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Abstract

We prove that any sufficiently small perturbation of an isosceles triangle has a peri-
odic billiard path. Our proof involves the analysis of certain infinite families of Fourier
series that arise in connection with triangular billiards, and reveals some self-similarity
phenomena in irrational triangular billiards. Our analysis illustrates the surprising fact
that billiards on a triangle near a Veech triangle is extremely complicated even though
billiards on a Veech triangle is very well understood.

1 Introduction

This paper concerns periodic billiard paths in triangles. In some cases, quite a bit is known
about periodic billiard paths in triangles, and in some cases surprisingly little is known. For
example, it is still unknown if every triangle has a periodic billiard path.
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Figure 1.1: Periodic paths having combinatorial type 123 and 312321 and 2131.

One can show in elementary geometric ways that acute, right, and isosceles triangles
always have periodic billiard paths. The famous Fagnano path, which goes back to 1775,
exists on a triangle if and only if the triangle is acute. The Fagnano path has combinatorial
type 123, meaning that it hits side 1 of the triangle, then side 2, then side 3, and then closes
up. Assuming the sides are appropriately labelled, a periodic billiard path of combinatorial
type 312321 exists on a triangle if and only if the triangle is right and a periodic billiard
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path of combinatorial type 2131 exists on a triangle if and only if the triangle is isosceles.
Examples of these paths are shown in Figure 1.1.

Periodic billiard paths in right triangles have been fairly extensively studied. The path
312321, mentioned above, is part of a broader class of periodic billiard paths in right tri-
angles, introduced in [VGS92], which start out perpendicular to a side of the triangle. One
sometimes calls these “perpendicular billiard paths”. In [CHK95] it is shown that almost
every perpendicular billiard path is periodic. In [Tro05] this result is refined, for right tri-
angles with small angle lying in (π/6, π/4): For such triangles, all but one perpendicular
billiard path is periodic, and the union of these periodic perpendicular paths is dense in the
phase space. In [GZ03] and [Vor05], some classes of periodic billiard paths in triangles are
introduced and shown to be unstable – meaning that paths of the same combinatorial type
do not exist on nearby acute or obtuse triangles. Finally, in [Hoo07] it is shown that all
periodic billiard paths in right triangles are unstable.

Every rational triangle – i.e., a triangle whose angles are rational multiples of π – has
a periodic billiard path. Indeed, any given rational polygon has a dense set of periodic
billiard paths [BGKT98]. See also [Mas86] and [Vor05]. The subject of billiards on rational
polygons is a deep and extensive one. For instance, see [Vee89] for connections between
rational billiards and Teichmüller Theory. See [MT02] and [Tab95] for surveys on rational
billiards.

Much less is known about periodic billiard paths in obtuse, irrational triangles. The
paper [VGS92], the first to make serious inroads into this question, produces some infinite
families of stable periodic billiard paths in obtuse triangles. A periodic billiard path on a
triangle is called stable if all sufficiently nearby triangles have a combinatorially identical
periodic billiard path. The paper [HH00] continues the program started in [VGS92], pro-
ducing additional families of stable periodic billiard paths on obtuse triangles. The papers
[Hoo06], [Sch06a], [Sch06b] exhibit additional infinite families of periodic billiard paths for
some obtuse triangles. In particular, in [Sch06a], [Sch06b] it is shown that a triangle has a
periodic billiard path provided that all its angles are at most 100 degrees.

We already mentioned above that the periodic billiard path 2131 exists on any isosceles
triangle. Unfortunately, this path is unstable: It disappears as soon as we perturb the
triangle so that it is no longer isosceles. One might wonder if there is more to the story for
such perturbations. Here is the main result of this paper.

Theorem 1.1 Any sufficiently small perturbation of an isosceles triangle has a periodic
billiard path.

1.1 Overview of the Proof

The parameter space of (obtuse) triangles is an open triangle ∆ ⊂ R2, where the point (x, y)
corresponds to the obtuse triangle whose small angles are x and y radians. To each infinite
periodic word W , with digits in the set {1, 2, 3}, we assign the region O(W ) ⊂ ∆ as follows:
A point belongs to O(W ) if W describes the combinatorics of a periodic billiard path in the
corresponding triangle. By this we mean that we label the sides of the triangle 1, 2, and 3,
and then read off W as the sequence of successive edges encountered by the billiard path.
We call O(W ) an orbit tile and W a combinatorial type.
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The open line segment {x = y} ⊂ ∆ parametrizes the obtuse isosceles triangles. We
prove Theorem 1.1 by covering a neighborhood of this segment by orbit tiles. This innocent-
sounding approach gives rise to an extremely intricate covering involving infinitely many
combinatorial types. As we go along, we will try to explain why the complexity seems
necessary.

We define the Veech points

Vn = (π/2n, π/2n); n = 3, 4, 5... (1.1)

These points are special because they correspond to triangles which have Veech’s famous
lattice property [Vee89]. First of all, we will prove the following result.

Theorem 1.2 A point on the obtuse isosceles line lies in the interior of an orbit tile provided
it is not of the form Vn.

Theorem 1.2 involves a doubly-infinite family of tiles – with infinitely many tiles existing
between consecutive Veech points. See Figure 1.3 below. Experimentally, the family in
Theorem 1.2 seems to be the most efficient one by far. Theorem 1.2 focuses our attention
on the Veech points.

We find it useful to treat the points Vn in a uniform way. We decompose neighborhoods
of the Veech points into quadrants. Let B(ǫ) denote the ball of radius ǫ, centered at the
origin. Let B±,±(ǫ) denote the intersection of Bǫ with the open (±,±) quadrant. Now define

N±,±(n, ǫ) = Vn + B±,±(ǫ). (1.2)

Finally, let N(n, ǫ) denote the ǫ neighborhood of Vn.

Theorem 1.3 For each n ≥ 4 there are words An, Bn, and Cn, and some ǫn > 0 such that

• N−−(n, ǫn) ⊂ O(An).

• N−+(n, ǫn) ⊂ O(Bn)

• N+−(n, ǫn) ⊂ O(Cn).

• B(ǫn)−N++ ⊂ O(An) ∪O(Bn) ∪O(Cn)

The last statement is present to take care of the boundaries of the quadrants. See Figures 1.2
and 1.4 below. It is worth remarking that the words An are part of a larger family discovered
in [VGS92]. See also [HH00].

Theorem 1.3 focuses our attention on the regions N++(n, ǫ). Theorem 1.3 and Conjecture
1.6 together imply that these regions do not have finite covers by orbit tiles, at least when n
is a power of 2. We deal with all values of n at once, by introducing a doubly infinite family
{Wnk} of words. Here n = 4, 5, 6... and k = 0, 1, 2.... Figure 1.4 below shows some of the
corresponding orbit tiles for n = 4.

Theorem 1.4 For each n ≥ 3, there is some ǫ = ǫn such that

N++(n, ǫ)− {Vn} ⊂
∞⋃

k=0

O(Wnk).
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Theorems 1.2, 1.3, and 1.4 take care of neighborhoods of all points except V2 and V3.
The example we work out in the next chapter shows that V3 ∈ O(W ) for a certain word W
of length 22. See Corollary 2.4. Alternatively, Theorem 1.5 handles a neighborhood of V3.
Finally, in [Sch06b] we proved that a neighborhood of V2, the point corresponding to the
right-angled isosceles triangle, is contained in the union of 9 orbit tiles. This completes the
proof of Theorem 1.1.

It is worth remarking that some of the complexity in our proof seems necessary. We will
prove the following result.

Theorem 1.5

1. For k = 3, 4, 5... the triangle V2k does not lie in the interior of an orbit tile.

2. For n ≥ 3 and not a power of two, Vn does lie in the interior of an orbit tile.

In a separate and independent way, Statement 2 of Theorem 1.5 handles all the Veech
points except V2k for k = 3, 4, 5... However, this result does not really save us any time in
our analysis, because we still need to use the analysis above to cover the remaining Veech
points. Statement 1 suggests that perhaps the remaining points will be trouble. Indeed,
computer evidence strongly supports the following conjecture.

Conjecture 1.6 For k = 3, 4, 5... no neighborhood of V2k has a finite covering by orbit tiles.

Remark: In [Sch06a] it is proved that no neighborhood of (π/3, π/6) has a finite covering
by orbit tiles. Thus, the covering constructed in [Sch06a] and [Sch06b] for the “100 degree
result”mentioned above is necessarily infinite, partly because of the “trouble spot” at the
point corresponding to the (30, 60, 90)-triangle. In the same way, Conjecture 1.6 states that
there are an infinite number of “trouble spots” at various Veech points.

1.2 Some Pictures of the Tiles

We discovered all the results in this paper using our computer program, McBilliards, a well-
documented Java-based program which is publicly available. 1 The reader can see great
pictures of our tiles using McBilliards. Here we reproduce a few of these pictures.

1http://mcbilliards.sourceforge.net
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Figure 1.2: The orbit tiles O(An) for n = 2, 3, 4, 5.

Figure 1.2 shows a picture the first few orbit tiles in the A series. The horizontal grid
lines have the form x2 = π/n for n = 4, 5, 6... and the vertical grid lines have the form
x1 = π/n for n = 4, 5, 6. The right-angled tips of these tiles are the Veech points.

The tiles in the A series are also part of the tiles of we use to prove Theorem 1.2. Theorem
1.2 uses a double-infinite family {Yn,m} of words with m ∈ N and n ∈ {2, 3, 4...}. We have
An = Yn,1. For n fixed, the tiles {Yn,m} live between the two consecutive Veech points Vn

and Vn+1. Figure 1.3 shows some of these tiles.

Figure 1.3: Some of the tiles O(Yn,m) with n ∈ {2, 3} and m ∈ {1, 2, 3, . . .}.
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Figure 1.4 shows a neighborhood of the point V4 = (π/8, π/8), a point in the bottom left
corner of Figure 1.3. The tiles O(B4) and O(C4) are tiny in comparison to the size of O(A4),
so much of O(A4) is off the screen. The union covers a neighborhood of V4.

Figure 1.4: The orbit tiles O(A4) and O(B4) and O(C4) and O(W4k) for k = 1, ..., 9.

1.3 Asymptotic Self-Similarity and Fourier Series

Let Onk = O(Wnk). The following self-similarity result, which is the central technical result
in the paper, implies Theorem 1.4.

Theorem 1.7 (Central Lemma) Let Snk be the dilation which maps Vn to 0 and expands
distances by

ζnk
2; ζn := 2(n− 1) cot(π/2n) ≈ 4n2/π

If n is held fixed and k → ∞ then the closure of Snk(Onk) Hausdorff-converges to the convex
quadrilateral Qn with vertices

v1 = (−
1

n
, 1−

1

n
); v2 = (1−

1

n
,−

1

n
); v3 = (an, an); v4 = (µnan, µnan);
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where

an =
1

2
−

1

2n
; µn =

1

2
−

tan2(π/2n)

2
.

The convergence is such that any compact subset Q′
n ⊂ Qn is contained in Sn(Onk) for k

sufficiently large in comparison to n.

An example of the limiting quadrilateral Qn is shown in figure 1.5, below.
Proof of Theorem 1.4: Fixing n, Theorem 1.7 implies that there are constants 0 < ǫ1 < ǫ2
such that, for k sufficiently large, O(Wnk) contains the set Vn + Λk, where Λk is the convex
hull of

(ǫ1/k
2, 0); (ǫ2/k

2, 0); (0, ǫ1/k
2); (0, ǫ2/k

2)

for k large. But the union of the sets Vn + Λk covers N(n, ǫ) for some ǫ > 0. These sets
“bunch up” as k → ∞. Compare Figure 1.4. So, Theorem 1.7 proves Theorem 1.4. ♠

Figure 1.5: The limiting quadrilateral Q4.

Our technique for proving Theorem 1.7 involves looking at the Fourier transforms of the
analytic functions which define the edges of the orbit tiles of interest to us. The Fourier
transforms of these functions are functions defined on Z2. It turns out that the supports of
these Fourier transforms grow “linearly” with the parameter k in a way we make precise in
§6. To deal with with the situation as k → ∞ we prove the Quadratic Rescaling Theorem,
a result which describes the asymptotic limits of a family of functions which vary with the
prescribed growth. One of the main technical innovations in the paper is a combinatorial
method for understanding such growing families of Fourier series. Our technique seems to
be more general than the application we give here, but so far this is the main application.

1.4 Paper Outline

In §2 we will give background information about triangular billiards, and in particular discuss
how one computes the orbit tile O(W ) based on the combinatorics of the word W . All of the
constructions in §2 are programmed into McBilliards. The interested reader can see these
constructions in action when using the program.

In section 3, we prove theorem 1.2.
In §4 we will prove Theorem 1.3.
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§5-8 are devoted to the proof of the Central Lemma, namely Theorem 1.7. In §5 we
will introduce our words Wnk, and prove some preliminary results about the orbit tiles
Onk := O(Wnk). In particular, we will isolate a region Rnk ⊂ ∆ with the property that
(independent of n and k) a certain 16 functions define Onk ∩Rnk.

In §6 we will prove the Quadratic Rescaling Theorem, a result that is designed to analyze
infinite families of defining functions, such as the 16 families we isolate in §5. In §7 and §8
we will use the Quadratic Rescaling Theorem to finish the proof of Theorem 1.7.

In §9, which is logically independent from the rest of the paper, we prove theorem 1.5.
This classifies the Veech triangles Vn which lie in the interior of an orbit tile.
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2 Billiard Paths and Defining Functions

2.1 Unfoldings

The unfolding of a word W with respect to a triangle T , which we denote by U(W,T ),
is the union of triangles obtained by reflecting T out according to the digits of W . This
construction is discussed in detail in [Sch06a] and in e.g. [Tab95]. We will persistently abuse
our notation in the following sense: A point X in parameter space represents a triangle
T = TX . We will often write U(W,X) in place of U(W,T ).

There is a sequence of vertices which runs across the top of U(W,T ). We call these the
top vertices and label them a1, a2, ... from left to right. There is a sequence of vertices which
runs across the bottom of U(W,T ) and we label these b1, b2, ... from left to right. Figure 2.1
shows an example of an unfolding, with respect to the Veech point V3.

Figure 2.1: U(2323132313123232313131, V3) with a centerline

It is worth pointing out that one of the apparent edges of the unfolding in Figure 2.1
is not actually an edge of reflection. Figure 2.2 shows the unfolding of the same word with
respect to a different point.

Figure 2.2 U(2323132313123232313131, (π/5, π/6))

Remark: We mainly care about unfoldings of isosceles triangles or triangles that are very
nearly isosceles. From here on in, most of our pictures show unfoldings of isosceles triangles.
However, as with Figure 2.2, we sometimes show an unfolding of a non-isosceles triangle so
as to illustrate a point.

The first side of U has been highlighted in both examples. W represents a periodic
billiard path in T iff the first and last sides of U(W,T ) are parallel and the interior of
U(W,T ) contains a line segment L, called a centerline, such that L intersects the first and
last sides at corresponding points. In both examples above, the first and last sides are
parallel. However, the centerline only exists for Figure 2.1. In particular, Figure 2.1 shows
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that the given word describes a periodic billiard path for the triangle corresponding to V3.
As in Figures 2.1 and 2.2 we always rotate the picture so that the first and last sides are
related by a horizontal translation. We call this horizontal translation the holonomy .

2.2 Stability and Hexpaths

A word W is called stable if the first and last sides of U(W,T ) are parallel for any triangle
T . This implies that O(W ) is an open set. In this section we will explain a combinatorial
criterion for stability. The proof is well known, and we omit it. See [Sch06a] for details.

2

(0,1)

(−1,−1) (0,−1)

3

(−1,0) 1(1,0)

(1,1)

(0,0)

2 3

1

Figure 2.3: The fundamental hexagon

Let H0 be the outer hexagon shown in Figure 2.3. The shape if H0 is a bit strange, but
the inscribed hexagon has vertices on the integer lattice Z2 as shown. Also, H is well related
to a square of side-length 2, as shown on the right hand side of Figure 2.3. The sides of H0

are divided into 3 types, according to their label. Let H denote the tiling of R2 by translates
of H0. By H we really mean the union of edges of the tiling. By construction, the midpoints
of edges in H lie in Z2.

Given the word W , we can draw a path in H by following the edges as determined by
the word: we move along the dth family when we encounter the digit d. Figure 2.4 shows
the path corresponding to the examples given in Figures 2.1 and 2.2. The dot in the picture
indicates the start of the path. We call this path the hexpath and denote it by H(W ).

Lemma 2.1 (Hexpath) The word W is stable iff H(W ) is a closed path.

This condition in the Hexpath Lemma is equivalent to the better known condition, which
appears as lemma 3.3.1 in [Tab95]. We have restricted this lemma to our context.

Lemma 2.2 A word W is stable iff the number of times each letter ℓ = 1, 2, 3 appears in an
odd position in W equals the number of times ℓ appears in an even position.
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This condition can easily be verified for the example we have been considering. In addition
it happens for squares of words of odd length.

Corollary 2.3 (Odd squares are stable) If W is a word of odd length, then W 2 is stable.

Now we can take care of the loose end from the introduction.

Corollary 2.4 V3 is contained in the interior of an orbit tile.

Proof: Figure 2.1 shows that the given word describes a periodic billiard path for the tri-
angle corresponding to V3. Figure 2.4 below shows that the hexpath corresponding to this
word is closed. Hence, the corresponding billiard path is stable. ♠

2 3 2 3

1

3 2 3

1

Figure 2.4: The hexpath for W = 2323132313123232313131.

2.3 The Squarepath

It turns out that the hexpath H(W ) contains precisely the same information as a certain
rectilinear path, which we call the squarepath. Each vertex of the hexpath has a unique
type 3 edge emanating from it. The squarepath is obtained by connecting the midpoints of
these type-3 edges together, in order. We denote the squarepath by Q̂(W ). We can also
define similar paths based on the edges of type 1 or 2. These paths are somewhat more
complicated, though they will be of theoretical importance for us. In practice, however, we
will always try to work with the type 3 edges.

If we mark off points on the squarepath at integer steps (starting with a vertex) the
resulting points are naturally in bijection with the type 3 edges of the unfolding. In the next
section we will elaborate on this bijection. Figure 2.5 shows the squarepath for the examples
we have been considering The hexpath is drawn underneath in grey.
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Figure 2.5: Q̂3(W ) in black and H(W ) in grey.

It is possible to reconstruct H(W ) from Q̂(Q), when Q̂(W ) is a closed loop. When Q̂(W )
is embedded, this loop bounds a finite union of squares. We simply replace each square by
the associated hexagon. Then H(W ) is the boundary of the union of hexagons. In general,

H(W ) is the union of all the edges of H which intersect Q̂(W ). There is a natural ordering
to these edges, and so the union of all these edges naturally has the structure of a closed
loop.

It turns out that there is a simple algorithm for deducing the combinatorics of the un-
folding from the squarepath. Say that a k-dart is a union of k triangles, arranged around
a common vertex, in the pattern shown in Figure 2.6 for k = 2, 3, 4.. A k-dart is just an
unfolding with respect to either the word (13)k−11 or the word (23)k−12.

