♥Y is closed, φ(♥Y ) is closed. Since
φ(♥PX) is dense in [0, 1], we have that φ(♥Y ) = [0, 1]. Hence φ : ♥Y → [0, 1] is a
continuous surjection. The fact that the components of ♥PX are pairwise disjoint
guarantees that φ is also injective. Since ♥Y is compact and [0, 1] is Hausdorff, we
see that φ is a homeomorphism. By construction γ(♥Y ) = ♥Y .
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19.3. From Edge to Pentagon

We now consider the orbit Γ(♥Y ). Recall that γ ∈ Γ is the element which
stabilizes the side ∂2T of T and preserves ♥Y . Since γ(♥Y ) = ♥Y , the orbit
Γ(♥Y ) consists of 5 embedded arcs. Each of these arcs connects 2 irregular fixed
points of H.

Lemma 19.7. The interior of ♥Y is contained in the interior of T ∪ γ(T ).

Proof: Each gap in the middle third Cantor set is indexed by some finite binary
sequence which denotes the composition of elements which maps this gap onto
the middle third gap. The middle third gap, namely [1/3, 2/3] is indexed by the
empty string. For any finite string σ, the corresponding subset ♥Xσ of ♥PX is
contained in the small disk Kσ obtained by pulling back D by the corresponding
composition of elements. With this notation K∅ = D and K1 and K2 are as
above. K11 = H−1

1 (K1), and so on. Figure 19.5, which is a slightly enhanced
version of Figure 19.6, shows the situation.

D K1

K2

K11

K12

K21

K22

Figure 19.6: A few elements of ♥PX.

The diagonal edge of T is ∂0T . For this proof we set e1 = ∂0T . The element
h1 preserves e1. T and the element h2 preserves the corresponding edge e2 = γ(e1)
of the adjacent fundamental domain γ(T ). These two arcs meet at the origin. By
symmetry, ej bisects Kσ exactly when σ consists entirely of js. Call such disks bi-
sected disks . If σ does not consist entirely of a repeated digit, then Kσ is contained
in the interior of T ∪ γ(T ). From this we see that all components of ♥PX lies in
the interior of T ∪ γ(T ). The only points of ♥Y not in the interior of T ∪ γ(T ) are
the ones contained in every bisected disk. But these are just the two endpoints. �

Given the way that Γ acts T∪D, we see that Γ(♥Y ) is an embedded pentagonal
loop which connects the irregular fixed points of H.
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19.4. Preimages of the Pentagon

Let L denote the disk 1 bounded by ♥ΓY and let ♥∂L = Γ(♥Y ) denote its
boundary. The preimage H−1(♥∂L) consists of 6 embedded loops, ♥∂L1, ...,♥∂L6.

D

K1

Figure 19.7: ♥∂L and ♥∂L1.

Figure 19.7 illustrates the following lemma.

Lemma 19.8. The following is true for each i = 1, 2, 3, 4, 5, 6. Let vi be the
vertex of ♥∂L and ♥∂Li. The two edges of ♥∂Li incident to vi are contained in
the two edges of ♥∂L incident to vi and the remaining points of ♥∂Li (except for
the endpoints of the two special edges) are disjoint from ♥∂L.

Proof: We have

(19.3) Li ⊂ Ki, i = 1, ..., 6.

Hence these loops are pairwise disjoint. Since K3∩♥Y = ∅ we have K3∩♥∂L = ∅.
Hence ♥∂L3 ∩ ♥∂L = ∅. Figure 19.7 shows ♥∂L1 and ♥∂L.

By construction, h1(♥Y ∩K1) = ♥Y . But then ♥Y ∩K1 is one of the edges
of ♥∂L1. A second edge of ♥∂L1 is R(♥Y ∩K1). The remaining edges are disjoint
from ♥∂L because

♥∂L− (♥Y ∩K1)−R(♥Y ∩K1)

is disjoint from K1. �

Recall that ♥JC = B(JC), where JC is the Cantor set from Theorem 1.5.

Lemma 19.9. ♥JC ⊂ L.

Proof: The irregular fixed points of ♥∂L are contained in L. They are the vertices
of ♥∂L. Since Li ⊂ L for all i, we see by induction that any point of ♥JC in the
grand pre-image of the irregular fixed points is contained in L. That is, ♥JC ∩ L
contains all the points which map to irregular fixed points under some power of H.
But this set is dense in ♥JC and L is closed. Hence ♥JC ⊂ L. �

In the next chapter we will show the stronger result that ♥J ∩D ⊂ L.

1Our notation convention is such that we write L rather than ♥L because only ∂L is a subset
of ♥J . However, we will write ♥∂L.
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19.5. The First Connector

Now we move to Part 3 of the proof. We find an arc of ♥J which remains in
♥J ∩ D and joins the point a1 in Figure 19.6 to the cone point s. We play the
same game that we played for the arc ♥X, except that we change the names of
some of the points and the elements. This time we let h = H011. We check that
h(a1) = (1, 1). We define ♥I as above.

(1,1)

d

c
T2

Figure 19.6: ♥∂L and ♥∂L1.

The same arguments as above show that

• ♥I cannot exit T ∩D.
• An interior point of ♥I cannot lie on the boundary of T .
• ♥I cannot have a cone point in the interior of T ∩D.
• ♥I cannot have its endpoint on the diagonal edge of T . This time the
problem is that h(a1) = d rather than c.

• ♥I cannot have its endpoint on a point of ∂2T to the left of s because the
piece ♣S14 blocks it.

• ♥I cannot have its endpoint on a point of ∂2T that lies to the right of s.
This time the problem is that h(a3) = (1, 1) rather than c.

The only possibility is that ♥I has its endpoint at s. This is what we wanted.
Since ♥I consists entirely of band points, except for its endpoints, we see that ♥I
intersects the loops ♥∂L and ♥∂L1, ...,♥∂L6 only at the endpoint a1.
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19.6. The Second Connection

Now we find a connected arc that stays inside the partition piece ♣S13 and
connects the two vertices s and t. We repeat Figure 17.3 here and include a small
side picture which shows all the previous arcs schematically.

13

4

5
7 6

s

2

Figure 19.8: The pieces ♣S11, ...,♣S17.

Lemma 19.10. ♣S13∩♥J contains an arc which connects t to an interior point
of ♣S13 and maps into the canonical loop under a primary element.

Proof: The bottom strand β of ♥J ∩ T −D is a subset of ♥W . Let h = H041.
This map blows t up to the vertical line ν through (φ2, φ2). Let e1 and e2 be the
two lines through t containing the edges of ♣S13 incident to t. Let t1 and t2 be
the corresponding points on the exceptional fiber. We check that h(t1) lies above
the diagonal line, and hence above β. We also check that h(t2) lies in the partition
piece F , and hence below β. Finally, we check that h(t3) lies between h(t1) and
h(t2) for some point t3 on the exceptional fiber corresponding to a line that points
into ♣S13.