Remark: We shall almost always consider darts made from isosceles triangles. Indeed,
the idea of grouping the unfolding into darts is mainly a combinatorial trick, and in our ap-
plications we might as well perform the trick with respect to unfoldings of isosceles triangles.
However, some of our pictures show darts made from triangles that are not quite isosceles.

Figure 2.6: k-darts for k = 1, 2, 3
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We say that the 3-spine of the dart is the union of the two outermost long edges. We
have highlighted the spines of our darts in Figure 2.6.

The relation of U(W, ∗) to Q̂(W ) is as follows:

• The maximal darts of the unfolding are in bijection with the edges of the square path.
(The maximal k-darts correspond to edges of length 2k.) The maximal darts are glued
together along their 3-spines.

• Two consecutive maximal darts lie on opposite sides of their common 3-edge iff Q̂(W )
makes a northwest or southeast turn at the vertex corresponding to this 3-edge.

To make this work precisely, we need to take the infinite periodic continuation of U , or else
identify the first and last sides of U to make an annulus. As it is, the reader needs to take
special care in figuring out how the rightmost maximal dart fits together with the leftmost
one. We have included a copy of Figure 2.2, except with the spines of the maximal darts
drawn in black. See Figure 2.7.

Figure 2.7: Dividing the unfolding into maximal darts.

We have taken a lot of trouble to describe the squarepath and its relation to the hexpath
and the unfolding because we plan to specify all our words in terms of their squarepaths.
Using the square path gives a very simple description of the word, and lets the reader best
see the patterns which arise in our families.

2.4 Edge Labellings

We label each edge of H by the coordinates of its midpoint. This labelling is canonical, once
we decide which point of Z2 gets labeled (0, 0). The McBilliards convention is to assign
the label (0, 0) to the edge of H(W ) corresponding to the last digit of W . This edge is the
leftmost edge of the unfolding U(W, ∗). In Figure 2.8 we have labeled the origin and several
nearby points.
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(0,1)

(1,1) (2,1)

(0,0)

(6,−1)

(1,−5)

Figure 2.8: Some labellings.

We identify ê with its label. Our labelling has a geometric significance. Let X = (x1, x2)
be a parameter point and let TX be the corresponding triangle. Let e1 and e2 be two edges of
the unfolding U(W,TX). Let θ(e1, e2) be the counterclockwise angle through which we must
rotate e1 so as to produce an edge parallel to e2. We take θ mod π, so that the orientations
of e1 and e2 are irrelevant. Then, as is easily established by induction:

θ(e1, e2) = X · (ê2 − ê1). (2.1)

2.5 Defining Functions

We frequently write
E(x) = exp(i(x)) (2.2)

for notational convenience.
Given two points p, q ∈ R2 we write

p ↑ q; p l q; p ↓ q

iff the y coordinate respectively is greater than, equal, or less than the y coordinate of q.
Suppose that p and q are two vertices of our unfolding. In this section we will give the
formula for a function F = Fp,q which has the property that F = 0 iff p l q. These defining
functions are computed purely from the word W . The orbit tile O(W ) can be described as
the region where the defining functions corresponding to the (ai, bj) pairs are all positive.
The edges of O(W ) is defined in terms of the 0-level sets of the defining functions.
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For any d ∈ {1, 2, 3} there is an infinite, periodic polygonal path made from type-d edges
of the infinite periodic continuation of U(W,T ). The image of this path in U(W,T ) is what
we call the d-spine. We have already encountered the 3-spine: It is the union of the 3-spines
of the maximal darts of U(W, ∗).

Figure 2.9: A 3-path and the 3-spine.

Let e0, ..., em denote the list of edges, ordered from left to right, which appear in the
d-spine. We say that the vertices p and q are d-connected if there is a polygonal path of
type-d edges connecting p to q. In this case, let f0, ..., fn denote these edges, ordered from
left to right. We order p and q so that p is the left endpoint of the d-path and q is the right
endpoint. The 3 thick grey edges in Figure 2.9 show the 3-path connecting p = b4 to q = a6.

We define

P (X) = ±
n∑

i=0

(−1)iE(X · f̂i); Q(X) =
m∑

i=0

(−1)iE(X · êi). (2.3)

We will explain the global sign in front of P below. The reason for the general alternation of
the signs is explained in [Sch06a]. Our functions have the following geometric interpretation:
If we normalize so that the d edges have length 1 and rotate U(W,T ) so that the first edge
is horizontal, then ±P (X) is the vector pointing from p to q and Q(X) is the translation
vector. Therefore,

F := Im(±PQ) = 0 ⇐⇒ p l q. (2.4)

For the above example the sign in front of P turns out to be a (+). (See below.) We
therefore have

P (X) = E(4x1 − x2)− E(6x1 − x2) + E(6x1 − 3x2).

Q(X) = E(x2)−E(4x1 + x2) + E(4x1−x2)−E(6x1−x2) + E(6x1−5x2) + E(−5x2).

Here is what we call the function tableau for P .

(+) 4 −1
6 −1
6 −3

When we reconstruct the function from its tableau, we use the convention that the signs of
the terms alternate. The (+) of (−) indicates the global sign in front of P .
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(6,−3)

(0,−5) (6,−5)

(0,1)
(4,1)

(4,−1)

not a vertex of Q

first vertex of P

(6,−1)

(0,0)

Figure 2.10 The paths P̂ (grey) and Q̂ (black)

When d = 3, we can represent both P and Q in terms of the squarepath. First of all,
the list of vertices of Q̂ is precisely the function tableau for Q. The situation for P is more
involved: The edges of U(W, ∗) are in canonical bijection with the edges which emanate from
the vertices of the hexpath. Say that a 3-edge of Q is a starter if it corresponds to an edge
of U(W, ∗) which is incident to p. Say that a 3-edge of H is a finisher if it corresponds to an

edge of U(W, ∗) which is incident to q. Let P̂ denote the shortest sub-path of Q̂d(W ) whose
initial endpoint is the midpoint of a starter and whose final endpoint is the midpoint of a
finisher. Then the function tableau for P is just the list of coordinates of the vertices of P̂ .
Figure 2.10 shows the paths corresponding to P̂ and Q̂. The origin is marked with a grey
dot.

We can interpret the path Q̂ as a function from Z2 to Z, as follows. We alternately
color the vertices encountered by Q black and white, starting with white. Q̂ assigns the
value x1 − x2 to X ∈ Z2 if x1 white vertices of Q̂ coincide with X and if x2 black vertices
of Q̂ coincide with X. We make the same definition for P̂ , except that we have to take care
whether or not to color the first vertex encountered by P̂ black or white. (See below.) With

this interpretation, Q̂ is the Fourier series of Q.

Q(X) =
∑

V ∈Z
2

Q̂(X)E(X · V ). (2.5)

The same goes for P and P̂ .

The Global Sign: This discussion supposes that F > 0 if q ↑ p. (As above, p is on
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the left.) We also suppose that the initial vertex of P̂ is also a vertex of Q̂. In this case,

the sign in front of P is (−1)u, where u is the number of vertices of Q̂ (starting with the

first one) which lie before the first vertex of P̂ . That is, the initial vertex of P̂ should get

the same color whether it is considered a vertex of P̂ or a vertex of Q̂. For example, we can
see from Figure 2.10 that u = 2 and so the sign is a (+). This rule has a simple geometric
proof: When p and q are the first and last vertices of the 3-spine of U , then P = Q and
so the sign definitely should be a (+). If we move q along the 3-spine, the sign does not
change, by “continuity”: Moving either vertex by 1 “click” should produce a nearby value
for P . However, moving the p vertex changes the global sign, given the form of Equation
2.3. In general the first vertex of P̂ need not be a vertex of Q̂. This irritating situation does
not arise in this paper. McBilliards has a general algorithm which correctly determines the
sign in every possible case.

2.6 The Dart Lemma

Figure 2.11 shows a typical dart. We say that the inferior vertices of D are the ones which
are not adjacent to the 3-spine and not on the 3-spine. The inferior vertices are marked with
white dots in Figure 2.11. We call the other vertices of the dart superior . In Figure 2.11 the
superior vertices are in black or grey and the inferior vertices are in white.

Figure 2.11: An Acute Dart

Recall that the unfolding U can be written as a union of maximal darts. We say that a
vertex of U is inferior if it is an inferior vertex of one of the maximal darts. Let δ(W ) denote
the largest k such that U(W, ∗) contains a k-dart. Here is the main result of this section:

Lemma 2.5 (Dart) Let X = (x1, x2). Suppose that

max(x1, x2) ≤
2π

δ(W )
.

Suppose also that all the top superior vertices of U(W,X) lie above all the bottom superior
vertices of U(W,X). Then X ∈ O(W ).

Remark: There is a more restrictive angle condition that almost immediately guarantees
that the maximal darts are acute. This condition is given by

max(x1, x2) ≤
π

2δ(W )− 2
.
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This is precisely the condition we will use in the proof of Theorem 1.2. Our condition
is weaker than this and does not, in itself, guarantee that the maximal darts are acute.
However, our weaker condition combines with the second hypothesis of the Dart Lemma
to establish the acuteness. See the very end of our proof. We mention this because the
discrepancy is likely to otherwise cause confusion.

We will prove the Dart Lemma in several stages. We say that the base of a dart is the
vertex which is common to all the triangles. The base is denoted by a big black dot in Figure
2.11. We say that the centerline of the dart is the ray of bilateral symmetry, emanating from
the base. The centerline is indicated by a ray in Figure 2.11. We say that the dart points
up if the ray points upward, and points down if the ray points downward. Let DV denote
the union of outermost edges of D which are not the longest edges. This set is highlighted
in Figure 2.11. We say that D is acute if DV makes an acute angle towards the centerline
of the dart. Figure 2.11 shows an acute dart.

Lemma 2.6 If D is an up-pointing acute dart, then each inferior vertex of D lies above
some superior vertex. Likewise, if D is down-pointing and acute, then each inferior vertex
of D lies above some superior vertex of D.

Proof: The short edges of D have the same length. Hence the line joining the two superior
vertices separates all the inferior vertices from the base. ♠

We call U controlled if the following holds for all maximal darts D of U :

• D is acute.

• If the base of D is a bottom vertex of U then U points up

• If the base of D is a top vertex of U then U points down.

Lemma 2.7 Suppose U is a controlled unfolding. Then the lowest top vertex of U and the
highest bottom vertex of U are both superior vertices.

Proof: We will prove this statement for the top vertices. The proof for the bottom vertices
is the same. Let v be an inferior top vertex of U . Then there is some maximal dart D such
that v is an inferior vertex of D. Each edge of D, except possibly the edges on the 3-spine, is
an edge of reflection of U . Thus, the inferior vertices of D all have the opposite type (top or
bottom) from the base. Likewise for the superior vertices of D. Hence, the inferior vertices
and the superior vertices of D all have the same type. Since one inferior vertex of D is a
top vertex, the base of D is a bottom vertex. Since U is controlled, D points up. Lemma
2.6 now implies that v is higher than one of the superior vertices v′ of D. As we already
mentioned, v′ is also a top vertex of U . Hence, we have found another top vertex, v′, which
is lower than v. ♠

To finish the proof of the Dart Lemma, we just have to establish that U = U(W,X) is
a controlled unfolding. Let D be a maximal dart of U . Assume without loss of generality
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that the basepoint of D is a bottom vertex. Each edge of DV is an edge of reflection of U .
Hence the endpoints of DV are top vertices. All these vertices are superior vertices. Hence,
the endpoints of DV lie above the basepoint of DV . Our restriction on X guarantees that
the angle of DV is at most 2π. Hence DV must actually make an acute angle, since both its
edges point up. The centerline lies between these two up-pointing edges. Hence D itself is
up-pointing. Since D is arbitrary, we see that U is controlled. This completes the proof of
the Dart Lemma.

2.7 Pseudo-Parallel Families

Suppose that e is an edge of the unfolding U(W, ∗). When U(W,X) is rotated so that it has
horizontal holonomy, the line containing e is parallel to the complex number

E(ê ·X)UQ(X). (2.6)

We say that the edges {e0, ..., en} form a pseudo-parallel family relative to the point X0

if the dot product ej ·X0 is independent of j. In this case, the edges e0, ..., en are all parallel
in U(W,X0). We assume that these edges have negative slope in U(W,X0). The points
ê0, ..., ên must lie on a line segment in R2. In our examples in this paper, the line in question
always has slope −1 because X0 lies on the isosceles line. We order our edges so that ê0, ..., ên
appear in order on the line.

Let R′(ej) denote the region in parameter space such that ej has negative slope in the
unfolding. Let R(ej) denote the path connected component of R′(ej) which contains X0.

Lemma 2.8 (Convex Hull) R(e0) ∩R(en) ⊂ R(ej) for all j.

Proof: We think of {Xt} as a path in R(e0)∩R(en) which connects X0 to some other point
X1. Let S

1 denote the unit complex numbers and let E : R → S1 be the universal covering
map. For each object z ∈ S1 we let z̃ denote the lift to R, so that E(z̃) = z. In particular,
we define

U(t) = UQ(Xt); Ẽ(t) = êj ·Xt; Ej(t) = E(x̂j ·Xt).

Let Ĩt ⊂ R be the interval whose endpoints are E0(t) and En(t). By convexity Ẽj(t) ⊂ Ĩt for

all t. The edges e0(t) and en(t) have negative slope for all t. Hence Ĩt has length less than π/2
for any t ∈ [0, 1]. Hence Et(j) lies in the arc It, which has length less than π/2. If we rotate
S1 so that U(t) = 1 then the endpoints of It, namely E0(t) and Ej(t), are both contained in
the same negative quadrant of R2. (Either (−+) or (+−).) Hence It is contained in one of
the negative quadrants. Hence Ej(t) is also contained in one of these quadrants. That is, ej
has negative slope for any parameter value t. ♠
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3 Proof of Theorem 1.2

Our proof of Theorem 1.2 is based on the 2 parameter family Ym,n of odd-length words.

Yn,m = 1(Wn)
m32; Wn = (31)n−1(32)n−1 (3.1)

Figure 1.4 of the introduction shows the orbit tiles for some of the words Yn,m. The family
Wn, which we call the unstable family , describes unstable periodic billiard paths in certain
isosceles triangles of interest. The square words Y 2

m,n are stable by Corollary 2.3. Theorem
1.2 is therefore a consequence of the following result.

Theorem 3.1 For every integer n ≥ 2 and real number x so that π
2n+2

< x < π
2n
, there is a

periodic billiard path in Tx with combinatorial type Yn,m for some m ∈ N .

Here Tx denote the obtuse isosceles triangle corresponding to the point (x, x) in the plane.
The two small angles of Tx have measure x-radians.

3.1 The Unstable Family

Proposition 3.2 Wn describes a periodic billiard path in Tx for all x < π
2n−2

.

Proof: The unfolding for the wordWn consists of two maximal n−1 darts. Given our bounds
on x, we satisfy the hypotheses given in the remark immediately following the statement
of the Dart Lemma. Thus, it suffices to consider the superior vertices of the unfolding.
There are 4 superior top vertices, labelled A,B,C,D. Likewise, there are 4 superior bottom
vertices, labelled E,F,G,H. See Figure 3.1. Thus, by the Dart Lemma, it suffices to show
that X ↑ Y for each X ∈ {A,B,C,D} and Y ∈ {E,F,G,H}. We normalize coordinates so
that A = (0, 0), and the long side has length one. Then, we can compute the coordinates for
the 3-spine.

E = (sin(n−1)x,− cos(n−1)x). D = (2 sin(n−1)x, 0). H = (3 sin(n−1)x,− cos(n−1)x).

With this choice, the unfolding is horizontal as desired. (That is, A l D.)

Figure 3.1: An unfolding for the word W5. One period is shown, which begins at edge AE
and ends at the parallel edge DH.
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By symmetry, each point has a partner-point at the same height:

A l D B l C E l H F l G

Thus, it is sufficient to concentrate on the central rhombus, CDFE. Given a vector v ∈ R2,
we use d(v) to denote the angle of the vector made with the horizontal. It is sufficient to

check that the four vectors
−−→
EC,

−−→
ED,

−→
FC, and

−−→
FD point upward. That is, for v equal each

of those four vectors, we must have 0 < d(v) < π. We compute

d(
−→
FC) = d(

−−→
EC) =

π

2
− (n− 2)x d(

−−→
ED) =

π

2
− (n− 1)x d(

−→
FC) = π − (n− 1)x

In all cases, we have 0 < d(v) < π for 0 < x < π
2n−2

. ♠

3.2 The stable family Yn,m

The word Yn,m has an additional special symmetry. If you write Yn,m in reverse and swap

the letters 1 and 2, you get Yn,m back. Given a word W , let Ŵ denote W written in reverse
with 1 swapped with 2. There is some word W = Wm,n such that

Ym,n = 1W3Ŵ2, (3.2)

Remark: It is a consequence of work in [Hoo07] that every stable periodic billiard path in

an isosceles triangle has an combinatorial type W with the symmetry Ŵ = W . This fact,
however, is not necessary for our proof here.

We now record some special properties of words having the form given by the right hand
side of Equation 3.2.

Proposition 3.3 Let Y be a word of the form Y = 1W3Ŵ2, and T be an obtuse isosceles
triangle. Consider the unfolding U(Y 2, T ) chosen so that the translation bringing the first
edge to the last is horizontal. Then the long edge (edge 3) of the first triangle in the unfolding
is horizontal.

Proof: Consider the bi-infinite repeating word Y . This word has some symmetry, which is
revealed by expanding the word out.

Y = . . . 1W3Ŵ 21W3Ŵ2
∣∣∣ 1W3Ŵ 21W3Ŵ

Reflection in the vertical line above swaps the letters 1 and 2 while preserving 3. This is
precisely how the reflective symmetry of the isosceles triangles permutes the labeling of the
sides. Thus, this symmetry extends to the bi-infinite unfolding U(Y , T ). The direction of
the holonomy of U(Y 2, T ) must be the eigenvector corresponding to eigenvalue −1 of the
reflective symmetry of U(Y , T ). But this reflection is just the reflective symmetry of the first
triangle in the unfolding. So these two directions are parallel. ♠

We will use the following principle for detecting our billiard path. Recall that side 3
denotes the long side of an isosceles triangle.
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Proposition 3.4 Suppose that a billiard path in an obtuse isosceles triangle starts out par-
allel to side 3, and has initial combinatorial type 1W3, where the final 3 corresponds to
an edge which the path hits at the midpoint, M . Then the billiard path is closed and has
combinatorial type 1W3Ŵ2.

See Figure 3.2 for a case when this proposition applies.

Figure 3.2: An unfolding for the square of the word Y4,1.

Proof: The trajectory t1 described in the proposition lies within the unfolding of the initial
word 1W3 and then hits M . The unfolding for the word 1W3Ŵ2 has 180 degree rotational
symmetry φ around the point M . Thus, the longer trajectory t2 = t1 ∪ φ(t1) lies within the

unfolding of 1W3Ŵ2. Now consider the unfolding of the even length word (1W3Ŵ2)2. This
unfolding has vertical reflective symmetry ρ which swaps the two halves of the word. (It is
vertical assuming the trajectory is horizontal.) The trajectory t3 = t2 ∪ ρ(t2) lies within the

unfolding of 1W3Ŵ2. ♠

We will break the proof of Theorem 3.1 into two cases. The first case is easiest.

Lemma 3.5 For each x satisfying π
2n+1

≤ x < π
2n

there is a periodic billiard path in Tx with
combinatorial type Yn,1.

Proof: Given the triangle Tx, unfold the triangle according to the square of the word Yn,1 as
in Figure 3.2. Let M1 be the midpoint we must hit. This is the first midpoint of a long side
which is the fixed point of a 180 degree rotational symmetry of the the bi-infinite unfolding,
U(Yn,1, Tx).

We coordinatize the unfolding so that M1 is given coordinates (0, 0). We will show that
all the top vertices have positive y-coordinate, and all the bottom vertices have negative y-
coordinate. Regardless of n, the Dart Lemma tells us that most of the vertices are irrelevant.
It is enough to prove this statement for those vertices, who are given names in Figure 3.2.
We have named four vertices A, B, C and D. The other vertices are either images of these
under the rotational symmetry about M1 (denoted by ∗′), images under reflection in the
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vertical line through D′ (denoted by ∗r), or images under the composition. So, it is enough
to show that the statement is true for the vertices A, B, C and D.

The points A and B have the same y-coordinate by Proposition 3.3. M1 lies below
them, because angle ∠ABM1 = 2nx < π. Also angle ∠ABC = (2n + 1)x ≥ π, so C has
y-coordinate greater than or equal to the y-coordinates of A and B. Finally, M1 lies closer

to B then D. Furthermore, the vector
−−−→
BM1 is closer to horizontal than the vector

−−→
DB.

(∠DBA = x = ∠M1BC, but the horizontal direction lies strictly between the directions of
−−−→
BM1 and

−−→
BC.) Thus the y-coordinate of D must be negative. ♠

Remark: The words Yn,1 are the same as the words An−1, which appear in Figure 1.1 and
play a prominent role in Theorem 1.3.

The second case is more complicated. While we could give a constructive proof, as
above, we find that a non-constructive proof clarifies the situation. To illustrate this case,
we consider the word Y4,2 and the triangle T in Figure 3.3. The unfolding U(Y4,2, T ) depicted
in this Figure contains a horizontal segment joining the first triangle to the midpoint of the
long side. This segment hits the sequence of sides 1(31)4(32)43. Let W = (31)4(32)4. By

Proposition 3.4, there is a periodic billiard path in T with combinatorial type Y4,2 = 1W3Ŵ2.
The significant point is that by Proposition 3.4, we only need to consider the unfolding for
an initial subword.

Figure 3.3: An unfolding of the square of the word Y4,2.

Lemma 3.6 For each x with π
2n+2

< x < π
2n+1

, there is a periodic billiard path in Tx with
combinatorial type Yn,m for some m ∈ N .

Proof: Consider the unfolding of Tx according to the infinite word 1(Wn)
∞. See Figure 3.4.

We normalize the unfolding so that the initial long side of Tx is horizontal.
We will show that there is some indexm such thatMm lies below all preceding top vertices

and above all preceding bottom vertices. Here the points M0,M1, ... are the midpoints of
some of the long segments. See Figure 3.4.
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Figure 3.4: The top figure shows an unfolding for the word 1(W4)
∞. The bottom figure

shows a blow up of the unfolding with names of important vertices labeled.

Many of the vertices in Figure 3.4 are given names. The unlabelled vertices are inferior,
and may be ignored by the Dart Lemma. Understanding this unfolding is made much
easier by the fact that Wn is the combinatorial type of a periodic billiard path in Tx. See

Proposition 3.2. We consider the vector v =
−−−−→
M1M2. This vector points in the direction

(n+ 1)x− π
2
(measured relative to the horizontal in polar coordinates). In particular, v has

positive y-coordinate, since x > π
2n+2

. To compute this direction, note that
−−−→
S1M1 points in

the direction 2nx and
−−−→
S1M2 points in direction 2x. We always normalize so that the long

side has length 1. This gives us the formula

v =
1

2
(cos 2x, sin 2x)−

1

2
(cos 2nx, sin 2nx).

Now we will eliminate some top vertices. The vector
−−→
PA1 points in direction π+2nx < 2π.

So A1 ↓ P . Also
−−−→
A1Ak is parallel to v for k > 1, so A1 ↓ Ak. And

−−−−→
A2kS2k points in direction

x, so A2k ↓ S2k. It follows that A1 has the least y-coordinate of any vertex in the unfolding
1(Wn)

∞.

Now we will eliminate some bottom vertices.
−−−−−→
BkBk+1 points in the same direction as v,

so Bk+1 ↑ Bk. The vector
−−−−−−−→
B2k+1S2k+1 points in direction (2n+1)x−π < 0, so B2k+1 ↑ S2k+1.

It follows that the bottom vertex with greatest y-coordinate in the unfolding up to the
appearance of Mm is either D or Bm. (We ignore the fact that when m is even Bm appears
later in the unfolding than Mm.)

Letting Py denote the y-coordinate of an arbitrary point P , we want to show that

(Mm)y > (Bm)y; Dy < (Mm)y < (A1)y,

for some m. When m is even,
−−−−→
BmMm points in the direction 2x+ π

2
, so Mm ↑ Bm. When m

is odd,
−−−−→
BmMm points in the direction 2nx− π

2
. So, for any choice of m, the first inequality
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holds. The first endpoint M0 lies below D since
−−−→
M0D points in the direction 2x+ π

2
. Let

f(x) = (A1)y −Dy. g(x) = (Mi+1)y − (Mi)y. (3.3)

Here g(x) is independent of i. We compute

g(x) =
1

2
(sin 2x− sin 2nx); f(x) =

1

2 cos x
(sin x− sin(2n+ 1)x). (3.4)

The formula for f follows from the fact that the length of the short side is 1
2 cosx

, and
−−→
PD

and
−−→
PA1 point in directions π + x and π + (2n+ 1)x respectively.
A sufficient criterion for the second equation is that g(x) < f(x). That this is true follows

from some trigonometry. First we reduce f(x) and g(x) to more convenient forms.

cos(x)f(x) = − sinnx cos(n+ 1)x and g(x) = − sin(n− 1)x cos(n+ 1)x. (3.5)

Thus,
f(x)

g(x)
=

sinnx

cosx sin(n− 1)x
>

1

cos x
> 1.

This completes the proof. ♠
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4 Proof of Theorem 1.3

4.1 The A Family

Here we introduce the words {An} for n ≥ 2. These words already appear in [HH00], and
their analysis is quite easy. An is the square of a word of odd length. Listing out the first
few words explicitly and then writing the general pattern, we have:

A2 = (2323131)2; A3 = (23232313131)2; An = ((23)n(13)n−11)2 (4.1)

The squarepath Q̂(An) is a square of sidelength 2n. Hence U(An, ∗) is the union of 4 maximal
n-darts. The 3-spine for U(An, Vn) is contained in a straight line. There are two top vertices
on this straight line and two bottom vertices. The top vertices are a1 and a2. The bottom
vertices are b2n and b2n+1. Figures 4.1, 4.2, and 4.3 show the first few examples.

Figure 4.1 U(A2, V2).

Figure 4.2 U(A3, V3).

Figure 4.3 U(A4, V4).

If X is a parameter point sufficiently close to Vn then the lowest top vertices of U(An, X)
remain a1 and a2 and the highest bottom vertices remain b2n and b2n+1. WhenX ∈ N−−(n, ǫ)
the 3-spine for U(An, X) is no longer a straight line segment, but rather makes a zig-zag.
Both obtuse angles in the unfolding are slightly smaller, and this causes the 3 spine to make
an acute angle in the directions of the centerlines of the maximal darts, as shown in Figures
4.4 and 4.5.
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Figure 4.4: U(A2, X) for X ∈ N−−

Figure 4.5 U(A3, X) for X ∈ N−−.

From this geometric picture we see easily that the a1 and a2 lie above b2n and b2n+1 for
points in N−−(n, ǫn).

As an alternate argument we note that, since An is an odd square, the unfolding U(An, ∗)
has glide-reflection symmetry. Thus, if ai is the lowest top vertex then b2n+i−1 is the highest
bottom vertex. Thus, it suffices to show that a1 ↑ b2n and a2 ↑ b2n+1. We compute the
defining function F for (a1, b2n) and find that

F (x1, x2) = −4 sin2(nx) sin(2nx). (4.2)

For (x1, x2) near Vn = (π/2n, π/2n), the above expression is negative iff x2 < π/2n. That
is, a1 ↑ b2n iff x2 < π/2n and x2 is sufficiently close to π/2n. The calculation for the pair
(a2, b2n+1) yields the same result, but with x1 and x2 interchanged.

This takes care of the first statement of Theorem 1.3.

4.2 The B Family

We will show that
N−+(n, ǫn) ⊂ O(Bn); n = 4, 5, 6... (4.3)

By symmetry,
N+−(n, ǫn) ⊂ O(Cn); n = 4, 5, 6... (4.4)

Our argument will show that the two segments bounding N−−(n, ǫn) (except for Vn itself)
are respectively contained in O(Bn) and O(Cn). This takes care of the fourth statement of
Theorem 1.3.

The word Bn has length 40n − 60. This word is determined by its squarepath Q̂n :=
Q̂(Bn), which we now describe. We will draw Q̂4 and Q̂5, with the understanding that Q̂n+1

is obtained from Q̂n by lengthening each edge by 2 units. The small grey squares in Figure
4.6 have edgelength 2. We have drawn some of the edges in grey to help the reader parse the
loops. These loops are homeomorphic to figure 8 curves. The grey dot indicates the origin.
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Figure 4.6: Q̂n for n = 4, 5.

The shortest unfolding U(B4, V4) has 100 triangles in it. Here it is. We have highlighted
the 3-spine.

Figure 4.7: U(B4, V4).

Equation 4.5 shows three lists. The list Lj is the list of jth coordinates of the successive
vertices of the squarepath. The list L computes either L1 +L2 mod 4n or L1 +L2 +2n mod
4n depending on the parity of the vertex.
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L :
1
−1
1
1
−1
1
1
−1
3
−3
3
−1
1
1
−1
3
−3
3
−1
1

L1 :
0n+ 0
2n− 2
2n− 2
0n− 2
0n− 2
−2n+ 0
−2n+ 0
0n− 2
0n− 2
2n− 8
2n− 8
4n− 12
4n− 12
6n− 12
6n− 12
4n− 8
4n− 8
2n− 2
2n− 2
0n+ 0

L2 :
0n+ 1
0n+ 1
−2n+ 3
−2n+ 3
0n+ 1
0n+ 1
−2n+ 1
−2n+ 1
−4n+ 5
−4n+ 5
−6n+ 11
−6n+ 11
−8n+ 13
−8n+ 13
−6n+ 11
−6n+ 11
−4n+ 5
−4n+ 5
−2n+ 1
−2n+ 1

(4.5)

Let
ωn = E(

π

2n
).; E(x) = exp(ix). (4.6)

We will often write ω = ωn when the dependence on n is clear. The holonomy of U(Bn, Vn)

is obtained as the alternating sum of the vertices of Q̂. Since we are evaluating this sum at
Vn, each vertex contributes some power of ω to the sum. The list L above tells us which
power. In deriving this list, we used the relation ωa+2n = −ωa. Note that L is independent
of n. We have:

Q(Vn) =
20∑

i=1

ωL(i) = 8ω + 4ω3 + 6ω−1 + 2ω−3. (4.7)

This agrees with the McBilliards Calculations. An easy calculus argument shows that Q(Vn)
lies between 1 and ω on the unit circle.

4.3 Reducing to Six Vertices

Any point X sufficiently near Vn satisfies the hypothesis of the Dart Lemma with respect to
Bn. Hence, we just have to show that all the top superior vertices of U(Bn, X) lie above all
the bottom superior vertices of U(Bn, X) for X ∈ N−+(n, ǫ) when ǫ is sufficiently small. In
this section we will reduce this problem to checking 6 superior vertices.

Since Un decomposes into 20 maximal darts, there are at most 80 superior vertices,
independent of n. Each maximal dart has 2 (O)uter superior vertices and 2 (I)nner superior
vertices. The outer superior vertices lie on the 3-spine and the inner superior vertices do not.
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The superior vertices in each maximal dart are naturally ordered from left to right. There
are two superior vertices on the (L)eft and two on the (R)ight. We denote the 4 superior
vertices of the Kth maximal dart (perhaps redundantly) by

(K,L,O); (K,L, I); (K,R, I); (K,R,O). (4.8)

Sometimes we will decorate our notation with an asterisk to indicate whether it is a top
vertex ( )∗ or a bottom vertex ( )∗.

A leader is either a lowest top vertex or a highest bottom vertex. Here is the main result
of this section:

Lemma 4.1 For each n, the leaders of U(Bn, Vn) are

(1, L, I)∗; (4, L,O)∗; (16, L, I)∗ (5, R, I)∗; (10, R, I)∗; (12, R,O)∗.

Moreover, these points all have the same height.

Any top superior vertex a2 which is not on our list should lie above b1 = (1, L, I)∗. We
will symbolically compute

F (Vn) = Im(P (Vn)Q(Vn))

for such pairs and show that the imaginary part of this function is positive. Hence a2 ↑ b1.
Likewise, if b2 is a bottom superior vertex not on the list, we will show that F (Vn) < 0 where
F is the function corresponding to (b1, b2). Finally we will show that the P (Vn) is a real
multiple of Q(Vn) when P is defined relative to the pair (b1, c) and c is on the list given in
Lemma 4.1. The key to our calculations is a slick procedure for computing these points.

In computing our points we will slightly modify the method described in §2, so as to
use the 3-spine as much as possible. Unfortunately, it is not possible to directly connect all
the points of interest to us by a 3-path. The work-around we explain below works for every
point except for a1 = (1, L,O)∗, which we easily observe to lie above the points listed in
Lemma 4.1. (The edge connecting (1, L,O) to (1, L, I) has negative slope.) For the rest of
the superior vertices we do the following:

• Connect (1, L, I)∗ to (1, L,O)∗ using the common edge e0.

• Connect (I, L,O)∗ to a point p′ on the 3-spine which is adjacent to p, using the fewest
number of edges e1, ..., es from the 3-spine.

• Connect p′ to p by the edge es+1 which is incident to both vertices.

Once p′ is determined, there are either 2 or 3 choices for p. To use an analogy, the 3-spine
is like the highway and the other edges we use are like the off and on ramps. Our first step
is to get onto the highway using e0. Then we drive along the highway using e1, ..., es. At this
point we can either take one of the off-ramps and stop the car or else go one more mile and
stop the car, depending on our final destination. Figure 4.8 shows a fairly accurate picture
for s = 2. The dotted lines indicated some of the triangles in the unfolding.
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e3
e0 p
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e2

(1,L,I)

(1,L,O) e1 p

p’

e3 e3

Figure 4.8: The Connecting Path

We normalize so that the type 3 (long) edges of our triangles have length 1. It follows
from the Law of Sines that the short sides have length

λ =
1

ω + ω−1
. (4.9)

The vector that points from (1, L, I)∗ to p is

P (s, δ) = −λ+
s∑

i=1

ωL(i) + λ|δ|ωL(s+1)+δ. (4.10)

Referring to Figure 4.8,, the number δ is −1 (bottom) or 0 (middle) or 1 (top) depending on
which of the three choices we make for es+1. Here L refers to the labeling in Equation 4.5.

To demonstrate Equation 4.10, we note that the three paths suggested by Figure 4.8 lead
to the three sums

−λ+ ω + ω−1 + λω0; −λ+ ω + ω−1 + ω; −λ+ ω + ω−1 + λω2.

Let’s concentrate on the right sum. We will use the notation x → y to denote that Im(x)
and Im(y) are positive multiples of each other. Our middle expression simplifies to

P =
1 + ω2 + 2ω4

ω(1 + ω2)
.

Recalling our formula for the holonomy, we compute that

PQ =




0
4
8
14
10
4
0




·




ω−6

ω−4

ω−2

ω0

ω2

ω4

ω6




→



10−8
4−4
0


 ·



ω2

ω4

ω6


 =



2
0
0


 ·



ω2

ω4

ω6


 →



2
0
0


 ·



sin(1π/n)
sin(2π/n)
sin(3π/n)


 .

Hence Im(F (Vn)) > 0. The point of Un corresponding to the third sum above is (3, R, I)∗,
and this shows that (3, R, I)∗ ↑ (1, L, I)∗. It turns out that our sums always lead to the
general expression




c−6

c−4

c−2

c0
c2
c4
c6




·




ω−6

ω−4

ω−2

ω0

ω2

ω4

ω6




→



c2 − c−2

c4 − c−4

c6 − c−6


 ·



ω2

ω4

ω6


 →



a1
a2
a3


 ·



sin(1π/n)
sin(2π/n)
sin(3π/n)


 aj, cj ∈ Z.
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In listing the results of our calculations it suffices to list vector (a1, a2, a3).
For each δ ∈ {−1, 0, 1} and each β ∈ {1, ..., 20} we compute P (δ, s)Q and extract the

coefficient vector (a1, a2, a3).
Here is the table for δ = −1 and β = 1, ..., 10.

(0) (−) (−) (−) (−) (−) (−) (−) (−) (−)
0 0 −4 −2 −2 −6 −4 −4 −2 0
0 −2 −2 0 −2 −2 0 −2 0 0
0 0 0 0 0 0 0 0 0 −2

(4.11)

Here is the table for δ = −1 and β = 1, ..., 10.

(−) (−) (−) (−) (−) (0) (−) (−) (−) (−)
0 0 −4 −2 −2 0 2 2 2 −2
−2 −2 −2 0 −2 0 0 −2 −2 −2
−2 0 0 0 0 0 −2 −2 0 0

(4.12)

Here is the table for δ = 0 and β = 1, ..., 10.

(+) (−) (0) (+) (−) (−) (+) (−) (+) (−)
4 −2 0 2 −4 −2 0 −6 2 −4
2 −2 0 2 −2 0 2 −2 4 −4
0 0 0 0 0 0 0 0 2 −2

(4.13)

Here is the table for δ = 0 and β = 11, ..., 20.

(+) (−) (0) (+) (−) (+) (−) (+) (−) (+)
4 −2 0 2 −4 4 −2 6 0 2
2 −2 0 2 −2 4 −4 2 −2 0
0 0 0 0 0 2 −2 0 0 0

(4.14)

Here is the table for δ = 0 and β = 1, ..., 10.

(+) (+) (+) (+) (+) (0) (+) (+) (+) (+)
6 2 2 4 0 0 2 −2 −2 −2
2 2 0 2 2 0 2 2 2 0
0 0 0 0 0 0 0 0 2 2

(4.15)

Here is the table for δ = 0 and β = 11, ..., 20.