Geometrically, this situation implies that h maps some initial segment e′1 of e1
above β and h maps some initial segment e′2 of e2 below β. (Here we mean that e′i
and e′2 both have t as an endpoint.) As long as we choose e′1 and e′2 small ebough,
h will map every segment connecting a point on e′1 to a point on e′2 to an arc which
intersects β. Hence, points in ♣S13 arbitrarily close to t lie in the preimage of
♥W . But then, using the fact that t is a cone point, we see that these points are
connected to t by arcs in ♥J once they are close enough to t. �
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Now we play the same game that we played for the first connector. We start
with some small arc in ♣S13 that has one endpoint at t and lies in the preimage of
♥W . We let ♥I denote the maximal arc containing this initial arc and consisting
entirely of band points.

Lemma 19.11. ♥I cannot exit ♣S13 except at the points s and t.

Proof: ♣S13 is flanked on either side by ♣S14 and ♣S15 which are disjoint from
♥J except at s and t. This means that ♥I cannot exit ♣S13 except at s or t. �

Lemma 19.12. ♥I cannot have an endpoint in the interior of T ∪D.

Proof: This is the same argument as in Lemma 19.4. Such a point would have to
be a fixed point of an involution in Γ. �

Lemma 19.13. ♥I cannot make a loop connecting t to itself.

Proof: The element h3 : ♣S13 → R2 is a local diffeomorphism. The restriction
h3 : ♥Io → R2 has the property that h3(♥Io) consists entirely of band points.
Hence h3(♥Io) misses the points in R2 which we blew up to make the manifold M .
So, we can think of h3 as a local diffeomorphism from ♥Io to M . But then h3(♥Io)
gives a regular parameterization of some arc of ♥W . This arc connects two cone
points of ♥W without hitting a vertex of ♥W . This situation is impossible: Every
two cone points of ♥W are separated by vertices of ♥W . �

The only possibility is that ♥I connects s and t. None of the previous arcs
drawn can cross the edges of ♣S13, so our arc here is disjoint from all the previous
arcs we have constructed, except that it shares the endpoint s with the arc from
the previous section.

19.7. The Third Connector

There is a vertex a2 of K3 on the edge ∂2T . In this section we find a connected
arc of ♥J which joins a2 to t and remains inside T ∩ D. Figure 19.9 shows a
schematic picture of this arc and the ones we have already described.

Figure 19.9: The three connectors



172 19. THE EMBEDDED GRAPH

Let h = H111. We check that h(a2) = (1, 1) and that h is a local diffeomor-
phism in a neighborhood of a2. We also check that the component of h−1(♥W1)
ending on a2 initially moves into D ∩ T from the boundary. We let ♥I denote the
maximal strand that contains the initial part of this component and has an interior
consisting entirely of band points. The same arguments as in previous sections
show that the interior of ♥I lies in T ∩ D and the endpoint of ♥I lies on one of
the two sides of T .

Lemma 19.14. The endpoint of ♥I cannot lie on the edge ∂2T .

Proof: We suppose that this is the case and derive a contradiction. Let α be the
endpoint of ♥I. The piece ♣S14 blocks ♥I from reaching and point on ♣S14∩∂2T .
We check that h is defined and a local diffeomorphism in a neighborhood of the
closed segment which connects (0, 0) to the left endpoint of ♣S14. But then h is
defined at α and h(α) is a cone point.

Recall that γ is the involution which fixes ∂2T . The same arguments as above
now say that h maps ♥I ∪ γ(♥I) onto ♥W1, sending each endpoint of this doubled
interval to an endpoint of ♥W1. But both endpoints of ♥I ∪ γ(♥I) are a2. This is
a contradiction. �

Now we know that ♥I has its endpoint on the diagonal ∂0T .

Lemma 19.15. The endpoint of ♥I must be t.

Proof: Let Λ0 and Λ1 respectively denote the arcs of the main diagonal ∂0T which
join t to (0, 0) and (1, 1). The endpoint of ♥J certainly must lie on Λ1∪Λ2, because
(0, 0) lies in the interior of the small disk L3 and (1, 1) is the far vertex of the small
disk L1. See Figure 19.9. We check that h is defined on the interior of Λ1 and Λ2

and h maps these two segment interiors into ∂2T , the bottom edge of T . But every
point of ∂2T either lies in D or in a partition piece consisting entirely of preconvex
points. Moreover, no point of ∂2T is a vertex of D. That is, ∂2T does not intersect
the orbit Γ(1, 1). If the endpoint of ♥I lies in the interior of Λj , then h maps this
endpoint into D − Γ(1, 1) and not into ♥W . This is a contradiction. �

Since ♥I consists entirely of band points except for its endpoints, ♥I is disjoint
from all the arcs we have already drawn, except at its endpoints.

Before we leave this section, we extract one more piece of information which
will be useful later.

Lemma 19.16. The only point of ♥J on ∂0T strictly between the disks L1 and
L3 is the point t.

Proof: We keep the notation from the previous lemma. Let Λ′
0 denote the smaller

arc of Λ0 which connects a boundary point of L3 to t. Let Λ′
1 denote the smaller

arc of Λ1 which connects a boundary point of L1 to t. We first consider Λ′
0. We use

the cone test to check that the restriction of h to the interior of Λ0 has the following
property: dh(1, 1) ·(1, 0) ≥ 0. So, the image h(Λ′

0) moves along ∂2T rightward from
the image h(Λ′

0 ∩L3), which is the rightmost point of ∂2 ∩♥J . So, h maps the rest
of the interior of Λ′

0 to the right of this point, and no such point lies in ♥J . The
same argument works for Λ′

1 except that this time we have dh(1, 1) · (1, 0) ≤ 0. �
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Remark: After reading the last proof, the reader might wonder how t manages to
land in ♥J . What is going on is that h blows up at t, and arcs of ♥J reach t from
directions not tangent to ∂0T .

19.8. The End of the Proof

We let Z denote the union of the 3 arcs we have identified in the previous
sections. Figure 19.10 shows Z as well as the loops ♥∂L and ♥∂L1, ...,♥∂L6. The
union of these loops and Γ(Z) is precisely the seed for the graph G. Note that Z
is drawn with medium thick black lines in the figure.

The primary element hi is invertible on the disk Li and h
−1
i maps the seed we

have constructed into a smaller copy of the seed whose outer loop is ♥∂Li. We now
pull back these smaller seeds, and so on. Continuing this process indefinitely, we
produce a homeomorphic copy ♥G of the graph G.

By construction, all arcs of ♥G are obtained by pulling back arcs of the funda-
mental loop ♥W . Moreover, ♥W is forward invariant in the sense that h(p) ∈ ♥W
for each primary map h and each p ∈ ♥W where h is defined. Hence ♥G ∪ ♥W is
forward invariant.

a1

s

t

a2

Figure 19.10: The seed.