(0) (+) (+) (+) (+) (+) (+) (+) (+) (+)
0 2 2 4 0 0 0 2 4 4
0 2 0 2 2 2 0 0 2 0
0 0 0 0 0 2 2 0 0 0

(4.16)

All the expressions on the first two tables correspond to bottom vertices. An inspection
of Figure 4.7 shows that the expressions with (+) signs correspond to top vertices and the
expressions with (−) signs correspond to bottom vertices. (We copy the figure above.) All
the expressions on the bottom two tables correspond to top vertices. Finally, there are
6 expressions which are real, independent of n, and these correspond to the 6 vertices in
Lemma 4.1. This completes the proof of Lemma 4.1.
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4.4 The End of the Proof

Lemma 4.1 implies that O(Bn) is determined by positions of the 6 vertices

α1 = (12, R,O)∗; α2 = (5, R, I)∗; α3 = (10, R, I)∗.

β1 = (4, L,O)∗; β2 = (1, L, I)∗; β3 = (16, L, I)∗; (4.17)

Let Hij be the defining function which measures the height of αi minus the height of βj,
when the unfolding is normalized to that the long edges have length 1. Below we will prove

Lemma 4.2 For every relevant pair of indices, we have ∂1Hij(Vn) < 0 and ∂2Hij(Vn) ≥ 0.
There is equality in the second equation iff (i, j) = (1, 1).

Note that Hij(Vn) = 0. Lemma 4.2 therefore says that Hij(X) > 0 provided that
(i, j) 6= (1, 1) and X ∈ N−+(n, ǫn) for sufficiently small ǫn. If we knew that H11 vanished
identically on the line x1 = π/2n then we could conclude the same result for (i, j) = (1, 1).
Before proving Lemma 4.2 we will take care of the exceptional pair of indices.

Lemma 4.3 H11 vanishes identically on the line x = π/2n.

Proof: We will draw the picture for the case n = 4, but the phenomenon we describe is
completely general. Let P and Q and F be the defining functions associated to our two
points. Figure 4.9 shows the paths Q̂ and P̂ .

Figure 4.9: Q̂ in black and P̂ in grey.

Note that P̂ covers half the vertices of Q̂ and the vertices in the complement Q̂− P̂ are,
as a subset of Z2, isometric to the vertices of P̂ . The isometry is given by the translation
(x1, x2) → (x1 + 2n, x2). Taking care to get the sign right, we see that Q = P + P ′, where
there is a bijection between the terms of P and the terms of P ′, having the form

E(ax1 + bx2) → −E((a+ 2n)x1 + x2).

When x1 = π/2n we see that corresponding terms take on the same value. Hence Q = 2P
when x = π/2n. But this means that F ( π

2n
, x2) = 0. ♠

Equation 4.3 follows from Lemma 4.1, Lemma 4.2, and Lemma 4.3. It only remains to
prove Lemma 4.2. The rest of the chapter is devoted to this.
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4.5 Variation of Edgelength

In proving Lemma 4.2 we will connect various vertices of the unfolding together by the same
sorts of paths we used in the proof of Lemma 4.1. These paths mainly involve the long edges,
which all have unit length, but sometimes they involve a short edge as well. Even though
we are evaluating the derivatives of our defining functions at Vn, we still need to understand
how these short edges vary in length for points nearby Vn. In this section, we will deal with
this issue.

Suppose T is a triangle with small angles x1 and x2, normalized so that the long side of
T has unit length. Let lj denote the length of the side of T which is opposite the xj angle.
Of course, lj depends on the parameters x1 and x2. When x1 = x2 we have l1 = l2. When
x1 = x2 = π/2n we have

λ := l1 = l2 =
sin(x1)

sin(x1 + x2)
=

sin(π/2n)

sin(π/n)
=

1

2 cos(π/2n)
=

1

ω + ω−1
. (4.18)

As usual, ω = E(π/2n). Here λ is as in Equation 4.10. Our calculations below require the
quantities:

λ1 :=
dl2
dx2

∣∣∣∣
Vn

=
dl1
dx1

∣∣∣∣
Vn

=
sin(x2)

sin2(x1 + x2)

∣∣∣∣
Vn

=
2iω

(ω − ω−1)(ω + ω−1)2

λ2 :=
dl2
dx1

∣∣∣∣
Vn

=
dl1
dx2

∣∣∣∣
Vn

=
− cos(x1 + x2) sin(x1)

sin2(x1 + x2)

∣∣∣∣
Vn

=
−iω(ω2 + ω−2)

(ω − ω−1)(ω + ω−1)2
. (4.19)

4.6 Proof of Lemma 4.2

We define

Fα,j = height(αj)− height(a1); Fβ,j = height(βj)− height(a1). (4.20)

here a1 = (1, L,O)∗. Again, we measure these heights when the Un is normalized so that the
long edges are unit length. We have the obvious equation

Hij = Fα,i − Fβj
. (4.21)

We will deduce Lemma 4.2 from our computations of Fα,i and Fβ,j.
In our proof of Lemma 4.1 we constructed a path from b1 = (1, L, I) to and given point

p. The first edge of this path joined b1 to a1. So, the path we use to connect a1 to p is just
the same one we used above, except with the first edge chopped off. In describing our paths,
we let Yk denote the path made from the first k edges of the 3-spine. We let e±k denote the
short edge such that

ê±k = êk + (±1, 0).

Here ek is the kth edge of the 3-spine. (The correspondence e → ê is discussed in detail in
§2.) The three edges e−k , ek, e

+
k correspond to 3 consecutive horizontal dots in Figure 4.8

With this notation, we have:

• The path connecting a1 to α1 is Y13.
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• The path connecting a1 to α2 is Y5 ∪ e+6 . The short edge has type 2.

• The path connecting a1 to α3 is Y9 ∪ e+10. The short edge has type 2.

• The path connecting a1 to β1 is Y3.

• The path connecting a1 to β2 is e−1 . This (short) edge has type 1.

• The path connecting a1 to β3 is Y15 ∪ e−16. This edge has type 2.

We will leave the details of our calculation to Mathematica, but here we outline the main
points. In each case we F̃ = PQ, so that F = Im(F̃ ). By the product rule we have

∂jF̃ (Vn) = P (Vn)∂jQ(Vn) + ∂jP (Vn)Q(Vn). (4.22)

We evaluate P and Q using Equation 4.10 (without the first term). We evaluate ∂jP and
∂jQ essentially by differentiating Equation 4.10 (without the first term.) We now explain
how the differentiation works. Our calculations use the lists from Equation 4.5.

Let R be one of the expressions we want to differentiate. If Yk appears in the definition
of the path associated to R then we see a contribution of

k∑

i=1

Lj(i)ω
L(i)

in the expression for ∂jY (Vn). In conjugating (for the case R = Q) we simply reverse the
signs of the list of numbers in L. For instance

∂1Q(Vn) =
20∑

i=1

L1(i)ω
−L(i) =

2i

ω3
[(−4− 4ω2 − 7ω4 − 3ω6)n+ (10 + 14ω2 + 16ω4 + 8ω6)]. (4.23)

If we see e±k in our expression, and this edge has type 1, then we see a contribution of

λ(L1(k)± 1)ωL(k)±1 + λ1ω
L(k)±1 (4.24)

in the expression for ∂1R(Vn) and a contribution of

λ(L2(k) + 0)ωL(k)+1 + λ2ω
L(k)±1 (4.25)

in the expressions for ∂2R(Vn). If e±1
k has type 2, then we see the same contributions, but

with λ1 and λ2 switched.
These are the ingredients for our calculations. We let H̃ij = F̃α,i−F̃β,j. When we compute

these quantities using the expressions above, we find that the result always has the form

∂iH̃jk =
f(n, ω, ω−1)

ωa
or

f(n, ω, ω−1)

ωa(ω2 − ω−2)
. (4.26)

35



Here f is some polynomial in ω, ω−1 and n which is linear in n. (This polynomial, and the
exponent a, both depend on the indices i, j, k.) The first case occurs 5 times and the second
case occurs 13 times.

Since we only care about the sign of the imaginary part of ∂iH̃jk we clear denominators
by multiplying the second form by the positive real expression

I(ω2 − ω−2). (4.27)

Call the resulting expression L̃ijk. When ∂iH̃jk has the first form we simply set L̃ijk = ∂iH̃jk.
In all cases we find that

L̃ijk =




c−8

c−6

c−4

c−2

c0
c2
c4
c6
c8




·




ω−8

ω−6

ω−4

ω−2

ω0

ω2

ω4

ω6

ω8




→




c0 − c0
c2 − c−2

c4 − c−4

c6 − c−6

c8 − c−8



·




1
ω2

ω4

ω6

ω8



=




a0
a1
a2
a3
a4



·




1
ω2

ω4

ω6

ω8



. (4.28)

This time cj has the form

cj = cj0 + cj1n; c0j, cj1 ∈ Z[i]. (4.29)

Again, the expression x → y means that the imaginary parts of these two expressions are
positive multiples of each other.

In listing the results of our calculations, we just write out the coefficient vectors (a0, ..., a5).

Here are the 9 expressions for −L̃1jk:

∗ 120in 92in 40in 8in 0
0 68n−60 88n−72 48n−40 8n
0 124n−220 92n−168 24n−40 0
0 44n−60 52n−72 24n−40 0
0 32n−120 56n−144 32n−80 0
0 88n−280 60n−240 8n−80 −8n
0 140n−176 128n−168 56n−84 6n−12
0 128n−236 132n−240 64n−124 6n−12

∗ i(224n−520) i(134n−348) i(40n−124) i(−2n−12) 0

(4.30)
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(We have deliberately listed −L̃ijk.) Here are the 9 expressions for L̃2jk.

∗ 0 0 0 0 0
0 52n−60 56n−72 32n−40 0
0 88n−176 92n−184 44n−84 0
0 52n−60 56n−72 32n−40 0
0 104n−120 112n−144 64n−80 0
0 140n−236 148n−256 76n−124 0
0 116n−220 88n−168 16n−40 0

∗ i(216n−360) i(144n−240) i(48n−80) 0 0
∗ i(264n−520) i(180n−352) i(60n−124) 0 0

(4.31)

The starred lines come from the first form in Equation 4.26 and the unstarred lines come
from the second form. The first line in Equation 4.31 is L̃211, the quantity we expect to
vanish in light of Lemma 4.3. For n ≥ 4 the positive imaginary terms in the other starred
lines dominate the negative imaginary terms, and the positive terms in the unstarred lines
dominate the negative terms. Hence, with the exception of the one line which represents the
quantity 0, all the other lines represent quantities with positive imaginary part. (To be sure,
we checked this numerically for n = 4, ..., 20.)

This completes the proof of Lemma 4.2, and we are done.
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5 The Words for Theorem 1.7

Theorem 1.7 is the most delicate of our existence results. Here we introduce the necessary
words. In later chapters, we will analyze these words, as we did for the proofs of Theorems
1.2 and 1.3.

5.1 The Squarepaths

Theorem 1.7 involves the words {Wnk} for n = 3, 4, 5... and k = 0, 1, 2.... In this chapter we
introduce these words and consider the corresponding unfoldings. It turns out that Wnk has
length 24n+ 30k2 − 68k − 20. The shortest word, W30, has length 52. Rather than present
Wnk as a long string of digits, we will draw the square path Q̂nk := Q̂3(Wnk). The path Q̂nk

is not embedded, but is the union of two embedded halves. Reflection about a diagonal line
swaps these two halves. We will draw one half of Q̂nk, we well as the diagonal line.

Q̂nk is based an in (n− 1)× n grid of squares, which we call an n-stamp. Each square in
the stamp has edge-length 2, as in Figure 2.3.

Figure 5.1 shows 3 representations of the word W30. The leftmost figure shows the
squarepath Q̂30. This closed path is composed of 2 halves that are swapped by reflection
in a certain diagonal line of symmetry. The middle figure shows one half Q̂30. This is
the representation we will use in the other figures. We prefer this representation because
the corresponding path is always embedded, and the full squarepath can be recovered in a
straightforward way. Just reflect and concatenate. The right figure shows the corresponding
half of the hexpath H30.

Figure 5.1: Half of Q̂31.

Figure 5.1 is the beginning of an infinite pattern of paths. Figure 5.2 shows the corre-
sponding halves of Q̂3k for k = 1, 2, 3. The small grid of squares has been erased in Figure
5.2.
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Figure 5.2: Half of Q̂3k for k = 1, 2, 3.

The path Q̂n+1,k is obtained by increasing the length of each edge of Q̂nk by 2 units.

Figure 5.3 shows the left halves of Q̂31, Q̂41, and Q̂51.

Figure 5.3: Half of the rectilinear paths for Q̂30 and Q̂40 and Q̂50

5.2 The Unfoldings

We will see that Unk consists of 4 “strips”, attached along 4 “hinges”. Figure 5.4 shows this
structure.
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Figure 5.4: U(W42, V3).

When we change the point relative to which we unfold, the strips do not change much
and the hinges open and close, so to speak. For points in the orbit tiles, the hinges adjust so
that the whole unfolding is practically a straight line. In Figure 4.4, we have chosen a point
that is far from the relevant tile. Our remaining pictures show the unfoldings for points
actually in the relevant orbit tile.

The strips are essentially composed of units that we call blocks . The left hand side of
Figure 5.5 shows what we call a block . In general, a k-block is defined to be k blocks lined up
in sequence. The right hand side of Figure 5.5 shows a 2-block. The triangles in a k-block
all have the same shape, and this shape depends on the point in parameter space of interest
to us. If we glue the opposite sides of a block together we get a space which is naturally the
union of two 2-darts.

Figure 5.5: A 1-block and a 2-block

The strips are essentially composed of blocks. Once we describe U30, we will describe
Unk as a modification which amounts to changing the combinatorial structure of each strip.
Figure 5.6 shows U(W30, V3).

Figure 5.6: U(W30, V3).
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Note that U(W30, V3) has 12 long edges which are all parallel and nearly vertical. We
have highlighted 4 of these edges. The unfolding U3k is obtained by cutting U30 open along
each of the 4 highlighted edges and inserting a k-block. Figure 5.7 shows U(W31, V3). The
pattern continues in the obvious way. In describing our surgery, we have used the geometry
of U(W30, V3) to highlight 4 particular edges along which we cut. However, this surgery has
a combinatorial meaning for any parameter.

Figure 5.7: U(W31, V3).

We obtain Un,k from U3k by replacing each maximal m-dart with a maximal m′-dart,
where

m′ = m+ (n− 3).

This fits exactly with our description of Q̂nk as being obtained from Q̂3k by lengthening each
edge by 2(n− 3) units.

Figure 5.8: U(W40, V4).

Figure 5.9: U(W50, V5).

We end this section with a computation. The formulas in the next result will be useful
when we make explicit computations in §6 and §7.

Lemma 5.1 Let n be fixed and let ek be the leftmost edge of U(Wnk, Vn). As k → ∞, the
slope of ek converges to 0.

Proof: We normalize so that ek has unit length. If we trim off the portions of the darts
from the set U := U(Wnk, Vn) we see that the resulting set is the union of 4 parallel annuli
attached along 4 edges. We compute by elementary trigonometry and induction that the 4
strips have total length

Ψ1 +Ψ#k; Ψ1 = 12(1 + cos(
π

n
)); Ψ# = 8(1 + cos(

π

n
)). (5.1)
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Each annulus has width
Ψ2 = sin(

π

n
) (5.2)

If we rotate U so that the first edge is horizontal then the holonomy has coordinates

Ψ1 + i4Ψ2 +Ψ#k. (5.3)

The line determined by this complex number converges to a horizontal line as k → ∞. Thus,
if we rotate U so that the holonomy is horizontal, then the slope of the first edge tends to 0
as k → ∞. ♠

Remark: In §7 we will give a more explicit and combinatorial derivation of the formulas in
Lemma 5.1.

5.3 The Pivot Region

Here we isolate 4 basic features of the unfolding U(Wnk, Vn).

• There is a family of 12 + 8k parallel and nearly vertical edges. We call these edges
quasi-vertical , or QV for short.

• There is a family of 24 + 16k parallel and nearly horizontal edges. We call these edges
quasi-horizontal , or QH for short.

• Each QV edge is flanked by two QH edges, in the sense that reflection in this QV edge
swaps the two QH edges flanking it.

• There are exactly 4 QH edges which connect top to bottom vertices. We call these
edges the hinges .

These facts are all established inductively. They hold true for the parameter (3, 0), and then
we check easily that they remain true when we perform one of the surgeries described above.

We have distinguished the above edges just for the unfoldings attached to specific param-
eters. However, we extend our definitions of QH and QV, using continuity, to the unfoldings
attached to any point of parameter space. Of course, for points remote to the regions of
interest to us, the QH edges need not be close to horizontal and the QV edges need not be
close to vertical. Moreover, these edges need not be parallel to each other at other parame-
ters. To talk precisely about the situation we make the following definition:

Definition: Let An denote the region (x1, x2) ⊂ ∆ such that

xj ∈ [π/2n, π/(2n− 2)]; j = 1, 2.

The points Vn and Vn−1 are two opposite corners of the little square defined by these condi-
tions. Let R′

nk ⊂ An denote the set of points such that all the QH edges have negative slope.
Let Rnk denote the path connected component of R′

nk which contains Vn. We call Rnk the
pivot region.
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Lemma 5.2 For any point in Rnk the QV edges all have positive slope.

Proof: As we pointed out above, each QV edge V is flanked by two QH edges H1 and H2.
That is, reflection in V swaps H1 and H2. This is a property that holds for all parameters: It
is a combinatorial symmetry. Now, let X ∈ Rnk be some point. We consider what happens
as we vary the parameter continuously from Vn to X, staying inside Rnk. If the slope of V
changes from positive to negative then V must be either vertical or horizontal at some point.
But then it is impossible for H1 and H2 to both have negative slope at this point and still
flank V . This is a contradiction. ♠

Referring to §2.6, we note that a vertex of Unk is superior if and only if it is incident to
a QH edge. This fact is seen by inspection for U30, and then is unchanged by any of the
surgeries we perform. We call a superior vertex a pivot if it is incident to one of the pivot
edges. There are 4 top pivots and 4 botton pivots.

Lemma 5.3 Let X ∈ Rnk be any point. If all the top pivots lie above all the bottom pivots
of U(Wnk, X) then X ∈ O(Wnk).

Proof: Let v be a top superior vertex of Unk which is not a pivot. Inspecting our unfoldings,
we see that v has one of two properties:

• v is the left vertex of a QH edge which is not a hinge.

• v lies to the left of another superior vertex v′, and reflection in a QV edge swaps v and
v′.

This property is easily seen, by inspection, for U30, and our surgery operations do not destroy
this property. In either of the above cases, our conditions on the slopes of the QV and QH
edges forces v to lie above v′. Since this works for all superior vertices which are not pivots,
we see that only a pivot can be the lowest top superior vertex. Likewise, only a pivot can
be a bottom superior vertices. Hence, by hypothesis, all the top superior vertices lie above
all the bottom superior vertices. Hence X ∈ O(Wnk) by the Dart Lemma. ♠

5.4 The Structure of the Quasi-Horizontal Edges

Say that a QH point in Z2 is a point ê which corresponds to a QH edge. Here we describe
the pattern of QH points associated to our unfoldings.