CHAPTER 20

Connectedness of the Julia Set

20.1. The Region Between the Disks

Let ♥G denote the embedded copy of the graph G considered in the last two
chapters. We call the main component of ♥J the one which contains ♥G. This
component contains all of ♥G and also all of ♥J−D. Here we are using the fact that
♥J −D is essentially a solenoid and hence connected. If ♥J is not path connected,
then there is some second path component ♥Ψ and derive a contradiction.

D

Figure 20.1: Ω with its three vertices and special point highlighted.

175
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Recall that L is the disk bounded by the pentagonal loop ♥∂L constructed in
the previous chapter, D is the big disk from §12.5, and ♥J is the Julia set. Our
first step is to show that ♥Ψ cannot lie in D−L. Indeed, we will prove the stronger
result that ♥J is disjoint from

(20.1) Ω = (D − L) ∩ T

The set Ω is a fundamental domain for the action of Γ on D −L, so by symmetry
♥J cannot intersect D − L.

We think of Ω as a topological triangle, with vertices a, b, c.

(1) The side ac belongs to ∂D. We have already seen that ∂D intersects ♥J
only at the vertices. Hence, a = (1, 1) is the only point of ab which in-
tersects ♥J . Again, the proof is that the rest of D ∩ T is contained in
partition pieces consisting entirely of preconvex points.

(2) The side bc belongs to the bottom edge ∂2T of the fundamental domain
T . Note that H111(b) = q, the cone point on the main diagonal. This
point is the lower vertex of ♣A. Moreover, H111 maps the rest of Ω∩∂2T
into the interior of the segment on the main diagonal bounded by the two
special points p and q. These points are contained in ♣A− q and do not
lie in ♥J . Hence bc intersects ♥J only at b.

(3) The edge ab is half the arc ♥Y used to construct the disk L and its
boundary ♥∂L. As the notation suggests ab lies entirely in ♥J . The
special point d in Figure 20.1 is the endpoint of the generator ♥X. We
will denote the edge ab by ♥∂L ∩Ω.

For the rest of this section, we set h = H141. In the section following this one,
we prove the following result.

Lemma 20.1 (Local Diffeomorphism). The following is true.

(1) h is a local diffeomorphism from from the closure of Ω into R2.
(2) h(Ω) is disjoint from the 3 points we blew up to create the manifold M .
(3) h(Ω) ∩ L = ∅.

Definition: It might happen that p ∈ Ω is such that h(p) ∈ D − L. We call a
point p ∈ Ω good if h(p) ∈ R2 −D.

Lemma 20.2. If ♥J ∩Ω contains a point, then ♥J ∩Ω contains a good point.

Proof: Let p0 ∈ ♥J ∩Ω. Either h(p0) ∈ R2 −D or else there is some γ0 ∈ Γ such
that γ0h(p0) = p1 ∈ ♥J ∩Ω. Either h(p1) ∈ R2 −D or else there is some γ1 ∈ Γ
such that γ1h(p1) = p2 ∈ ♥J ∩ Ω. Continuing this way we produce a sequence
p0, p1, p2, ... Since p0 6∈ ♥JC, Theorem 1.6 says that this sequence cannot go on
forever. Eventually we have pn ∈ ♥JA. So, some point in our sequence is good. �

We suppose that p ∈ Ω ∩ ♥J is good and we derive a contradiction. Since
♥JC ⊂ L, we know that p is either a cone point or a band point. Just perturbing a
little bit and using the openness of the goodness condition, we can assume without
loss of generality that p is a band point.
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Lemma 20.3. Some C1 arc of ♥J ∩Ω connects p to a point of ♥∂L ∩Ω.

Proof: Let h = H141. Each point of ♥J −D is either a C1 band point or a basic
cone point. As we mentioned in §18.1, all the cone points here are Γ images of the
ones covered by Lemma 17.1. By the Local Diffeomorphism Lemma, the same goes
for all points of ♥J ∩Ω which are mapped by h into ♥J −D.

We know that h(p) ∈ ♥J−D. This means that all points of ♥J∩Ω sufficiently
close to p are C1 band points or basic cone points. Suppose we choose the strand
♥β of J through p and follow it around. First of all, note that ♥β cannot exit Ω
except by reaching L.

Suppose that ♥β never reaches L. Since ♥β cannot reach a point of the Cantor
set ♥JC, we see that h(♥β) cannot reach a vertex of D. The only preimages of
these vertices are in ♥JC. So, h(♥β) is stuck traveling around ♥J − D in a C1

way. But then ♥β endlessly travels around Ω in a C1 way as well.
One possibility is that ♥β is a C1 loop. But then h(♥β) is a C1 loop of ♥J−D.

There are no such loops, essentially by Theorem 1.10. Any C1 path in ♥J−D lifts
to a path in the solenoid, and the solenoid has no closed loops. So, this situation
is impossible.

The other possibility is that ♥β is a bi-infinite C1 path. But then h(♥β) is a a
bi-infinite C1 path in ♥J −D which never exits R2. This contradicts Lemma 17.5.

This contradiction shows that ♥β must reach L. �

Remark: This last result, on its own, rules out an extra connected component in
D−L. We do not stop with this result because we are also interested in knowing,
for its own sake, that ♥J does not intersect Ω. The reader who only cares about
the connectedness of ♥J can skip the rest of this section.

Continuing with the notation from the previous proof, we let ♥β be a C1 path
in ♥J∩Ω which connects a point x ∈ ♥∂L∩Ω to the good point p. Now we inquire
more carefully about the nature of the point x. We trim ♥β to that the interior of
♥β is contained in the interior of Ω.

Figure 20.2 shows the kind of conclusion we are trying to draw about β. The 3
arcs in Figure 20.2 emanating from p represent possibilities for β. Figure 20.2 also
shows an auxiliary arc ♥Z which will play an important role in the next lemma.

x

x

Figure 20.2: β connecting p to one of 3 endpoints.
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Lemma 20.4. x is one of the two vertices of Ω which lie on L.

Proof: Note that x cannot lie in the interior of ♥X, because the interior of this
arc consists entirely band points. Nothing can attach to it. So, if x is not one of
the vertices of Ω, or the special point, then x ∈ K1. (Here K1 is one of the 6
preimages of D under primary maps constructed in §12.5 and considered in the
last chapter. See Figure 19.6.) In other words, referring to the homeomorphism φ
from ♥Y to [0, 1] constructed in the last chapter, φ(x) < 1/3. This gives us the
following situation

(20.2) h(x) ∈ Do, h(p) ∈ R2 −D.

This means that h(♥β) connects a point in the interior of D to a point outside D.
But then h(♥β) contains a vertex of D in its interior. But then β contains a point
of ♥JC in its interior. This is a contradiction.

We have not yet ruled out the possibility that x is the special point of Ω. We
will assume this and derive a contradiction. The property we will use is that there
are only two arcs of ♥J ∩ T − D which limit on (1, 1). One of these arcs is the
bottom strand of ♥J ∩ T −D and the other one is the reflection of this strand in
the main diagonal.

Call an arc ♥A special if ♥A limits on x and ♥H031(A) ∈ ♥J ∩T −D. There
are only 2 special arcs because H031 is a diffeomorphism in a neighborhood of x
which maps x to (1, 1). One of the special arcs is ♥X. We check that H031 is an
orientation reversing diffeomorphism near x, and this forces the second special arc,
♥Z, to lie outside Ω. But our arc ♥β is also special, and this would give a third
special arc. This is a contradiction. �

Starting at p, we can follow the arc β in either direction. Applying the above
lemma to both endpoints, we see that the arc β contains the good point p ∈ ♥J ∩Ω
and has both endpoints at the vertices of Ω.

Lemma 20.5. At least one endpoint of ♥β must be (1, 1).

Proof: If this is false, then both endpoints of ♥β lie on the cone point

x = ∂2T ∩ ♥∂L.
Since h is a local diffeomorphism even at the endpoints of ♥β, we can extend ♥β to

a slightly longer path ♥̂β and consider the image h(♥̂β). If we just extend a little

bit we can guarantee that h(♥̂β) ⊂ R2. The path h(♥̂β) contains some points of

♥J − D and no vertices of D. Hence h(♥̂β) ⊂ ♥J − D. This path is a regular
parameterization of some C1 arc of ♥J ∩D which continues around long enough

to encounter the same cone point twice. But then h(♥̂β) must enter into at least

11 consecutive tiles of Γ(T ). By Lemma 17.5 the path h(♥̂β) contains some points
not in R2. This is a contradiction. �

Now we come to the final contradiction. We have

(20.3) H141(β
o) ⊂ ♥J −D.

Here βo is the set of points of β other than the endpoints.
But consider a very short initial arc ♥β′ of ♥β which emanates from (1, 1).

Since h = H141 is a local diffeomorphism in a neighborhood of (1, 1), so is every
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other primary element. In particular, this is true of the primary element H101.
What does this element do to ♥β′? Note that H101 fixes (1, 1) and maps a neigh-
borhood of ♥J − D diffeomorphically over itself near (1, 1). More precisely, near
(1, 1) the set ♥J ∩D lies between the bottom strand of ♥J emanating from (1, 1)
and to the right of the leftmost strand of ♥J emanating from (1, 1). The element
H101 maps these two extremal strands into themselves. Figure 20.3 shows the
situation.

D

Figure 20.3: ∂L and ∂L1.

But then

H101(♥β′) 6⊂ ♥J ∩D.

But then, by symmetry, the same goes for H141(♥β′). This contradicts Equation
20.3.

20.2. The Local Diffeomorphism Lemma

Now we prove the Local Diffeomorphism Lemma.
Let P be the convex hull of ♣S2 ∪ s. In Figure 20.4 below, P is the darkly

shaded pentagon. Our idea is to show that P has a special arc B running through
it that serves as a barrier between Ω and the tricky piece ♣S1. Here we study how
the map h = H131 acts on P ′ = P ′ − s.
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s
A16

Figure 20.4: The pentagon P and the curve B.

Lemma 20.6. h is defined, finite, and a local diffeomorphism on P . Moreover,
throughout P − s the differential maps lines of slope in [0, 1/2] to timelike lines.

Proof: Let h = H131. We use the denominator test coupled with the subtraction
trick to show that h is defined and finite on P − s. We use the area test to check
that that det(dh) ≥ φ−2 on P ′. Hence h is a local diffeomorphism on P ′. We use
the cone test to check the last claim. �

We define the top edge of P to be the edge of P opposite s in the combinatorial
sense. This edge has slope in (0, 1/2).

Lemma 20.7. h−1(∂2T )∩P is a smooth arc connecting s to the top edge of P .

Proof: We define the left edges of P to be the two edges connecting s to the top
edge and staying to the left. We define the right edges of P similarly.

We use the exclusion test to check that h maps the left edges of P entirely
below ∂2T and the right edges of P entirely above ∂2T . We use the confinement
test to check that

h(P ′) ⊂ [0, φ2]× [−20, 20].

Hence h(P ′) is contained in strip bounded by the lines x = 0 and x = φ6, which is
the vertical edge of T . These properties, together with the timelike nature of the
images of the leaves of our foliation, guarantee that each leaf intersects h−1(∂2T )
exactly once. Hence this set is a curve which connects s to the top edge of P . Since
h is a local diffeomorphism, this curve is smooth. �
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Lemma 20.8. h−1(∂2T ) contains an arc B such that h(B) has one endpoint at
the vertex b of Ω and otherwise lies to the right of b on ∂2T .

Proof: Since h is a local diffeomorphism in P ′ we see that the restriction of h to
h−1(∂2T ) gives a regular parametrization of a segment of ∂2T . In other words, h
is injective on h−1(∂2T ). We check by direct calculation that h maps some point
e ∈ ♣S2 to b. Let B be the portion of h−1(∂2T ) connecting s to e. Given the
injectivity of h we see that h(B−e) either pies to the left of b or to the right. Given
that h is orientation preserving in P ′ we see that h(B − e) lies to the right of b. �

Lemma 20.9. The arc B intersects ♥J only at its endpoints.

Proof: It suffices to prove that there are no points of J on the bottom edge ∂2T
which lie to the right of b. We already know that the side of bc of Ω contains no
points of ♥J except b. The points of ∂2T to the right of ∂D lie in ♣B ∪♣F ∪♠C.
We have already seen that this union is disjoint from ♥J . �

There are 5 special cone points on ♥∂L which are fixed points of involutions
in Γ. These points come between the vertices of ♥∂L. We call these points the
symmetric cone points . We define 5 symmetric cone points on each loop ♥∂Li by
pulling back the symmetric cone points by suitable primary elements.

Lemma 20.10. ♥∂L ∩Ω is disjoint from ♣S1.

Proof: Our argument refers to Figure 20.4. We have

(20.4) ♥∂L ∩Ω ⊂ ♥X ∪ ♥∂L1.

Since L1 ⊂ K1 and K1 ∩ ♣S1 = ∅ the last set in Equation 20.4 is disjoint from
♣S1. Hence, it suffices to prove that ♥X ∩ ♣S1 = ∅. This is what we will do.

Consider the arc B. The endpoint e of B is a symmetric cone point of ♥∂L1

because h(e) = b, which a symmetric cone point of ♥L. The generator ♥X starts
to the right of B at the vertex d of L1 and ends to the right of B at a point c ∈ ∂2T .
Given that ♥X is disjoint from L1 except at its endpoint, we see that ♥X must
stay to the right of B. But then B blocks ♥X from entering and partition pieces
to the right of B. This includes the partition piece ♣S1. �

Let

(20.5) ♣S′ = ♣S2 ∪ ♣S3 ∪ ♣T
denote the union of all the tiles of ♣Q which lie to the right of ♣S1. By the result
in the previous section, Ω ⊂ ♣S′ − s. We use the area test to show that h = H141

is a local diffeomorphism on ♣S′ − s. Using the confinement test, we check that
h(♣S′ − s) lies beneath the line λ3 studied in §18.4 and to the left of the y-axis.
This quadrant contains no blowup points.