We use the McBilliards labeling convention that the leftmost edge e0 of Unk, which
happens to be a QH edge, corresponds to (0, 0) ∈ Z2. If e is any other QH edge, then e is
parallel to e0 at the point Vn = (π/2n, π/2n). But the angle between e and e0 is given by
ê · (π/2n, π/2n). This angle must be an integer multiple of π. Hence

ê1 + ê2 ≡ 0 mod 2n. (5.4)
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The map (x, y) → x + y maps the hexpath Hnk to a subset of Z having diameter less than
(4 + 1

2
)n. Hence Equation 5.4 forces the QH points to lie along at most 4 lines of slope −1

in Z2. Hence the QH edges fall into at most 4 pseudo-parallel families, in the sense of §2.7.
After some trial and error we figured out how to draw the QH points. We find that these

points fall into exactly 4 pseudo-parallel families, and we compute the extreme points of
these families as follows: Setting

Znk = (2n− 2)(k + 2)− 1, (5.5)

the coordinates for the extreme points, in each family, are given by

1. (−3,−4n+ 3) and (−4n+ 3,−3) + (Znk,−Znk).

2. (−2,−2n+ 2) and (−2n+ 2,−2) + (Znk,−Znk).

3. (0, 0) and (0, 0) + (Znk,−Znk).

4. (2n− 2, 2) and (2, 2n− 2) + (Znk,−Znk).

Actually, we don’t care so much about these formulas. The main feature of the QH points
we use is that the coordinates of the northwest extreme endpoints−the first ones listed in
each line above−are independent of k. This property, together with symmetry, will tell us
everything we want to know about these edges.

Figure 4,10 shows the first few examples of the QH points in Z2. The 8 larger dots are the
extreme points. 4 of these dots are black and the other 4 are grey. The 4 grey dots in these
figures correspond to the hinges. The northwest grey dot is labeled (0, 0). The southeast

grey dot is (A,−A). The black path is the path Q̂, discussed in §2.4, which corresponds
to the 3-spine of the unfolding. This path is obtained by doubling the rectilinear paths
discussed in §5.1.
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Figure 5.10: Points for the QH families.
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6 The Quadratic Rescaling Theorem

6.1 Overview

We are interested in studying infinite sequences {Wnk} of words introduced in the last chap-
ter. We will hold n fixed and set Wk = Wnk. We wish to understand the asymptotic shape
of the orbit tiles O(Wk) as k → ∞. Each O(Wk) is a piecewise analytic polygon, whose sides
are given as the 0-level sets of analytic functions. It turns out that O(Wk) has a uniformly
bounded number of sides, independent of both n and k, and we will be able to make sense of
the notion of a side of O(Wk) which is independent of k. This allows us to group the various
defining functions involved into families . Our analysis is done one function-family at a time.

As we saw in §2, the function Fk has the special form

Fk(X) = Im(Pk(X −X0)Qk(X −X0)), (6.1)

(The only difference between the set-up here and in §2 is that we take special care to translate
F so that (0, 0), rather than X0, is the main point of interest to us in the domain.) Here X0

is the point in parameter space to which the orbit tiles converge. Summarizing the discussion
in §2, Pk is the development image of a certain saddle connection associated to Wk, and Qk

is the holonomy of the unfolding.
We want to place conditions on {Pk} and {Qk} so that the rescaled functions {Gk}

converges to a linear map (whose formula we can compute explicitly). Here

Gk(X) = Fk(Xk−2). (6.2)

The conditions we place on {Pk} and {Qk} have to do with the growth patterns of the
supports of their Fourier transforms. A few glances at the figures in §5 should be enough
to convince the reader that the conditions we discuss are satisfied, in particular, by the
functions associated to the words introduced in §5. We will state the Quadratic Rescaling
Theorem in the next section and then spend the rest of the chapter proving it.

As in §2 we frequently let E(x) = exp(ix).

6.2 The Main Result

All our constructions are based on a translation T : Z2 → Z2 and a point X0 ∈ πQ2. More
specifically, we have

T (x1, x2) = (x1 +M1, x2 +M2); X0 = 2π

(
p1
q1
,
p2
q2

)
. (6.3)

There is a natural homomorphism associated to X0:

φ(x1, x2) =

[
p1q2x1 + p2q1x2

G.C.D.(q1, q2)

]
∈ Z/N ; N = q1q2/G.C.D.(q1, q2). (6.4)

Here G.C.D. stands for greatest common divisor . We require that T is compatible with X0

in the sense that φ(M1,M2) = 0.
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Remark: In this paper we will have n = 3, 4, 5... and

T (x1, x2) = (x1 + (2n− 2), x2 − (2n− 2)); X0 = 2π

(
1

4n
,
1

4n

)
. (6.5)

In this case, we have φ(x1, x2) = [x1 + x2] ∈ Z/4n, and φ(M1,M2) = 0.

Going back to the general case, we let {Rk} stand for either the sequence {Pk} or {Qk}.
According to the theory developed in §2, we can write

Rk(X) =
∑

V ∈Z
2

R̂k(V )E(X · V ). (6.6)

Here R̂k : Z
2 → Z is the Fourier transform of Rk. We say that R̂k has linear growth if there

is some map R̂# : Z2 → Z such that

R̂k+1 = R̂k + R̂# ◦ T k; k = 0, 1, 2... (6.7)

Here T is the translation above. We call R̂# the growth generator for {Rk}. We require that

both R̂# and R̂0 are supported on finitely many points of Z2. Intuitively, the support of R̂k

grows linearly along the fibers of the homomorphism φ. As the notation suggestions, define

R#
k (X) =

∑

V ∈Z
2

R̂#
k (V )E(X · V ). (6.8)

Supposing that both {P̂k} and {Q̂k} have linear growth, we define

δ = det

[
P#(X0) P0(X0)
Q#(X0) Q0(X0)

]
;

δj = det

[
P#(X0) ∂jP

#(X0)
Q#(X0) ∂jQ

#(X0)

]
;

∆j =
Mjδ

2
+ Im(δj). (6.9)

Here ∂j is the partial derivative with respect to xj.
The rest of this chapter is devoted to proving:

Theorem 6.1 (Quadratic Rescaling) Suppose that {P̂k} and {Q̂k} have linear growth
with respect to T , and the quantities P#(X0) and Q#(X0) and δ are all real. Then {Gk}
converges in the C∞-topology to G, whose equation is given by

G(x1.x2) = F0(0, 0)−∆1x1 −∆2x2.

Remarks:
The C∞ convergence means that each partial derivative of Gk converges, uniformly on com-
pact subsets, to the corresponding partial derivative of G.

47



6.3 Quadratic Growth Conditions

Let A denote the set of all globally defined and analytic complex-valued functions on R2.
Given a multi-index I = (i1, i2) we define

XI = xi1
1 x

i2
2 ; |I| = i1 + i2. (6.10)

Given an infinite sequence {Fk} ∈ A we can write out the power series expansions

Fk(X) =
∑

I

Ck,IX
I (6.11)

We say that {Fk} forms a quadratic growth family if {Fk(0, 0)} is a constant sequence we
have the following finite limits for some ǫ > 0.

lim
k→∞

Ck,(1,0)k
−2 = C1; lim

k→∞
Ck,(0,1)k

−2 = C2; lim
k→∞

∑

|I|≥2

|Ck,I | k
(−2+ǫ)|I| = 0. (6.12)

Note that ǫ only enters into the third equation.
Recall that {Gk} is the rescaled version of {Fk}, as in Equation 6.2.

Lemma 6.2 (Convergence) Suppose that {Fk} is a quadratic growth family. Then {Gk}
converges in the C∞ topology to the linear function G, whose formula is given by G(x1, x2) =
F0(0, 0) + C1x1 + C2x2.

Proof: From the chain rule, we get the following series expansion:

Gk(X) =
∑

I

Ck,I k−2|I| XI . (6.13)

Consider the difference

Ĝ(X)−Gk(X) = Lk(X) +Rk(X); Rk(X) =
∑

|I|≥2

Ck,I k−2|I| XI .

Here Lk(x) is a linear function whose coefficients vanish as k → ∞, and Rk is everything
else. It suffices to to show that Rk and all its derivatives tend to 0 uniformly on compact
subsets.

Let ∂ stand for some partial derivative and let Ω be some big constant. Suppose X =
(x1, x2) is such that |xj| ≤ Ω for j = 1, 2. There is some constant N , depending on ∂, such
that

|∂Rk(X)| ≤
∑

|I|≥2

|I|N |Ck,I | k
−2|I| Ω|I| =

∑

|I|≥2

{|I|N(Ω/kǫ)|I|} |Ck,I |k
(−2+ǫ)|I|.

For

k >

(
ΩNN

)1/ǫ

the term in braces is less than 1. Hence

|∂Rk(X)| ≤
∑

|I|≥2

|Ck,I | k
(−2+ǫ)|I|.

By hypothesis, this last sum tends to 0 as k → ∞. ♠
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6.4 A Fact about the Fourier Transform

Now we begin to use the information about the sequences {Pk} and {Qk} to establish the
conditions on {Fk} discussed in the Convergence Lemma above. Let X0 be as in Equation
6.3 and let φ be the associated homomorphism, given in Equation 6.4. In particular, the
value N is given by Equation 6.4. Consider a function of the form

R(X) =
∑

V ∈Z
2

R̂(V )E(X · V ). (6.14)

Choosing any residue class k ∈ Z/N we define the modular transform:

Rφ(k) =
∑

φ−1(k)

R̂(V ). (6.15)

In all cases of interest to us, the sum in Equation 6.14 is a finite sum. This sum defines a
function Rφ : Z/N → C.

Lemma 6.3 (Modular Transform) With the notation as above, we have

R(X0) =
N∑

j=1

Rφ(j)E(2πj/N).

Proof: Let
N =

q1q2
D

; D = G.C.D.(q1, q2).

We can write R(X0) =
∑N

j=1Rj, where

Rj =
∑

(x1,x2)∈φ−1(j)

R̂(V )E(
2πp1x1

q1
+

2πp2x2

q2
) =

∑

(x1,x2)∈φ−1(j)

R̂(V )E

(
2π

N

(
x1p1q2
D

+
x2p2q1
D

))
=

∑

(x1,x2)∈φ−1(j)

R̂(V )E

(
2πj

N

)
= Rφ(j)E(2πj/N).

Summing over j we get the result. ♠

6.5 Growth Formulas

Let X0 and T be as in Equation 6.3. In particular, recall that T represents translation by
the vector (M1,M2) ∈ Z2. Let V denote the set of sequences of the form {Rk} which have
(M1,M2)-linear growth. We want to be clear that each individual element of V is a sequence
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of functions. V is a vector space. The vector space laws on V are given by componentwise
scaling and addition. That is

a · {Rk} = {aRk}; {Rk}+ {R′
k} = {Rk +R′

k}. (6.16)

Let V0 denote the subspace consisting of elements {Rk} with R0 = 0. There is a natural
projection V → V0. The sequence {Rk} is mapped to {Sk} where Sk = Rk − R0. We call
{Sk} the pure projection of {Rk}. We say that an element {Rk} of V0 is simple if its growth

generator R̂# is the indicator function for a single lattice point. That is, there is some
integral point A such that R̂#(X) = 1 iff X = A and R̂#(X) = 0 otherwise. The simple
elements of V0 form a basis for V0.

Lemma 6.4 Let {Rk} be any element of V and let I = (i1, i2) be any multi-index. Then

DIRk(X0) = R#(X0)×
i|I|M i1

1 M i2
2

|I|+ 1
× k|I|+1 +O(k|I|). (6.17)

Proof: If {Sk} is the pure projection of {Rk} then

|DISk(X0)| − |DIRk(X0)| = O(1)

Thus, it suffices to prove this lemma for elements of V0. Given the scaling and additivity
properties of Equation 6.17, it suffices to establish Equation 6.17 for the simple elements of
V0.

Suppose R̂# is the indicator function for (a1, a2) ∈ Z2. Then

D̂IRk(x1, x2) = i|I|xi1
1 x

i2
2 ⇐⇒ (x1, x2) ∈

k−1⋃

j=0

(a1 + jM1, b1 + jM2), (6.18)

and otherwise this function vanishes. Let β = φ(a1, a2) ∈ Z/N . Note that β = R#(X0) for
simple elements. All the points in Equation 6.18 lie in the same fiber of φ, namely φ−1(β).
From the Modular Transform Lemma we have

DIRk(X0) = i|I|β ×
k−1∑

j=0

(a1 + jM1)
i1(a2 + jM2)

i2 =

i|I|βM i1
1 M i2

2 ×
k−1∑

j=0

j|I| +O(k|I|) =

R#(X0)×
i|I|M i1

1 M i2
2

|I|+ 1
k|I|+1 +O(k|I|). (6.19)

This completes the proof. ♠

One useful special case of Lemma 6.4, stated more precisely, is:

Rk(X0) = R#(X0)k +R0(X0). (6.20)
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Remark: We can relate Equation 6.20 to Lemma 5.1 as follows. In our examples we have
X0 = Vn, the Veech Point. If R is the holonomy function (the Q-function) associated to ei-
ther the 1-spine or 2-spine of the unfolding Unk, then R0(X0) = Ψ1+i4Ψ2 and R#(X0) = Ψ#.

Lemma 6.5 Let {Rk} be any element of V. Then for j = 1, 2,

∂jRk(X0) =

(
iMj

2
R#(X0)

)
k2 +

(
∂jR

#(X0)−
iMj

2
R#(X0)

)
k + const. (6.21)

Proof: Let {Sk} be the pure projection of {Rk}. Assuming for the moment that {Sk} is a
simple element, Equation 6.19, applied to I = (1, 0), gives us

∂jSk(X0)−
iM1

2
R#(X0)k

2 = ∂jSk(X0) +
iM1

2
βk2 =

iβM1

2
k + a1k =

(
iMj

2
S#(X0)k + ∂jS

#(X0)

)
k.

Hence Equation 6.21 holds, with zero constant term, for the simple elements. Both sides of
Equation 6.17 (with zero constant term) can be interpreted as homomorphisms from V into
C. Hence, Equation 6.21 holds, with zero constant term, for all elements of V0. Finally we
note that ∂jSk(X0) and ∂jRk(X0) differ by a constant. ♠

6.6 Consequences of the Growth Formulas

Now we assume that {Pk} and {Qk} and {Fk} are all as in the Quadratic Rescaling Theorem.

Lemma 6.6 {Fk(0, 0)} is a constant sequence.

Proof: Using Equation 6.20 we compute Fk(0, 0) = Xk2 + Y k + F0(0, 0), where

X = Im(P#(X0)Q#(X0)) = 0;

Y = Im[P0(X0)Q#(X0) + P#(X0)Q0(X0)] = Im(δ) = 0.

This completes the proof. ♠

Lemma 6.7 ∂jFk(0, 0) = −∆jk
2 +O(k).

Proof: For easy reference we repeat Equations 6.20 and 6.21. For ease of notation we write
ρ = ρ(X0), understanding that all our functions ρ are evaluated at X0 unless we explicitly
indicate otherwise. We will also set M = Mj and ∂ = ∂j.

Rk = R#k +R0.
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∂Rk =

(
iM

2
R#

)
k2 +

(
∂R# −

iM

2
R#

)
k + const.

Using these equations and the identity

∂Fk(0, 0) = Im
[
Pk∂Qk + ∂PkQk

]
,

we just expand everything out and cancel many terms in pairs. We find that

∂Fk(0, 0) = Xk3 + k2(Y0 + Y1 + Y2) +O(k).

Here

X =
M

2
Im

[
− iP#Q# + iP#Q#

]
= 0;

Y0 = Im
[
P# iM

2
Q# −

iM

2
P#Q#

]
= 0;

Now we get to the nontrivial quantities. In our calculations we use the fact that P# and
Q# are both real at X0.

Y1 = Im
[
P#∂Q# + ∂P#Q#)

]
= Im

[
− P#∂Q# + (∂P#)Q#] = −Im(δ);

Y2 = Im
[
−

iM

2
P0Q# +

iM

2
P#Q0

]
=

Re
[
−

M

2
P0Q# +

M

2
P#Q0

]
=

Re
[
−

M

2
P0Q

# +
M

2
P#Q0

]
=

−Mδ

2
.

This completes the proof. ♠

Now we turn to the task of establishing Equation 6.12.

Lemma 6.8 There is some constant M such that

|Ck,I | < (Mk)|I|+2. (6.22)

Proof: If follows from the linear growth of {P̂k} and {Q̂k} and Equation 6.1 that

Fk(x1, x2) =

Nk∑

j=1

Jkj sin(Akjx1 + Bkjx2), (6.23)

Where, for some fixed constant M , we have

Nk < Mk2; max
j

(|Jkj|) < M max
j

(|Akj|) < Mk; max
j

(|Bkj|) < Mk. (6.24)
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Let D be a differential operator of order α. We have

DFk(x1, x2) =

Nk∑

j=1

JD,kjtrig(Akjx1 + Bkjx2),

where trig stands for either the sine or the cosine function, depending on the parity of α.
Equation 6.24 gives us maxj(|JD,kj|) < Mα+1kα. Given that the sine and cosine functions lie
between −1 and 1, and that there are at most Mk2 terms in the sum for DFk, we have

sup |DFk| ≤ (Mk)α+2. (6.25)

Let (n, k) stand for ”n choose k”. If I = (i1, i2) is a multi-index, with α = |I|, then we
have

|Ck,I | ≤
(α, i1) sup |DIFk|

α!
=

(α, i1)(Mk)α+2

α!
. (6.26)

Summing over all multi-indices of weight α we get

∑

I: |I|=α

|Ck,I | ≤
2α(Mk)α+2

α!
≤ (Mk)α+2.

This is Equation 6.22. ♠

Here is an improvement on Equation 6.22, at least when |I| = 2.

Lemma 6.9 There is some constant M such that

|I| = 2 =⇒ |CI | < (Mk)3 (6.27)

Proof: To simplify our notation, an expression like DIPk shall stand for DIPk(X0). The
functions Pk and Qk are always evaluated atX0. We will considerD2,0Fk(0), the other partial
derivatives of interest having a similar analysis. By the chain rule we have D2,0Fk(0) =
A+ B + C, where

A=Im(D2,0PkD0,0Qk); B=Im(D1,0PkD1,0Qk); C=Im(D0,0PkD2,0Qk).

From Lemma 6.17 and our assumptions, there are constants a, b ∈ R such that

D2,0Pk = ak2D0,0Qk +O(k2); D1,0Pk = bD1,0Qk +O(k).

Hence
A = Im((ak2D0,0Qk ×D0,0Qk) +O(k2)×O(k) = O(k3),

and
B = Im((bD1,0Qk ×D1,0Qk) +O(k)×O(k) = O(k2).

The term C has the same treatment as A. All in all, |D2,0F | = O(k3). ♠
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Lemma 6.10 Equation 6.12 holds for ǫ = 1/4.