To finish the proof of the Local Diffeomorphism Lemma we just have to show
that h(Ω) lies outside the disk L. We already have shown that all primary elements
map the pieces ♣S2 and ♣S3 outside the larger disk D. So, we just have to show
that h(Ω ∩ ♣T ) lies outside L.
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In the proof of Theorem 1.5, and we showed that H101 : ♣T → R2 is a
diffeomorphism. Since H101(L1) = L and Ω lies outside of L1, we see that

(20.6) H101(Ω ∩ ♣T ) ∩ L = ∅.
Since L is Γ invariant, we see that this same result holds with h in place of H101.
This finishes the proof of the Local Diffeomorphism Lemma.

20.3. A Case by Case Analysis

.
Now we know that our bad component Ψ lies somewhere in the disk L. Using

the action of H we can assume without loss of generality that ♥Ψ ⊂ L − ⋃
Li.

That is, ♥Ψ is entirely contained in the region we called the seed at the end of §19.
See Figure 19.10.

Note that ♥Ψ must be contained in the complement of ♥G. Looking at Figure
19.10 we see that ♥Ψ must be contained in two consecutive fundamental domains
for Γ. Moreover, by Lemma 19.16, the only point in the seed which lies on the
main diagonal and in ♥J is the point t. Hence ♥Ψ cannot intersect the diagonal
edge of T . From this fact, and from symmetry, we can assume that

(20.7) ♥Ψ ⊂ T ∪ γ(T ),

where γ ∈ Γ is the stabilizer of the ∂2T
Now we rule out the various possibilities for where the bad component ♥Ψ

might be. The pieces here refer to the partition of the piece ♣S1 used in the proof
of Theorem 1.8. See Figure 19.8 or Figure 20.5 below. We treat these pieces in an
order which makes the proofs run as smoothly as possible. Lemma 17.5 is going to
be the workhorse for us. Again, this result says that an infinite C1 path in ♥J −D

must exit R2. Moreover ♥J −D has no C1 loops.

Lemma 20.11. ♥Ψ cannot intersect ♣S14, or ♣S15.

Proof: We have seen already that ♥J only intersects ♣S14 and ♣S15 at the points
s and t which belong to the main component. �

In order to apply Lemma 17.5 effectively, we want to avoid the points of R2

which we blew up to get the manifold M . We call a map h : X → R2 clean if h(X)
does not contain the 3 points we blew up to create the manifold M .

Lemma 20.12. ♥Ψ cannot intersect ♣S13.

Proof: The only points on ∂♣S13 which do not lie in ♣S14 ∪♣S15 are the vertices
s and t. So, if ♥Ψ intersects ♣S13 then ♥Ψ ⊂ ♣So

13. Our proof in Lemma 18.4
shows that every point of ♥J∩♣So

13 is either a C1 band point or a basic cone point.
That is, the strands of ♥J can be continued through the cone points uniquely in a
C1 way.

Let h3 = H131. We showed already that h3 is a local diffeomorphism on ♣S13,
and in the remark following Lemma 18.4 we checked that h3 is clean on ♣So

13.
Finally, we know that h3(♣S13) is disjoint from D.

Now let ♥β be a maximal C1 arc in ♥J ∩ ♥Ψ. We get ♥β by moving along
the strands of a Cantor band until we reach a cone point, then continuing through
in a C1 way, and so on. If ♥β exits ♣S13 then ♥β contains s or t and we see that
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♥Ψ is part of the main component. So, ♥β must either be a loop or a bi-infinite
path contained in the interior of ♣S13. We will rule out either case.

Since h3 is a local diffeomorphism that is clean on ♥β, the image h3(♥β) is a
regular parameterization of a C1 arc of ♥J − D. Since there are no C1 loops in
♥J −D we see that ♥β cannot be a loop. Hence h3(♥β) is a bi-infinite path. But
then h3(♥β) leavesR2 by Lemma 17.5. This contradicts the fact that h3(♥β) ⊂ R2.
�

Lemma 20.13. ♥Ψ cannot intersect ♣S17.

Proof: We know from Lemma 18.9 that ♥J does not intersect ∂♣S17 − t. Hence
♥Ψ cannot intersect ∂♣S17. If ♥Ψ intersects ♣S17, then ♥Ψ ⊂ ♣So

17. The analysis
in §18.3 shows that every point of ♥J ∩ ♣S17 is either a C1 band point or a basic
cone point. That is, the tangent lines are defined even at the cone points. Thus,
we may choose a maximal C1 arc of ♥Ψ. From the analysis in §18.3 we see that
this arc is transverse to the horizontal foliation. Hence, there is one direction of or
arc which must exit at t. But then ♥Ψ is in the same path component as the main
path component. �

Let ♣X denote the region of the piece ♣S which is the convex hull of the origin
and ♣S12. In other words, ♣X is everything in ♣S lying to the left of the right
edges of ♣S12. Put another way, ♣X is the union of ♣S12 and everything to the
left of ♣S1. The shaded region in Figure 20.5 is ♣X.

Lemma 20.14. ♥Ψ cannot intersect ♣X.

Proof: We first outline the proof and then we give the details.

(1) We show that ♥Ψ is contained in the interior of ♣Y = ♣X ∪ γ(♣X).
(2) Let h = H111. We show that h is a clean local diffeomorphism on ♣Y o.
(3) We show that h(♥Ψ) ∩D = ∅.
(4) We use the same C1 arc trick as in the previous proofs.

Step 1: The right edges of ♣S12 coincide with the left edges of ♣S17, and we have
shown that the left edges of ♣S17 do not intersect ♥J except at the point t. So, if
♥Ψ intersects ♣X, then ♥Ψ ⊂ ♣Y . Now, the boundary of ♣Y consists of points
on the diagonal, points on the image of the diagonal under γ, and points on the
right edge of ♣S12. From what we have already said above, and symmetry, ♥Ψ
cannot intersect any of these sets. Hence ♥Ψ ⊂ ♣Y o.

Step 2: We use the area test to show that − det(dh) ≥ φ−1 on ♣X − t. Hence h
is a local diffeomorphism on ♣X − t. We use the confinement test to check that

(20.8) h(♣X − t) ⊂ T −♣A,

This piece contains no blowup points. Hence h is a clean map. From the equation
h ◦ γ = R ◦ h and the fact that R preserves the set of blowup points, we see by
symmetry that h is a clean local diffeomorphism on ♣Y o.



184 20. CONNECTEDNESS OF THE JULIA SET

s
Figure 20.5: The set ♣X is shaded. The numerical label k denotes ♣Sik.

Step 3: We have already seen in §12.3 that h is a diffeomorphism on the portion
of ♣X lying to the left of ♣S12. This is the partition piece ♣R. Moreover, h maps
the disk L3 onto L. Since ♥Ψ lies outside L3, we conclude that h(♥Ψ∩♣X−♣S12)
lies outside L. Since this set lies in ♥J , we see that

h(♥Ψ ∩ ♣X −♣S12) ∩D = ∅.

If h(♥Ψ) ∩D contained a point, then we could connect a point in ♥J ∩D to
a point in ♥J −D. by a path in h(♥Ψ). But then some point of h(♥Ψ) would be
a vertex of D. But then some point of ♥Ψ would lie in ♥JC. This is a contradic-
tion. Hence h(♥Ψ∩♣X)∩D = ∅. By symmetry, the same goes for h(♥Ψ∩γ(♣X)).

Step 4: Now we have the usual contradiction. All the points of ♥Ψ are C1 band
points and basic cone points. So we let ♥β be a maximal C1 arc in ♥Ψ. This arc
must either be a loop or a bi-infinite path. Either case leads to the same contra-
diction as in previous lemmas. �

We treat the remaining pieces all at once. Figure 20.6 below shows the region
of interest to us. We again call this region ♣X. This the subset of ♣S lying to the
right of ♣S14.

Lemma 20.15. ♥Ψ cannot intersect ♣X.
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s

u

S14
t

Figure 20.6: The region ♣X.

Proof: ♥Ψ cannot intersect the top edge of ♣X, because this edge lies in the main
diagonal. ♥Ψ cannot intersect the left edges of ♣X because these coincide with the
right edges of ♣S14, which only intersect ♥J at t. Next, ♥Ψ cannot intersect the
right edge of ♣S because the only point in this edge contained in ♥J is a vertex of
D.

Now we deal with the bottom edge. The point u in Figure 20.6 is a symmetric
cone point on ♥∂L. The image H111(su) is contained in the open edge of the
partition piece G that lies on the diagonal. From our proof of Theorem 1.6 we see
that H111(su) is disjoint from ♥J . Hence the open segment su is disjoint from ♥J .
We have already seen that there is no point of ♥J lying to the right of u. Since
both s and u belong to the main component, we see that ♥Ψ cannot intersect the
right edge of ♣X.

Now we know that ♥Ψ ∈ ♣Xo. Let h = H141. We use the area test to check
that det(dh) ≥ φ−2 on ♣Xo. Hence h is a local diffeomorphism on ♣Xo. We use
the confinement test to show that h(Xo) lies to the left of the y-axis and below
the line λ3 from §18.4. This region contains no blowup points. Hence h is clean on
♣Xo.

The C1 loop trick finishes the proof. �

We have ruled out all the possibilities, so ♥Ψ cannot exist. Hence ♥J is path
connected.
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20.4. The Final Picture

Figure 20.7 unites all our previous schematic pictures of ♥J sitting inside M .
The space M is the identification space formed from the 5-gon and the 15-gon using
the indicated edge gluings. Compare Figure 10.5. Some subtle shading indicates
the fundamental domain T . ♥J comes in two pieces, ♥S and ♥J ∩ L. Here
L = Fill(♥G) is the filled-in ♥G. The two pieces of ♥J meet at the 5 black vertices
of L, the orbit Γ(1, 1). The piece ♥S is the blown-down solenoid, and the piece
♥J ∩L is a kind of thickening of the infinite graph ♥G obtained, roughly speaking,
by attaching additional Cantor bands to the vertices of ♥G. The star-regular class
(0, 0) is located at the center of L and is the central point of ♥G.

1

1

2

3

4
5

2

3

4

5

q

W1

b

Figure 20.7: Schematic picture ♥J inside M .

The shaded pentagon C is the set of convex classes in M . The center of C is
the point (∞,∞), the regular class. The shaded region C ′ has the property that
C ∪C ′ is the connected component of M − ♥J which contains the regular class.
The sets C and C ′ are attached by the gluings of the edges a, b, c, d, e.

The projective heat map carries ∂(C ∪C ′) into itself. This set consists of two
“pentagonal” loops which meet at their 5 vertices to form the complete graph K5.
It seems fitting that this significant subset of the Julia set makes the same pattern
(without the self-intersections) as the union of a pentagon and its pentagram.



CHAPTER 21

Terms, Formulas, and Coordinate Listings

21.1. Symbols and Terms

This section functions somewhat like an index. We list (many of) the main
symbols and terms used in the monograph and sometimes give a short reminder as
to what they are and where they are discussed. The terms are grouped by topic
rather than alphabetically.

Maps:
H: The projective heat map. See Equation 1.1.
B: the change of coordinates. See Equation 1.2.
G: The Gauss recurrence. See Equation 3.16.
R: R(x, y) = (y, x).
Γ: The order 10 group generated by G and R. See §3.8.
H = BHB−1.
Γ = HΓB−1.
G = BGB−1.
R = BRB−1 = R.
Hijk = RiGjHk.
Primary maps: The ten maps Hij1. See §10.5
S: The semigroup generated by the primary maps. See §10.5.

Sets of Polygon Classses
C: The space of projective equivalence classes of convex pentagons. See §9
C∗: The space of projective equivalence classes of star-convex pentagons. See §9
P: The space of projective equivalence classes of pentagons. See §10.1.
N : The space of projective classes of nonconvex pentagons. See §10.1
N = B(N ): space of nonconvex classes. See §10.2.
T : Fundamental domain for the action of Γ acting on N . See §10.2.
∂0T : The diagonal side of T . See Figure 10.3.
∂1T : The vertical side of T . See Figure 10.3.
∂2T : The remaining side of T . See Figure 10.3.
M : The manifold obtained by blowing up (R ∪∞)2 at 3 points. See §10.6.
D: The big disk containing the Cantor set B(JC). See §12
D1, ...,D6: Smaller disk subsets of D. See §12.3.
K1, ...,K6: Subsets of D1, ...,D6 which map to D. See §12.5.
M : The global space in the B-coordinates – i.e. B(M). See §15.1.
L: Canonical subset of D; filled-in version of ♥G. See §19.
L1, ..., L6: Preimages of L under H. See §19.
Ω: Fundamental domain for the action of Γ on D − L. See §20.1.