Proof: Without loss of generality, we may take k > 2 +M100. Given Equations 6.22 and
6.27 we have

∑

|I|≥2

|Ck,I |k
(−2+ǫ)|I| ≤

∑

|I|=2

|Ck,I |k
−4+1/2 +

∞∑

α=3

∑

|I|=α

|CI,k|k
−7α/4 ≤

3Mk−1/2 +
∞∑

α=3

Mα+2k−(3α/4)+2 ≤ 3Mk−1/2 +
∞∑

α=3

k−(3α/2)+2+(α/200)+(1/100) ≤

3Mk−1/2 +
10∑

k=3

k−1/8 +
∞∑

α=10

k−α ≤ 3Mk−1/2 + 7k−1/8 + 2k−1.

This last expression tends to 0 as k → ∞. ♠

The Quadratic Rescaling Theorem is an immediate consequence of the Convergence
Lemma, Lemma 6.6, Lemma 6.7, and Lemma 6.10.
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7 Calculating the Pivot Region

7.1 The Main Result

We defined the pivot region Rnk in §5.3. (We will recall the definition in the next section.)
In this section we compute the asymptotic shape of this region when n is fixed and k → ∞.
Let Tnk denote the dilation which maps Vn to (0, 0) and dilates by a factor of k2. Define

Cn =
s

(2n− 2)c
; c = cos(

π

2n
) s = sin(

π

2n
). (7.1)

Lemma 7.1 (Pivot) For any n, the set Tnk(Rnk) converges to the infinite strip Σn defined
by the inequalities |x− y| < Cn.

Remarks: (i) When we restrict to any bounded region of the plane, the convergence we
have in mind is the same discussed in Theorem 1.7.
(ii) The Pivot Lemma is sharp. As we will see in the next chapter, the limit

lim
k→∞

Tnk(O(Wnk))

turns out to have vertices on both components of ∂Σn.,

The rest of the chapter is devoted to proving the Pivot Lemma.

7.2 Reducing to Defining Functions

Suppose for the moment that e(t) is a continuously varying segment in R2 for t ∈ [0, 1].
Suppose that e(0) has negative slope. Let f(t) denote the height of the left endpoint of e(t)
minus the height of the right endpoint of e(t). Note that f(0) > 0. We would like to make
the following statements, which we call the slope statements:

1. e(t) has negative slope ∀t ∈ [0, 1] if f(t) > 0 ∀t ∈ [0, 1].

2. If f(t) < 0 for some parameter t then e(t) has positive slope at t.

We would like the slope statements to be true because we would like to define the pivot region
in terms of the defining functions associated to the endpoints of the QH edges. Unfortunately,
the slope statements are not necessarily true. The problem is that e(t) could become vertical
at some point. However, the slope statements are true if e(t) has finite slope for all t ∈ [0, 1].
Most of this section is devoted to dealing with this irritating hitch in the slope statements.
Once we have the kink worked out, we will proceed to define the pivot region in terms of
defining functions.

Recall that Rnk is the path component of R′
nk which contains Vn; and R′

nk is the subset
of An consisting of points where all the QH edges of Unk have negative slope. (We defined
An in §5.3; this set is about to be replaced so we will not bother to recall the definition
here.) Let Ank ⊂ ∆ denote the subset consisting of points which are within k−3/2 of Pn. For
k sufficiently large, Ank is a subset of An, the set defined in §5.3. Notice that Tnk(Ank) is a
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disk of radius k1/2. Hence limk→∞ Tnk(R
′
nk) = limk→∞ Tnk(R

′
nk ∩ Ank). For this reason, we

will always work within Ank when we analyze R′
nk and Rnk.

For the next several results we choose two points X0, X1 ∈ Ank. We might as well take
X0 = Vn. Let Uj = U(Wnk, Xj) for j = 0, 1.

Lemma 7.2 Let e0 and e1 be corresponding edges of U0 and U1, which are edges of the jth
triangle from the left. If U0 and U1 are both rotated so that the leftmost edge is horizontal
then the angle between e1 and e2 is at most O(jk−3/2).

Proof: The point ê ∈ Z2 corresponding to e0 and e1 has norm O(j). Also |X0 − X1| =
O(k−3/2) by hypothesis. But the angle between our two edges is |ê · (X0 −X1)|, a quantity
which is O(jk−3/2). ♠

Corollary 7.3 If U0 and U1 are both rotated so that the leftmost edges are horizontal, then
the angle between the holonomy of U0 and the holonomy o U1 is O(k−1/2).

Proof: Here we will use the fact that X0 = Vn. Let L0 denote the line which joins up the
endpoints of the 3-spine S0 of U0. Given the structure of U0 discussed in §5, we see that L
has length which is linear in k. The holonomy of U0 maps the left endpoint of L0 to the
right endpoint of L0. Let S1 be the 3-spine of U1. If the left endpoints of corresponding jth
edges of L0 and L1 are matched up, then the right endpoints differ by at most O(jk−3/2).
Hence, by vector addition, we see that the right endpoints of S0 and S1 differ by at most

Cnk∑

j=1

O(jk−3/2) = O(k1/2),

assuming that the left endpoints have been matched up. Our notation in the last estimate
is a bit informal. The constant Cn is present in the sum to indicate that there are at most
Cnk edges in Unk. Hence L1 also has length which is linear in k. It now follows from basic
trigonometry that the angle between L0 and L1 is O(k−1/2). ♠

Corollary 7.4 If X ∈ Ank and k is sufficiently large then none of the QH edges in U(Wnk, X)
is vertical.

Proof: If U0 and U1 are both rotated so as to have horizontal holonomy then the angle
between corresponding edges of U0 and U1 is at most O(k−1/2). This is an immediate con-
sequence of the previous two results, and the fact that there are O(k) triangles in U0 and
U1. This lemma now follows from Lemma 5.1. The idea is that the QH edges are nearly
horizontal for one point in Ank, and then that cannot rotate much as we move around in
Ank. ♠

Now we can proceed with the analysis of the region Rnk by means of defining functions.
For each QH edge e, let Fnk,e denote the defining function which measures the height of the
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right endpoint of e minus the height of the left endpoint of e. (We normalize so that e has
length 1, as in §2.) In particular, let e1, ..., e8 be the Qh edges corresponding to the extreme

QH points, as discussed in §5.4. Compare Figure 5.10. Let R̃nk ⊂ Ank denote those points
X such that Fnk,a(X) < 0 for a = 1, ..., 8. Here is the main result of this section.

Lemma 7.5 If limk→∞ Tnk(R̃nk) = Σn, then the Pivot Lemma is true.

Proof: As above, we use the convention that our defining functions measure the height of
the left vertex minus the height of the right vertex. Let X ∈ R̃nk. The Convex Hull Lemma
says that Fnk,e(X) > 0 for all QH edges e. Given Corollary 7.4 we now know that all the QH

edges have negative slope. Hence R̃nk ⊂ R′
nk for k sufficiently large. If Tnk(R̃nk) converges

to Σn then the connected component Uk of Tnk(R̃nk) containing (0, 0) also converges to Σn.

Since R̃nk ⊂ R′
nk, we see that Uk is a connected subset of R′

nk which contains Vn. Hence
Uk ⊂ Tnk(Rnk). In summary, some subset Uk of Tnk(Rnk) converges to Σn.

Suppose we could find a sequence {Xk} of points such that Xk ∈ Rnk but Tnk(Xk) con-
verges to some point of R2 − Σn. Then some defining function Fnk,a would be negative at
Xk. But then, by the second slope statement and Corollary 7.4, some QH edge would have
positive slope at Xk. This is a contradiction. Hence Tnk(Rnk) itself converges to Σn. ♠

7.3 Bilateral Symmetry

Now we will focus our attention on the 8 extreme QH points, the ones listed in §5.4. The im-
portant fact for us is that the coordinates of the 4 northwest extreme points are independent
of k and the 4 southwest extreme points are, in a geometric sense, symmetrically located
with respect to the northwest extreme points. Each pseudo-parallel family is bounded by a
northwest point and a southeast point. We call two such extreme points partners .

Lemma 7.6 Suppose that F1 and F2 are the defining functions associated to a pair of partner
extreme points. Then F1(x, y) = F2(y, x).

Proof: The hexpath Hnk has bilateral symmetry across a diagonal line. If we reflect Hnk

in its line of symmetry and trace it backwards we get the same path. Correspondingly, if
we rotate Unk by 180 degrees and trace it backwards we get a cyclic permutation of Unk,
except with the edges of type 1 and 2 reversed. From this symmetry we see that partner
extreme points correspond to edges of different types . We label so that the extreme point
corresponding to Fj has type j.

Consider the effect of changing the origin in Z2. This amounts to adding some vector V0

to all the lattice points. If we compute our defining functions with the new labeling at X we
simply multiply both P and Q by the same quantity E(X · V0). Hence F is unchanged. For
the duration of the lemma, we change the origin so that it lies on the line of bilateral sym-
metry for the hexpath Hnk. In this case we have P1(x, y) = P2(y, x) by symmetry. Reflection

in the main diagonal interchanges the two sets Q̂1 and Q̂2. Hence Q1(x, y) = Q2(y, x). From
Equation 6.1 we see that F1(x, y) = F2(y, x). ♠
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7.4 The Computation

According to the symmetry above, we just have to analyze the defining functions associated
to the 4 northwest extreme points. Let {Pk} and {Qk} and {Fk} be the functions associated
to one of these points. We use the convention that Fk measures the height of the right vertex
minus the height of the left vertex. Referring to the setup for the Q.R.T., we have the basic
constants

X0 = Vn = (
π

2n
,
π

2n
) M1 = 2n− 2; M2 = −2n+ 2. (7.2)

The fundamental translation T moves points 2n − 2 units south and east. Inspecting
the figures in §5.1, we see that the hexpath Hnk, interpreted as a function from Z2 into Z

has T -linear growth. The same therefore is true of the path Q̂, which is derived from Hnk

as discussed in §§2.4. By Lemma 5.1 we have Q#(Vn) = Ψ# ∈ R. (We will give a second
derivation of this fact in §8, based on the combinatorics of the 3-spine of the unfolding.)

Note that P̂k is the indicator function for a single point whose coordinates do not change
with P . Hence P# is the 0-function. The value of Pk(Vn) is independent of both k and the
choice of northwest extreme point. For the point (0, 0) we can see that Pk(Vn) = ±1. Our
convention of the position of the left vertex minus the position of the right vertex leads to
Pk(Vn) = −1. All in all, we have

P0(Vn) = −1; P#(Vn) = ∂iP
#(Vn) = 0; δ = Q#(Vn); δj = 0. (7.3)

From Lemma 5.1, we have δ = Ψ# ∈ R. Hence {Fk} satisfies the conclusions of the Q.R.T.
Define

c′ = cos(
π

n
); s′ = sin(

π

n
). (7.4)

We have s′ = 2cs and c′ = 2c2 − 1. From Lemma 5.1 we have

Q0(Vn) = Ψ1 + i4Ψ2 = 12(1 + c′) + 4is′ = 24c2 + 8ics. (7.5)

Q#(Vn) = Ψ# = 8(1 + c′) = 16c2. (7.6)

(We will give another derivation of this in §8. See Equation 8.1.) Combining Equation 7.3
with Equation 7.6 we see that

F0(0, 0) = Im(P0(V0)Q0(Vn)) = 8cs; δ = 16c2;

−∆2 = ∆1 = −
M1

2
δ + 0 = −(16n− 16)(c2) = −

8cs

Cn

. (7.7)

According to the Q.R.T, the family of functions {Gk} converges in the smooth topology to
the function

G(x1, x2) = 8cs−∆1x1 −∆2x2 =

8cs+ (16n− 16)c2x1 − (16n− 16)x2 =

8cs× (1 +
x1

Cn

−
x2

Cn

). (7.8)

This calculation agrees, for small n, with the automatic computations done by McBilliards.
We now see that G is one of the two linear functions defining Σn. The other function comes
from symmetry, as we have discussed above. This completes the proof of the Pivot Lemma.
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8 Rescaling The Orbit Tiles

8.1 Overview

We continue using the notation from previous chapters. In particular, Tnk is the dilation
which maps Vn to 0 and expands by k2. We are interested in understanding the limits, as
k → ∞, of the sets

Tnk(O(Wnk)).

Let a1, a2, a3, a4 be the top pivot vertices of Unk, labeled from left to right. Likewise let
b1, b2, b3, b4 be the bottom pivot vertices of Unk, labeled from left to right. For any pair
(p, q) of vertices amongst these, let Fk[p, q] be the corresponding defining function. We are
suppressing n from our notation. If we want to evaluate our function at a point X, we write
it as Fk[p, q](X). In computing these functions we will use the following sign conventions

• Fk[ai, bj ] > 0 iff ai ↑ bj.

• Fk[ai, aj ] > 0 iff aj ↑ ai.

• Fk[bi, bj] > 0 iff bj ↑ bi.

Assuming that {Fk[p, q]} satisfies the G[p, q] denote the rescaled limit of the sequence
{Fk[p, q]}. Below we will prove

Lemma 8.1 Each of the 3 families

{Fk[a1, b2]}; {Fk[b2, b3]}; {Fk[b3, a4]}

satisfies the hypotheses of the Q.R.T. for j = 2, 3, 4.

We will compute the scaling limits of these functions explicitly below. The work in §7
shows that each of the function families {Fk[ai, bi]} satisfies the hypotheses (and hence the
conclusion) of the Q.R.T. Any other function Fk[p, q] can be written as a linear combination
of the functions Fk[ai, bi] and the functions from Lemma 8.1. (We will find these linear
combinations explicitly below.) Hence, all our function families satisfy the conclusions of
the Q.R.T.

Let Ωn ⊂ R2 denote the convex set on which all the functions G[ai, bj ] are positive. By
the Q.R.T. Ωn is a convex polygon−possibly empty or infinite−with at most 16 sides. By the
same symmetry as discussed in §7, we know that Ωn is symmetric with respect to reflection
in the line x1 = x2. We also know that Ωn ⊂ Σn, because the defining functions for Σn,
namely G[ai, bi], are by definition positive on Ωn.

Lemma 8.2 Assume that Ωn is bounded. Then Tnk(O(Wnk)) converges to Ωn, in the sense
mentioned in the introduction.

Proof: Let U be any open set whose closure is contained in the interior of Ωn. Let X be
any point of T−1

nk (U). By the Pivot Lemma, X ∈ Rnk for k sufficiently large. Lemma 5.3
now says that the lowest top vertex of U(Wnk, X) is one of the ai and the highest bottom
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vertex is one of the bj. Once k is sufficiently large, the functions Gk[ai, bj ] will all be positive
on U . Hence Fk[ai, bj ](X) > 0 provided that k is sufficiently large. But now we know that
all the top vertices of U(Wnk, X) lie above all the bottom vertex. Hence X ∈ O(W ). Hence
U ⊂ Tnk(O(W )). This is Property 1 of our definition of convergence.

Suppose that we can find points Xk ∈ O(Wnk) such that Tnk(Xk) converges to a point in
R2 which is not contained in the closure of Ωn. Then, for k sufficiently large, at least one of
the functions Fk[ai, bj ] is negative on Xk. But then some bottom vertex of U(Wnk, Xk) lies
above some top vertex. Hence Xk 6∈ O(Wnk). This is a contradiction. This contradiction,
establishes Property 2 of our convergence. ♠

During our proof of Lemma 8.1 we will gather enough information to compute all the
functions defining Ω exactly. It is then a simple matter to check that these functions cut out
precisely the region advertised in Theorem 1.7.

8.2 Asymptotic Limit Calculations

Here will prove Lemma 8.1 and compute the rescaled limits for the relevant families of
functions. For each of the 3 function families of interest to us, the corresponding vertices
can be connected to each other using part of the 3-spine. Figure 8.1 shows by example
the general pattern for the paths P̂ and Q̂. The example corresponds to U41, but every
picture has the same combinatorial structure. In our figures in this chapter, the grids have
edgelength 1 rather than 2, as in §5. We make the change because we want to point out
integer coordinates of various points in the squarepath, and some of these coordinates might
be odd.

Figure 8.1: Paths in Z2.
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The whole path represents Q̂. The white dot denotes the origin. Each of the three
black paths corresponds to a different one of our function families. Tracing the path around
clockwise, starting at the origin, we encounter the paths in the same order that the function
families are listed. From this picture we see clearly that both P̂ and Q̂ have T linear growth,
where T is as in §7. It remains to compute all the quantities relevant to the Q.R.T., for
each of the three families. We will do this in a step by step fashion. To keep our pictures
concrete, we will draw the case n = 4, though the general case is extremely similar.

8.2.1 The Holonomy Calculation

Here we compute the quantities associated to the family {Qk}. Just by scaling we get

Q0(X0) = λnΨ; Q#(X0) = λnΨ
#; λn =

1

2c
. (8.1)

We explain the constant λn in §8.3 below. Unfortunately, the geometric method used in the
proof of Lemma 5.1 does not readily shed light on the derivatives of Q#. So, here we will
use the combinatorial method explained in §2. At any rate, our calculations here serve as a
second proof of Lemma 5.1.

Figure 8.2: Fourier Transform of the Holonomy

Figure 8.2 shows Q̂0, using the representation we discussed in §2. The big grey dot is the
origin. The dots connected by the grey path are not part of Q̂0. These dots are the support
of Q̂#.

Let
M = 2n− 2 (8.2)

61



we arrive at the following tableaux for Q0 and Q#.

(+) 0 1
M 1
M 1−M
2M 1−M
2M 1− 2M

M − 2 1− 2M
M − 2 1−M
−2 1−M
−2 −1− 2M
M −1− 2M
M −1−M
0 −1−M

(+)
.
.

3M 1− 2M
3M 1− 3M

2M − 2 1− 3M
2M − 2 1− 2M
−2 +M 1− 2M
−2 +M −1− 3M
2M −1− 3M
2M −1− 2M

.

(8.3)

We determined the sign for the second tableaux by trial and error: We expect Q#(X0) to be
positive real rather than negative real because our unfoldings grow in the positive direction.
To help show the pattern we have staggered the entries in the tableau for Q̂# to indicate
their corresponding lines in the tableau for Q̂0.

we use the notation
c = cos(

π

2n
); s = sin(

π

2n
). (8.4)

as in §7. We could use the Modular Transform Lemma from §6 to evaluate the above
functions and their derivatives at X0. However, we will do the calculations symbolically in
Mathematica. From Equation 8.3 we get:

Q0(X0) = 12c+ 4is;

Q#(X0) = 8c.

∂1Q
#(X0) = 8i(4n− 5)c;

∂2Q
#(X0) = 8(n− 1)s− 40i(n− 1)c. (8.5)

In particular, using the double angle formulas we see that Equation 8.1 is indeed true.

8.2.2 The First Function Family

Here we compute the quantities associated to {Pk}, for Pk[a1, b2]. Figure 8.3 shows P̂0 and

P̂#.
The bottom two dots represent P̂#. SettingM = 2n−2 we read off the following function

tableaux for P and P#.