187
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Subsets of the Julia Set
J : The Julia set; points in P which do not converge to C under iteration. See §1.3.
JC: The invariant Cantor set from Theorem 1.5.
JA: The invariant Cantor band from Theorem 1.9.
G∞: The infinite graph from Theorem 1.9.
♥J : This is the closure of B(J ), the subject of most of our theorems.
♥A: This is the Cantor band derived from Theorem 14.1.
♥A∗: This is the Cantor band which extends ♥A. See §16.1.
♥JA = Γ(♥A) = B(JA).
♥S: The blown-down solenoid from Theorem 1.10. See §17.
♥W : The canonical loop in ♥J . See §17.4.
♥W1: One fifth of ♥W . See §19.1.
♥X: An arc of ♥Y called “the generator”. See §19.1.
♥Y : an arc in the boundary of ♥L. See §19.2.
♥∂L: The outer pentagonal cycle of G. See §19.3.
♥G = B(G), the image of the infinite graph from Theorem 1.9. See §19.8.

Some Topological Spaces:
Cantor band: Homeomorphic to the product of a Cantor set and (0, 1).
Cantor product: Homeomorphic to the product of a Cantor set and [0, 1].
Cantor cone: Homeomorphic to the cone on a Cantor set.
basic cone point: The blowdown of a Cantor product. See §15.3.
Smale Horseshoe: Classic hyperbolic dynamical system. See §6.4.
Quasi-Horseshoe: A generalization of the Smale horseshoe. See §6.5.
2-adic Solenoid. Mapping torus for the +1 map on the 2-adics. See §6.6.
BJK Continuum: 2-fold quotient of the solenoid. See §6.7.

Projective Geometry Notions:
polarity, duality: isomorphisms from the projective plane to its dual. See §3.3.
Cross Ratio Principle: connection between cross ratios of points and lines. See §3.4.
vertex, edge, flag invariants: projective invariants of a polygon. See §3.6.
Gauss Recurrence: A famous order 5 birational map of the plane. See §3.8.
Gauss Group: group generated by the Gauss recurrence and reflection. See §3.8.
Hilbert Metric: Projectively natural metric on a convex domain. See §3.5.
pentagram map: A projectively natural polygon iteration. See §5.
twisted polygon: A generalization of a polygon. See §5.6.

Computational Tests:
positivity criterion. See §9.3.
positive dominance algorithm. See §11.
denominator test: Tests that a function does not blow up in a domain. See §11.3.
area test: Gives lower bound on the jacobian of a map. See §11.4.
expansion test: Gives lower bound for metric expansion of a map. See §11.5.
confinement test: Checks that F (X) ⊂ Y . See §11.6.
exclusion test: Checks that F (X) ⊂ R2 − Y . See §11.7.
cone test: Checks that dF maps one cone into another. See §11.8
Stretch Test: Checks expansion properties of dF . §11.9
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21.2. Two Important Numbers

We have the two numbers

(21.1) φ =
1 +

√
5

2
, ψ =

1 +
√
13

2
.

We use φ all over the place and ψ occasionally. Often when we list the coordinates
of our partition pieces, we use the notation

(21.2) (a, b, c, d) = (a+ bφ, c+ dφ).

We will use this notation rather robotically, so that e.g. (1, 0, 1, 0) denotes the point
(1, 1).

21.3. The Maps

Here is the projective heat map.

H(x, y) = (x′, y′),

x′ =

(
xy2 + 2xy − 3

) (
x2y2 − 6xy − x+ 6

)

(xy2 + 4xy + x− y − 5) (x2y2 − 6xy − y + 6)

(21.3) y′ =

(
x2y + 2xy − 3

) (
x2y2 − 6xy − y + 6

)

(x2y + 4xy − x+ y − 5) (x2y2 − 6xy − x+ 6)

The Gauss group is generated by the elements

(21.4) G(x, y) =

(
y,

1− x

1− xy

)
, R(x, y) = (y, x).

The conjugating map is

(21.5) B(x, y) = (b(x), b(y)), b(t) = φ3
(

φ+ t

−1 + φt

)

Once we have this map, we set F = BFB−1 for each map F we consider.
The Gauss group Γ is the order 10 group generated by G and R.
The semigroup S is generated by the 20 elements

(21.6) Hijk = RiGjHk, i ∈ {0, 1}, j ∈ {0, 1, 2, 3, 4}, k ∈ {0, 1}.
When k = 0 these are elements of Γ. When k = 1 these are called primary maps .

21.4. Some Special Points

The vertices of the fundamental domain T are

(21.7) p = (φ6, φ6), (φ6,−φ−4), (φ−4, φ6).

The manifold M is obtained by blowing up (R ∪∞)2 at the three points

(21.8) p, (−φ4, φ2), (φ2,−φ4).
The Julia set J has 4 special cone points

q = (b(ψ), b(ψ)), r = (φ2, φ2) = (1, 1, 1, 1)

(21.9) s = (−φ2b(1− ψ), b(1− ψ)), t = (φ−2, φ−2) = (2,−1, 2,−1)
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21.5. The Cantor Set Pieces

Here are the partition pieces associated to the proof of Theorem 1.5.

♣R = (0, 0, 0, 0)(15,−9,−39, 24)(5,−3, 5,−3)

♣S1 = (s)(15,−9,−39, 24)(5,−3, 5,−3)

(33,−20, 33,−20)(−12, 8,−16, 10)(−7, 5, 11,−7)

♣S2 = (−5, 4, 14,−9)(s)(−7, 5, 11,−7)(−12, 8,−16, 10)

(27,−16,−11, 7)(11,−6,−3, 2)(16,−9,−5, 3)

♣S3 = (11,−6,−3, 2)(14,−8,−4, 3)(27,−16,−11, 7)

♣T1 = (22,−13, 2,−1)(−25, 16, 20,−12)(33,−20, 33,−20)(−12, 8,−16, 10)

♣T2 = (−20, 13, 36,−22)(27,−16,−11, 7)(14,−8,−4, 3)(22,−13, 33,−20)

♣T3 = (1, 0, 1, 0)(14,−8,−4, 3)(22,−13, 33,−20)(4,−2, 4,−2)

♣T4 = (22,−13, 33,−20)(4,−2, 4,−2)(33,−20, 33,−20)

(−25, 16, 20,−12)(22,−13, 2,−1)(−20, 13, 36,−22)

♣T5 = (27,−16,−11, 7)(−12, 8,−16, 10)(22,−13, 2,−1)(−20, 13, 36,−22)

♠U = (1, 0, 1, 0)(9,−7,−9, 7)(2,−3, 13,−7)(2,−3,−2,−3)(−20, 15,−2,−3).

21.6. The Horseshoe Pieces

Here are the regions used in the proof of Theorem 1.6.

21.6.1. The Quasi Horseshoe. Here are the coordinates of the 8 pieces
comprising the quasi-horseshoe domain.

♣P 1
1 = (−10, 11, 5, 0)(17,−5,−5, 6)(9, 0, 0, 3)(−10, 11, 2, 2)

♣P 1
2 = (−10, 11, 42,−23)(−1, 6,−2, 4)(17,−5,−5, 6)(−10, 11, 5, 0)

♣P 1
3 = (5, 0, 0, 1)(12,−3, 8,−4)(1, 4,−1, 2)(5, 0,−1, 2)

♣P 1
4 = (5, 0,−7, 5)(2, 3,−7, 5)(12,−3, 8,−4)(5, 0, 0, 1)

♣P 2
1 = (17,−5,−5, 6)(6, 3, 14,−6)(−2, 8, 11,−4)(9, 0, 0, 3)

♣P 2
2 = (−1, 6,−2, 4)(1, 6, 4, 0)(6, 3, 14,−6)(17,−5,−5, 6)

♣P 2
3 = (12,−3, 8,−4)(3, 4,−5, 4)(5, 3,−1, 2)(1, 4,−1, 2)

♣P 2
4 = (2, 3,−7, 5)(6, 2,−7, 5)(3, 4,−5, 4)(12,−3, 8,−4)
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21.6.2. The Outer Layer.

♣A = (5, 8, 6, 0)(5, 8, 5, 8)(qq)

♣B ∪ ♣C = (3, 1,−2,−3)(5, 8,−2,−3)(5, 8, 9,−5)(6,−2,−14, 8)

♣D = (−250, 0,−12, 8)(−2,−3,−12, 8)(−4, 0, 122,−75)

(122,−75,−4, 0)(−12, 8,−2,−3)(−12, 8,−250, 0)(−250, 0,−250, 0)

♠E = (0, 1, 1,−1)(6,−2,−14, 8)(3, 1,−2,−3)(−20, 15,−2,−3)

♣F = (1, 1,−7, 5)(5, 8,−7, 5)(5, 8, 9,−5)(6,−2,−14, 8)(0, 1, 1,−1)(11,−6,−3, 2)

♣G = (5, 0,−1, 2)(5, 8,−1, 2)(5, 8,−8, 7)(1, 6, 4, 0)

(−1, 6,−2, 4)(−10, 11, 42,−23)(2, 3, 28,−14)(3, 2, 14,−5)(q)(1, 1, 1, 1)

♣H = (5, 8, 6, 0)(q)(58,−32,−49, 34)(2, 3,−38, 27)

(−10, 11, 2, 2)(9, 0, 0, 3)(−2, 8, 11,−4)(5, 8, 1, 2)

Our program treats ♣B and ♣C as a single piece.

21.6.3. The Inner Layer.

♣I1 = (6, 3, 14,−6)(5, 8,−14, 11)(5, 8, 1, 2)(−2, 8, 11,−4)

♣I2 = (1, 6, 4, 0)(5, 8,−8, 7)(5, 8,−14, 11)(6, 3, 14,−6)

♣I3 = (3, 4,−5, 4)(5, 8, 16,−9)(5, 8,−1, 2)(5, 3,−1, 2)

♣I4 = (6, 2,−7, 5)(5, 8,−7, 5)(5, 8, 16,−9)(3, 4,−5, 4)

♣J1 = (2, 3,−1, 4)(−10, 11, 5, 0)(−10, 11, 2, 2)(2, 3,−38, 27)

♣J2 = (2, 3, 28,−14)(−10, 11, 42,−23)(−10, 11, 5, 0)(2, 3,−1, 4)

♣J31 = (6,−2, 4,−1)(4, 0, 0, 1)(5, 0, 0, 1)(5, 0,−1, 2)(1, 1, 1, 1)

♣J32 = (6,−2, 4,−1)(4, 0, 0, 1)(1, 1, 0, 1)(1, 1, 1, 1)

♣J4 = (1, 1,−7, 5)(5, 0,−7, 5)(5, 0, 0, 1)(1, 1, 0, 1)

♣K1 = (58,−32, 27,−13)(2, 3,−1, 4)(2, 3,−38, 27)(58,−32,−49, 34)

♣K2 = (3, 2, 14,−5)(2, 3, 28,−14)(2, 3,−1, 4)(58,−32, 27,−13)

♣L1 = (qq)(58,−32, 27,−13)(58,−32,−49, 34)

♣L2 = (qq)(3, 2, 14,−5)(58,−32, 27,−13)

♠Y1 = (3, 1,−2,−3)(3, 0,−15, 8)(15, 0, 15, 0)(5, 8, 5, 8)

♠Y2 = (5, 8,−2,−3)(3, 1,−2,−3)(5,−1, 13,−10)(12, 0, 12, 0)(5, 8, 5, 8).

21.6.4. The Last Three Pieces. Here are the coordinates of the last 3 pieces
of the partition.

♣M = (0, 1, 1,−1)(−5, 4, 14,−9)(16,−9,−5, 3)

♣N = (1, 0, 1, 0)(11,−6,−3, 2)(1, 1,−7, 5)

♣O = (1, 0, 1, 0)(1, 1,−7, 5)(1, 1, 1, 1)

Here are the coordinates of the auxiliary quadrilateral used for ♣M .

♠Y3 = (16,−6, 16,−6)(9, 0, 0, 3)(5, 8, 1, 2), (12, 0, 12, 0).

21.6.5. The Two Bridges. In §14.2 we introduced two more quadrilaterals
to help us with our analysis. Here they are.

♠Y 1 = (4, 0, 12,−10)(15,−7, 11,−9)(12, 0, 12, 0)(24,−7, 12, 0).

♠Y 2 = (3, 2,−4, 0)(4, 0,−4, 0)(15, 0, 15, 0)(7, 6, 15, 0).
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21.7. The Refinement

In our proof of Theorems 1.8, 1.9, and 1.11 we needed to subdivide the piece
♣S1 into 7 pieces. Here they are.

♣S11 = (−12, 8,−16, 10)(33,−20, 33,−20)(145,−89, 118,−73)(−7, 5, 11,−7)

♣S12 = (7,−4,−16, 10)(2,−1, 2,−1)(5,−3, 5,−3)

(15,−9,−39, 24)(38,−23,−99, 61)(12,−7, 42,−26)

♣S13 = (15,−9,−11, 7)(2,−1, 2,−1)(12,−7,−3, 2)(119,−73, 21,−13)(s)

♣S14 = (33,−20, 33,−20)(145,−89, 118,−73)

(s)(119,−73, 21,−13)(12,−7,−3, 2)(2,−1, 2,−1)

♣S15 = (25,−15,−68, 42)(2,−1, 2,−1)(15,−9,−11, 7)(s)

♣S16 = (−7, 5, 11,−7)(145,−89, 118,−73)(s)

♣S17 = (25,−15,−68, 42)(38,−23,−99, 61)

(12,−7, 42,−26)(7,−4,−16, 10)(2,−1, 2,−1)

21.8. Auxiliary Polygons

Here we list the two auxiliary polygons used in our proof of Theorem 1.8 which
we did not explain in the text.

♠Y = (−6, 5, 4,−2)(31,−18, 4,−2)(−44, 28), (29,−17)(8,−4, 29,−17).

♠Z = (87,−52, 26,−13)(33,−17, 0, 3)(−19, 19,−7, 3)(20,−7,−7, 3).
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