(−) 0 1
M 1
M 1−M
2M 1−M
2M 1− 2M

(+) 3M (1− 2M)
3M (1− 3M)

(8.6)

62



Figure 8.3: Fourier Transform for the First Path

Remarks: (i) The tableau for P̂0 consists of the first 5 lines of the tableau for Q̂0, and the

tableau for P̂# consists of the first 2 lines of the tableau for Q̂#. In this sense, the tableaux
for Q̂0 and Q̂# form a kind of master list.
(ii) The fact that (by inspection) F0(0, 0) > 0 determines the global signs for our tableaux.

We compute symbolically from Equation 8.6 that

P0(X0) = −5c− is; P#(X0) = −2c. (8.7)

Next, we compute that:

∂1P
#(X0) = 12i(n− 1)c; ∂2P

#(X0) = 2(n− 1)s− 2i(5n− 6)c. (8.8)

Equations 8.2.1 and 8.7 tells us, in particular, that Q#(X0) and P#(X0) are both real. (We
could also deduce this geometrically. Combining Equations 8.2.1 and 8.7 we compute that

F0(0, 0) = Im(−5c− is)(12c+ 4is) = 8cs = 4 sin(
π

n
). (8.9)

This is the same value we got for the family considered in §7 in connection with the Pivot
Lemma. We don’t have an explanation for this agreement.

Next, we compute

δ = det

[
−5c− is −2c
12c+ 4is 8c

]
= −16c2 ∈ R. (8.10)

All the relevant quantities are real, and so the associated family {Fk} satisfies the hypotheses
of the Quadratic Rescaling Theorem. Using the formulas above we compute

Im(δ1) = Imdet

[
−2c −12i(n− 1)c
8c 8i(4n− 5)c

]
= 16(2n− 1)c2.
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Similarly
δ2 = 16c2.

Finally

∆1 =
2n− 2

2
δ + δ1 = 16nc2; ∆2 =

2− 2n

2
δ + δ2 = 16nc2. (8.11)

By the Q.R.T., the rescaled limit of the sequence {Fk} is

G(x1, x2) = 8cs− 16nc2x1 − 16nc2x2. (8.12)

The result agrees with the automatic computations done by McBilliards for small values of
n. Note the similarity to the middle line of Equation 7.8.

8.2.3 The Second Function Family

Here we compute the quantities associated to {Pk}, for Pk[b2, b3]. Comparing Figures 8.1

and 8.2 we find that the tableau for P̂0 consists of lines 6, 7, 8 of the tableau for Q̂0 and the
tableau for P̂# consists of lines 3, 4 of the tableau for Q̂#. Here are these tableaux:

(−) M − 2 1− 2M
M − 2 1−M
−2 1−M

(+) 2M − 2 1− 3M
2M − 2 1− 2M

(8.13)

From these tableaux we compute that

P0(X0) = 3cis; P#(X0) = 2c;

∂1P
#(X0) = 4i(2n− 3)c; ∂2P

#(X0) = 2(n− 1)s− 2i(5n− 6)c. (8.14)

Using these equations, and the ones above for Q, we compute that

F (0, 0) = 0; δ = 0; ∆1 = Im(δ1) = 16c2; δ2 = Im(δ2) = −16c2. (8.15)

There {Fk} satisfies the hypotheses of the Q.R.T. and the rescaled limit is

G(x1, x2) = −16c2x1 + 16c2x2. (8.16)

Remark: For small values of n this agrees with the calculations made by McBilliards.
For this example, it took many tries before we got the sign right. The problem is that the
constant term vanishes, making it much trickier to deduce the correct sign without making
an error.
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8.2.4 The Third Function Family

Here we compute the quantities associated to {Pk}, for Pk[b3, a4]. Comparing Figures 8.1

and 8.2 we find that the tableau for P̂0 consists of line 9 of the tableau for Q̂0 and the tableau
for P̂# consists of lines 5, 6 of the tableau for Q̂#. Here are these tableaux:

−2 −1− 2M
(+) −2 +M 1− 2M

−2 +M −1− 3M
(8.17)

From these tableaux we compute that

P0(X0) = c+ is; P#(X0) = 2c;

∂1P
#(X0) = 4i(n− 2)c; ∂2P

#(X0) = 2(n− 1)s− 2i(5n− 4)c. (8.18)

Using these equations, and the ones above for Q, we compute that

F (0, 0) = 8cs; δ = −16c2; δ1 = (16 + 32n)c2; δ2 = 16c2;

∆1 = 16nc2; ∆2 = 16nc2. (8.19)

Therefore {Fk} satisfies the hypotheses of the Q.R.T, and the rescaled limit is

G(x1, x2) = 8cs− 16nc2x1 − 16nc2x2. (8.20)

For small values of n this agrees with the calculations made by McBilliards.

8.3 The Fudge Factor

Suppose that p1, p2, p3 are three vertices on our unfolding. Let Fij be the defining function
which computes (up to scale) the height difference between pi and pj. Here we refer to the
function defined in §2. We would like to say that F13 = F12 + F23 but there is a catch. The
functions might not all be computed with respect to the same spine of the unfolding, and
thus the function values might represent differences in heights measured at different scales.
This explains the fudge factor λn in Equation 8.1. In this section we will address this issue
systematically.

Let θd(X) denote the sine of the angle of the triangle TX which is opposite the dth edge.
Supposing that F has been computed in terms of the d-spine, we define

F̃ (X) = sin2(θd)F. (8.21)

Then F̃ measures the height difference between the relevant points when the edge of type
d is scaled to have length sin(θd). the exponent 2 appears in the definition because the
functions P and Q both scale linearly with the edge length, and F is the imaginary part of
their product.

It follows from the Law of Sines that a triangle may be scaled, with a single scale, so
that its type d edge has length sin(θd). Therefore, the functions F̃ is computed at the same
scale, independent of which spine it uses. Thus we really do have

F̃13 = F̃12 + F̃23. (8.22)
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Our modification works well with the Q.R.T. The set of functions that satisfy the con-
clusion of the Q.R.T. with respect to the same point X0 forms an algebra. That is, they can
be added, scaled, and multiplied together. Letting Ak(X) = sin(θd(X)), a function which
is actually independent of the parameter k. We see easily that the sequence {Ak} satisfies
the conclusions of the Q.R.T. and has rescaled limit function sind(X0). Therefore, if {Fk}

satisfies the conclusions of the Q.R.T. and has rescaled limit G, then {F̃k} also satisfies the
conclusions of the Q.R.T. and has rescaled limit

G̃ = sin(θd(X0)G. (8.23)

In the examples of interest to us, we have the following conversions: If G is based on the
3-spine then

G̃ = (s′)2G = 4c2s2G. (8.24)

If G is based on either the 1-spine or the 2-spine then

G̃ = s2G. (8.25)

Working with the G̃ limits instead of the G limits, we can add and subtract with impunity.

8.4 The Shapes of the Tiles

In this section we compute the region Ωn, using the explicit formulas for the functions defining
Ωn. Our first task is to write down all these functions. To make our notation simpler, we
will understand that our functions are always evaluated at the point (x1, x2). We will also
use the notation 


A
B
C


 = A+ Bx1 + Cx2. (8.26)

In the language of §7.3, the first and third hinges of the unfolding Unk correspond to northwest
extreme points, and the second and fourth hinges correspond to southeast extreme points.
Combining Lemma 7.6 and Equation 7.8 we see that

G̃[a1, b1] = G̃[a3, b3] =




8cs3

16(n− 1)c2s2

−16(n− 1)c2s2


 (8.27)

G̃[a2, b2] = G̃[a4, b4] =




8cs3

−16(n− 1)c2s2

16(n− 1)c2s2


 (8.28)

Again, these are the functions which define the strip Σn from the Pivot Lemma. Sum-
marizing the calculations we made in this chapter, we have

G̃[a1, b2] = G̃[a4, b3] =




32c3s3

−64nc4s2

−64nc4s2


 ; G̃[b2, b3] =




0
−64c4s2

+64c4s2


 . (8.29)
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To explain the rules we use to compute the rest of the defining functions, we simplify our
notation. We let [aibj] stand for G̃[ai, bj]. Using our sign conventions above (and checking
the signs against the output from McBilliards) we find that

• [a1b3] = [a1b2]− [b2b3]

• [a4b2] = [a4b3] + [b2b3]

• [a1b4] = [a1b3]− [a4b3] + [a4b4]

• [a2b1] = [a2b2]− [a1b2] + [a1b1]

• [a2b3] = [a2b2]− [b2b3]

• [a2b4] = [a2b3]− [a4b3] + [a4b4]

• [a3b1] = −[a1b3] + [a3b3] + [a1b1]

• [a3b2] = [a3b3] + [b2b3]

• [a3b4] = −[a4b3] + [a3b3] + [a4b4]

• [a4b1] = [a4b4] + [a1b1]− [a1b4]

Since we are only interested in pairs of the form [aibj] we further compress our notation

and write [ij] = [aibj] = G̃[ai, bj ]. We computed all the above quantities symbolically and
noticed a lot of symmetry. To help express this symmetry we write [i1j1] ∼ [i2j2] if the
map (x1, x2) → (x2, x1) conjugates the one function to the other. We compute the following
relations:

1. [13] ∼ [42].

2. [24] ∼ [31].

3. 1
2
× [13] + 1

2
× [42] = [12] = [43].

4. 1
2
× [24] + 1

2
× [31] = [21] = [34].

5. 1
2
× [13] + 1

2
× [31] = [11] = [33] ∼ [22] = [44].

6. t× [11] + (1− t)× [44] = [14] = [32] ∼ [23] = [41], where t = 2c2/(n− 1).

(We recall that c = cos(π/2n).)
The above relations easily imply that all the defining functions are convex combinations

of
[13] ∼ [42]; [24] ∼ [31]

Hence Ωn is defined by these 4 alone. Now that we are done adding these functions together,
we can replace them by positive multiples and still define the same region in the plane.
Setting

σ = sec(π/n) =
1

2c2 − 1
(8.30)
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we compute

[13] ∝




1
−2(n− 1)(c/s)
−2(n+ 1)(c/s)


 ; [24] ∝




−1
2(c/s)(n+ 1 + σ)

2(n− 1)(c/s)(1 + 2σ)


 . (8.31)

Now we dilate the plane by
ζn := 2(n− 1)(c/s).

The region ζnΩn is the region cut out by the defining functions obtained from the ones above
(and their symmetric conjugates) by dividing all the second and third coordinate entries by
ζn. That is, ζnΩn is defined by the functions:




1
−n+1

n−1

−1


 ;




−1
1+n+2σ

n−1

1 + 2σ


 ;




−1
1 + 2σ
1+n+2σ

n−1


 ;




1
−1

−n+1
n−1


 . (8.32)

Setting

µn =
1

2
−

tan2(π/2n)

2
(8.33)

we now list the vertices from Theorem 1.7, modified so that their first coordinate is padded
with a 1. 


1
− 1

n

1− 1
n


 ;




1
1
2
− 1

2n
1
2
− 1

2n


 ;




1
1− 1

n

− 1
n


 ;




1
µn(

1
2
− 1

2n
)

µn(
1
2
− 1

2n
)


 ; (8.34)

We claim that ζnΩ is the convex hull of the vertices from Theorem 1.7. To see this, it
suffices to show that the matrix of dot products between the vectors in Equation 8.32 and
the vectors in Equation 8.34 is non-negative, and has two zeros in each row and column.
Here is the matrix




2
n−1

β 0 0

0 σ σ 0
0 0 β 2

n−1
1
2c2

0 0 1
2c2


 ; β =

2σ(n− 2− cos(π/n))

n− 1
(8.35)

This completes our verification that ζnΩn is the convex hull of the above mentioned vertices.
We got Ωn as the limit of rescaling by a quadratic family {Tnk} of dilations. If we had

used the quadratic family {ζnTnk} instead, we would get ζnΩ right on the nose. This is the
family {Snk} we use for the proof of Theorem 1.7. This completes our proof of Theorem 1.7.

As a final remark, we calculate that both functions [13] and [31] vanish at a common
vertex of Ωn. Hence the function [11], one of the defining functions for Σn, also vanishes at
this vertex. Hence Ωn has a vertex on ∂Σn. By symmetry, Ωn intersects both components
of ∂Σn in a vertex. This justifies our comment, in §7, that the Pivot Lemma is sharp.
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9 Stability questions

In this section, we prove Theorem 1.5. Recall that Vn for n ≥ 3 is the obtuse isosceles
triangle with two angles of measure π/(2n). We will prove that if n is a power of two, then
Vn has no stable periodic billiard paths. For n not a power of two, we will construct a stable
periodic billiard path.

Remarks 9.1 (Errors Corrected) This version of the paper corrects errors in the pub-
lished version of the document, [HS09]. These errors occurred in sections 9.3 and 9.5.
Namely, Lemma 2.2 is corrected and clarified from the corresponding statement in the pub-
lished document. More fundamentally, the homology classes corresponding to stable periodic
billiard paths in the published version of section 9.5 were incorrect. This version contains
corrected formulas for these classes, and more detailed proofs. The authors would like to
thank Yilong Yang for pointing out the errors in [HS09].

9.1 A Homological Condition for Stability

Given a triangle T , let DT denote its double with the vertices removed. (The double of a
polygon can be thought of a pillowcase for a pillow made in the shape of the polygon.) See
Figure 9.1. There is a natural folding map f : DT → T which sends each of the two triangles
making up DT isometrically to T . (This map folds in the sense that is 2-1 except on the
edges of the triangle, where it is 1-1.) If p̃ is a closed geodesic on DT , then f(p̃) is a periodic
billiard path. Conversely, if p is a periodic billiard path in T (which hits an even number of
sides in a period), then there is a closed geodesic lift p̃ with f(p̃) = p. The lift p̃ is unique up
to the single non-trivial automorphism of the folding map f , which preserves the labeling of
edges and swaps the two triangles.

Lemma 9.2 A periodic billiard path p in a triangle T is stable if and only if its lift p̃ to the
double DT is null homologous (equivalent to zero in H1(DT,Z)).

Remark: Because we removed the vertices of the triangles from DT , DT is topologically a
3-punctured sphere. Thus, H1(DT,Z) ∼= Z2

Proof: This is formally a restatement of Lemma 2.2. The total sign counted for the edge
labeled 1 in Lemma 2.2 is equivalent to computing the algebraic sign of the intersection of
p̃ with the lift of the edge labeled 1 to DT . Having zero algebraic intersection number with
each of the lifts of an edge to DT is equivalent to being null homologous. ♠

Figure 9.1 The double DT of the triangle T = V4. The numerals indicate pairs of edges
which are glued together by an orientation preserving isometry of the plane.
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9.2 Translation surfaces and Veech’s lattice property

We will need to understand some of the implications of work of Veech [Vee89]. For this, we
introduce some of the ideas appearing in the study of translation surfaces. See [MT02] for a
more thorough introduction.

A translation surface is a union of polygonal subsets of the plane with edges glued together
pairwise by translation. There is a natural translation surface associated to every triangle
T . Let G = 〈r1, r2, r3〉 denote the subgroup of Isom(R2) generated by the reflections in the
sides of the triangle T . The translation surface S(T ) is the disjoint union of the triangles
g(T ) with g ∈ G with some identifications. Two triangles g1(T ) and g2(T ) are identified by
translation if g1 ◦ g

−1
2 is a translation. Also, we identify two triangles g1(T ) and g2(T ) along

the i-th edge by translation if g1◦g
−1
2 can be written as a composition of ri and a translation.

The resulting surface S(T ) is the smallest translation surface cover of DT . The covering
map is the map which sends each triangle in S(T ) isometrically to the triangle in DT with the
same orientation. In this section, we follow the convention that the vertices of the triangles
making up S(T ) are removed. (These points are really cone points, we only remove them to
make our topological notation simpler.)

Since a translation surface is built from polygonal subsets of the plane glued together
by translations, the surface inherits a notion of the direction of a unit tangent vector. This
notion of direction is just the measure of angle compared to a horizontal vector. This notion
of direction is a fibration from the unit tangent bundle T1S(T ) to the circle R/2πZ.

There is a natural action of the affine group SL(2,R) on the space of translation surfaces.
Suppose A ∈ SL(2,R) and S is a translation surface, then we will define A(S). Suppose S
is the disjoint union of the polygonal subsets of the plane Pi with i ∈ Λ with edges identified
pairwise by translation. Let A(S) be the disjoint union of the polygons A(Pi) with A acting
linearly on the plane with the same edge identifications. The new edge identifications are also
by translation. This is possible because A sends parallel lines to parallel lines and preserves
the ratio’s of lengths of pairs of parallel segments.

The Veech group Γ(S) is the subgroup of elements A ∈ SL(2,R) such that there is a
direction preserving isometry ϕA : A(S) → S. We abuse notation by using A to denote the
natural map from S → A(S) given by the restriction of the action of A on the plane to the
polygonal subsets of the plane making up S. The map ϕA ◦A : S → S is known as an affine
automorphism of S. The set of such maps forms a group known as the affine automorphism
group of S.

The Veech group Γ(S) is always discrete. We say S has the lattice property if Γ(S)
is a lattice in SL(2,R). We will utilize the following consequence of Veech’s work. If a
translation surface has the lattice property, then the collection of closed geodesics on S can
be well understood.

A direction θ ∈ R/2πZ is called a completely periodic direction for a translation surface
S if every bi-infinite geodesic in this direction is closed.

Theorem 9.3 (Veech Dichotomy) Suppose S has the lattice property. Let θ ∈ R/2πZ
be a direction. Then either θ is a completely periodic direction for S or the geodesic flow in
the direction θ is uniquely ergodic. Moreover, θ is completely periodic if and only if there is
a parabolic A ∈ Γ(S) for which θ is an eigendirection.
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Figure 9.2: The translation surface S(V4). All but two of the obtuse isosceles triangles have
been split along their axes of symmetries. Numbers indicate edge identifications by transla-
tions. Curves in the homology classes β−1, β1, γ−2, γ0 and γ2 are shown.

Veech showed that S(Vn) has the lattice property.
We will now carefully describe S(Vn), so that we can explicitly use Veech’s property. See

Figure 9.2 for visual guidance. To build S(Vn), start with a copy of Vn oriented in the plane
so that longest side lies on the x-axis. Cut this triangle in two along the axis of symmetry.
Reflecting each half repeated along the edges it shares with Vn yields two regular 2n-gons.
The halves can then be reassembled by gluing according to appropriate translations. This
amounts to gluing each edge of the left regular 2n-gon to the opposite side of the right 2n-
gon by translation. We remove the center point of each 2n-gon and also the vertices of the
2n-gon, since these points correspond to vertices of lifts of our triangle Vn. (This removal of
vertices will make our homological notation simpler.)

Theorem 9.4 (Veech) Let n ≥ 3. The Veech group Γ
(
S(Vn)

)
is a hyperbolic (n,∞,∞)

triangle group. The group Γ
(
S(Vn)

)
= 〈A,B : (A ◦ B−1)n = e〉 is generated by parabolics

which fix the directions of angle 0 or π
2n
. The corresponding affine automorphisms act as

single right Dehn twists in each maximal cylinder in the respective eigendirection.

We enjoy the following consequence.

Lemma 9.5 (Enumeration) If p1 is a closed geodesic on S(Vn) then there is a closed
geodesic p0 in the directions 0 or π

2n
and an affine automorphism ϕD ◦D which maps p1 onto

p0.
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Proof: The direction of p1 is not uniquely ergodic. Thus by Veech dichotomy, this di-
rection must be an eigendirection for a parabolic C ∈ Γ

(
S(Vn)

)
. Because of the structure

of the group, there must be an D ∈ Γ
(
S(Vn)

)
and an integer k 6= 0 such that either

D ◦ C ◦D−1 = ±Ak or D ◦ C ◦D−1 = ±Bk. Then D maps the direction of p1 onto either
the direction 0 or π

2n
. It follows that the affine automorphism corresponding to D sends the

geodesic p1 to a geodesic which travels in either the direction 0 or π
2n
. This image is our p0. ♠

9.3 Generators for the Affine Automorphism Group

In this subsection, we combine the idea of Lemma 9.2 with Veech’s lattice property to yield
necessary and sufficient conditions for stability of a periodic billiard path in Vn constructed
via the affine automorphism group of S(Vn).

Topologically, DVn is a 3-punctured sphere. We choose generators α1 and α−1 for
H1(DVn,Z) ∼= Z2. See Figure 9.1.

Figure 9.3: The translation surface S(V4). Curves in the homology classes γ−3, γ−1, γ1 and
γ3 are shown

We choose a basis for the homology group H1

(
S(Vn),Z

)
∼= Z2n+1. Our basis is the

homology classes of the collection of curves

B = {β1, β−1, γ1−n, . . . , γn−1}

depicted in Figures 9.2 and 9.3. The homology classes γk with k even all contain horizontal
geodesics. We order them so that the portions of these geodesics in the left polygon increase
in y coordinate as the index k increases. The homology class γ0 is chosen so that a geodesic
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in this class travels below the centers of the two 2n-gons. The homology classes γk with k
odd all contain geodesics which travel in the direction of angle π

2n
. With the correct choice

of indices, we have algebraic intersection numbers γ2i ∩ γ2i+1 = 1 and γ2i ∩ γ2i−1 = 1, but no
other pairs of curves intersect.

We think of first cohomology, H1
(
S(Vn),Z

)
, as the dual space to homology. Let

B∗ = {β∗
1 , β

∗
−1, γ

∗
1−n, . . . , γ

∗
n−1}

denote the dual basis for H1
(
S(Vn),Z

)
.

Consider the natural covering map φ : S(Vn) → DT . Let φ : H1

(
S(Vn),Z

)
→ H1(DT,Z)

be the induced map on homology. This satisfies the following properties:

• φ(βi) = 2nαi for i ∈ {1,−1}.

• φ(γk) =





(n+ k)α1 − (n+ k)α−1 if k < 0

nα1 + nα−1 if k = 0

(k − n)α1 + (n− k)α−1 if k > 0

Using φ, we get elements of the cohomology group H1
(
S(Vn),Z

)
, given by the coefficients

of α1 and α−1. Denote these elements by φ∗
1 and φ∗

−1. We think of these as maps of the form
H1

(
S(Vn),Z

)
→ Z. They satisfy φ(x) = φ∗

1(x)α1 + φ∗
−1(x)α−1. We have

φ∗
1 = 2nβ∗

1 + γ∗
1−n + 2γ∗

2−n + . . .+ nγ∗
0 − (n− 1)γ∗

1 − (n− 2)γ∗
2 − . . .− γ∗

n−1

φ∗
−1 = 2nβ∗

−1 − γ∗
1−n − 2γ∗

2−n − . . .− (n− 1)γ∗
−1 + nγ∗

0 + (n− 1)γ∗
1 + . . .+ γ∗

n−1.
(9.1)

We now describe the action of the affine automorphism group on S(Vn). If g is an element
of this affine automorphism group, we also use g to denote the induced action on homology,
and use g∗ to denote the pullback action. That is, if η∗ ∈ H1

(
S(Vn),Z

)
and g is an affine

automorphism of S(Vn) acting on homology, then
(
g∗(η∗)

)
(x) = η∗

(
g−1(x)

)
for all x ∈ H1

(
S(Vn),Z

)
.

(So, viewed as matrices acting on our bases, g∗ is the inverse transpose of g.) For the
formulas that follow, we follow the convention γ−n = γn = 0 and γ∗

−n = γ∗
n = 0. The affine

automorphism group of S(Vn) is generated by the following elements:

• The involution which swaps the two regular 2n-gons. The actions on homology and
cohomology are given by

σ : βi 7→ β−i : γk 7→ γ−k (9.2)

σ∗ : β∗
i 7→ β∗

−i : γ∗
k 7→ γ∗

−k. (9.3)

• The right Dehn twists in the odd cylinders. The actions on homology and cohomology
are given by

τo : βi 7→ βi : γk 7→

{
γk if k is odd

γk−1 + γk + γk+1 if k is even
(9.4)

τ ∗o : β∗
i 7→ β∗

i : γ∗
k 7→

{
−γ∗

k−1 + γ∗
k − γ∗

k+1 if k is odd

γ∗
k if k is even

(9.5)
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• The right Dehn twists in the even cylinders. The actions on homology and cohomology
are given by

τe : βi 7→ β−i : γk 7→





γk if k is even

−β−k + γk−1 + γk + γk+1 if k ∈ {−1, 1}

γk−1 + γk + γk+1 if k is odd and k /∈ {−1, 1}

(9.6)

τ ∗e : β∗
i 7→ β∗

−i + γ∗
i : γ∗

k 7→

{
γ∗
k if k is odd

−γ∗
k−1 + γ∗

k − γ∗
k+1 if k is even

(9.7)

We also record the action of (τ ∗e )
−1:

(τ ∗e )
−1 : β∗

i 7→ β∗
−i − γ∗

−i : γ∗
k 7→

{
γ∗
k if k is odd

γ∗
k−1 + γ∗

k + γ∗
k+1 if k is even

The work above gives us an method to prove the existence or non-existence of a stable
periodic billiard path. By the Enumeration Lemma, every closed geodesic S(Vn) is the
image of one of the geodesics in one of the homology classes γ1−n, . . . , γn−1 under an affine
automorphism in 〈σ, τo, τe〉. Let x ∈ H1

(
S(Vn),Z

)
be the homology class of a closed geodesic

on S(Vn). Then there is a w ∈ 〈σ, τo, τe〉 such that x = w(γk). For x to be stable, we must
have φ(x) = 0 ∈ H1(DT,Z). This is equivalent to saying that φ∗

i (x) = 0 for each i ∈ {−1, 1}.
Since w∗ denotes the pullback action on cohomology, observe that for i ∈ {−1, 1}, we have

φ∗
i (x) = φ∗

i

(
w(γk)

)
=

(
(w∗)−1(φ∗

i )
)
(γk).

In particular, the geodesic in the homology class x is stable if and only if for each i ∈ {−1, 1},
when (w∗)−1(φ∗

i ) is written in the basis B∗, the coefficient of γ∗
k is zero. We summarize these

conclusions in the proposition below.

Proposition 9.6 Let x = w(γk) ∈ H1

(
S(Vn),Z

)
be the homology class of a geodesic in

S(Vn). The corresponding billiard path in Vn is stable if and only if for each i ∈ {−1, 1},
when (w∗)−1(φ∗

i ) is written in the basis B∗, the coefficient of γ∗
k is zero.

We simplify this proposition by noting the following:

Proposition 9.7 The cohomology class φ∗
1+φ∗

−1 = 2nβ1+2nβ−1+2nγ∗
0 is invariant under

the group action 〈σ∗, τ ∗o , τ
∗
e 〉.

Proof: We check the least trivial case of the action of τ ∗e , and leave the other cases to the
reader:

τ ∗e (2nβ
∗
1 + 2nβ∗

−1 + 2nγ∗
0) = 2n(β∗

−1 + γ∗
1) + 2n(β∗

1 + γ∗
−1) + 2n(−γ∗

−1 + γ∗
0 − γ∗

1)
= 2nβ∗

1 + 2nβ∗
−1 + 2nγ∗

0 .

♠

We give a more careful statement of our final conclusions below:
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Lemma 9.8 (Stability) Suppose p is a periodic billiard path in Vn. Then, there is a lift
to a closed geodesic p̃ in S(Vn). Let x be the homology class of p̃. By the Enumeration
Lemma, x = w(γk) for some affine automorphism w in the group 〈σ, τo, τe〉 and some k ∈
{1− n, . . . , n− 1}. Then, p is stable if and only if k 6= 0 and when (w∗)−1(φ∗

1) is written in
the basis B∗, the coefficient of γ∗

k is zero.

Proof: This Lemma is essentially the same as Proposition 9.6. We observe that stability
is equivalent to the statement that the coefficients of γ∗

k is zero for the cohomology class
(w−1)∗(φ∗

1) and the invariant cohomology class (w−1)∗(φ∗
1 +φ∗

−1) = φ∗
1 +φ∗

−1. The coefficient
of γ∗

k of φ∗
1 + φ∗

−1 is zero if and only if k 6= 0. ♠

9.4 Instability

Suppose that n = 2m for an integer m ≥ 2. We will use the Stability Lemma to show that Vn

has no stable periodic billiard paths. We will show that the condition for stability given in
the Stability Lemma can not hold modulo 2n = 2m+1; i.e. for the corresponding cohomology
classes in H1

(
S(Vn),Z/2nZ

)
.

The following holds for all n, though we will only use it for powers of two.

Proposition 9.9 Let w∗ ∈ 〈σ∗, τ ∗o , τ
∗
e 〉. There exist odd integers r, s such that

w∗(φ∗
1) ≡

n−1∑

i=1−n

c(i)γ∗
i (mod 2n)

with coefficients given by

c(i) =

{
r(i+ n) if i is odd

s(i+ n) if i is even.

Proof of part 1 of Theorem 1.5: We assume n = 2m. Our numbers i lie within the set
{1− n, . . . , n− 1} in particular i+ n is never equivalent to zero modulo 2n. Multiplication
by an odd number permutes the classes of Z/2nZ = Z/2m+1Z and preserves zero. Thus,
r(i + n) is never equivalent to zero modulo 2m+1. Therefore, the Stability Lemma implies
that there can be no stable periodic billiard paths in Vn. ♠

Proof of Proposition 9.9: The proof is by induction in the group 〈σ, τo, τe〉. The statement
is true for the identity element with r = s = 1. See Equation 9.1.

We set up some notation. Let E andO denote the even and odd integers in {1−n, . . . , n−
1}. We find it convenient (as before) to let γ∗

n and γ∗
−n represent the zero cohomology class.

Now suppose that the statement is true for the group element w∗
0 for the odd numbers r

and s. That is, suppose that in H1(S(Vn),Z/2nZ),

w∗
0(φ

∗
1) =

∑

i∈O

r(i+ n)γ∗
i +

∑

i∈E

s(i+ n)γ∗
i .
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By Equation 9.3, applying the involution σ∗ yields:

σ∗ ◦ w∗
0(φ

∗
1) =

∑
i∈O r(i+ n)γ∗

−i +
∑

i∈E s(i+ n)γ∗
−i

=
∑

i∈O r(n− i)γ∗
i +

∑
i∈E s(n− i)γ∗

i

=
∑

i∈O −r(n+ i)γ∗
i +

∑
i∈E −s(n+ i)γ∗

i .

So, the equation holds for w∗ = σ∗ ◦w∗
0 for the choice of odds −r and −s. Now consider the

action of τ ∗o . We have

τ ∗o ◦ w∗
0(φ

∗
1) =

∑
i∈O r(i+ n)(−γ∗

i−1 + γ∗
i − γ∗

i+1) +
∑

i∈E s(i+ n)γ∗
i

=
∑

i∈O r(i+ n)γ∗
i +

∑
i∈E

(
− r(i− 1 + n)− r(i+ 1 + n) + s(i+ n)

)
γ∗
i

=
∑

i∈O r(i+ n)γ∗
i +

∑
i∈E(s− 2r)(i+ n)γ∗

i .

So, the equation holds for w∗ = τ ∗o ◦ w∗
0 with the choice of odds r and s− 2r. Similarly, the

equation holds when w∗ = (τ ∗o )
−1 ◦ w∗

0 with the choice of odds r and s+ 2r. We need to be
slightly more careful with the even twist because of the role of the zero cohomology classes
γ∗
−n and γ∗

n. Working modulo 2n, we have:

τ ∗e ◦ w∗
0(φ

∗
1) =

∑
i∈O r(i+ n)γ∗

i +
∑

i∈E s(i+ n)(−γ∗
i−1 + γ∗

i − γ∗
i+1)

=
(
r − 2s

)
γ∗
1−n +

(
− r − (2n− 2)s

)
γ∗
n−1+∑

i∈Or{1−n,n−1}

(
− s(i− 1 + n)− s(i+ 1 + n) + r(i+ n)

)
γ∗
i +∑

i∈E s(i+ n)γ∗
i

=
∑

i∈O(r − 2s)(i+ n)γ∗
i +

∑
i∈E s(i+ n)γ∗

i .

So, the equation holds when w∗ = τ ∗e ◦ w∗
0 for the choice of odds r − 2s and s. Similarly,

when w∗ = (τ ∗e )
−1 ◦ w∗

0, we use the odds r + 2s and s. ♠

9.5 Existence of Stable Trajectories

Suppose that n ≥ 3 is not a power of two. We will show the second part of Theorem 1.5;
Vn has a stable periodic billiard path. We prove this by establishing homology classes of
geodesics on S(Vn) which project to stable geodesics. These homology classes are provided
by the following two theorems.

Theorem 9.10 (Odd case) Suppose n ≥ 3 is odd. Then a closed geodesic in the homology

class (τe ◦ τ−1
o )

n−1

2 ◦ τ
3−n
2

e (γn−2) in S(Vn) projects to a stable periodic billiard path in Vn via
the folding map S(Vn) → Vn.

Theorem 9.11 (Even case) Suppose n is even and not a power of two. Then n = 2ab for

an odd integer b ≥ 3 and an integer a ≥ 1. Let w = (τe ◦ τ−1
o )

n
2 ◦ τ

b−1

2
o . Then, a closed

geodesic in the homology class w(γn−2a+1) projects to a stable periodic billiard path in Vn via
the folding map S(Vn) → Vn.

Remarks 9.12 The above formulas correct the incorrect formulas in [HS09]. The proofs
were wrong due in large part to calculation errors. For this reason, we make the calculations
very explicit below. Also, work in this section was checked with Mathematica.
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To prove these theorems, we investigate the action of (w∗)−1 on φ∗
1 in order to apply the

Stability Lemma. The w provided by each theorem begins with a power of τe ◦ τ−1
o , which is

conjugate but not equal to a rotation of S(Vn). The following is the main formula necessary
in the proofs of the above results.

Lemma 9.13 (Elliptic orbit) Let n ≥ 3 be an integer and let k be an integer with 0 ≤
k ≤ n

2
. Then,

(
τ ∗o ◦ (τ ∗e )

−1
)k
(φ∗

1) = n
(
1 + (−1)k

)
β∗
1 + n

(
1− (−1)k

)
β∗
−1 + nγ∗

0+

(−1)k
∑min{2k,n−1}

j=1

(
j + (−1)j(4jk − 2jn+ n)

)
(γ∗

j − γ∗
−j)+

(−1)k
∑n−1

j=2k+1(j − n)
(
1 + (−1)j4k

)
(γ∗

j − γ∗
−j).

To simplify the computations required to prove the lemma, we find it useful to break φ∗
1

into pieces. Namely, φ∗
1 is the sum of

Φ∗
A = 2nβ∗

1 + nγ∗
0 and Φ∗

B =
n−1∑

j=1

(j − n)(γ∗
j − γ∗

−j).

The following two propositions give formulas for the image of each under
(
τ ∗o ◦ (τ ∗e )

−1
)k
.

Combining them gives the proof of the lemma above.

Proposition 9.14 Let n ≥ 3 be an integer and suppose 0 ≤ k ≤ n
2
. Then, we have

(
τ ∗o ◦ (τ ∗e )

−1
)k
(Φ∗

A) = n
(
1 + (−1)k

)
β∗
1 + n

(
1− (−1)k

)
β∗
−1 + nγ∗

0+

n(−1)k
∑2k

j=1(−1)j(γ∗
j − γ∗

−j).

To make sense of the case when k = n
2
, recall that we assigned γ∗

n and γ∗
−n to be zero.

Proof: We prove this by induction in k. The statement is true when k = 0 by definition of
Φ∗

A. Now we will prove it when k = 1. We have

(τ ∗e )
−1(Φ∗

A) = (τ ∗e )
−1(2nβ∗

1 + nγ∗
0)

= 2n(β∗
−1 − γ∗

−1) + n(γ∗
−1 + γ∗

0 + γ∗
1)

= 2nβ∗
−1 − nγ∗

−1 + nγ∗
0 + nγ∗

1 .

Then applying τ ∗o to the above yields:

τ ∗o ◦ (τ ∗e )
−1(Φ∗

A) = τ ∗o (2nβ
∗
−1 − nγ∗

−1 + nγ∗
0 + nγ∗

1)
= 2nβ∗

1 − n(−γ∗
−2 + γ∗

−1 − γ∗
0) + nγ∗

0 + n(−γ∗
0 + γ∗

1 − γ∗
2)

= 2nβ∗
1 + nγ∗

−2 − nγ∗
−1 + nγ∗

0 + nγ∗
1 − nγ∗

2

This is equivalent to the formula given in the proposition when k = 1.
We continue by induction. Assume that the statement is true for k with 1 ≤ k < n

2
. We

will prove the statement for k + 1. For conciseness let Ψ∗
k =

(
τ ∗o ◦ (τ ∗e )

−1
)k
(Φ∗

A). Let E and
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O denote the even and odd integers non-strictly between 1 and 2k. By inductive hypothesis,
we have

(τ ∗e )
−1(Ψ∗

k) = (τ ∗e )
−1
(
n
(
1 + (−1)k

)
β∗
1 + n

(
1− (−1)k

)
β∗
−1 + nγ∗

0+

n(−1)k
∑2k

j=1(−1)j(γ∗
j − γ∗

−j)
)

= n
(
1 + (−1)k

)
(β∗

−1 − γ∗
−1) + n

(
1− (−1)k

)
(β∗

1 − γ∗
1) + n(γ∗

−1 + γ∗
0 + γ∗

1)+
n(−1)k

∑
j∈E(γ

∗
j−1 + γ∗

j + γ∗
j+1 − γ∗

−j−1 − γ∗
−j − γ∗

1−j)−
n(−1)k

∑
j∈O(γ

∗
j − γ∗

−j)

= n
(
1 + (−1)k+1

)
β∗
1 + n

(
1− (−1)k+1

)
β∗
−1 + nγ∗

0 + n(−1)k
∑2k+1

j=1 (γ∗
j − γ∗

−j).

We now let O′ be the odds non-strictly between 1 and 2k + 1. We apply τ ∗o to the result
from the above:

Ψ∗
k+1 = τ ∗o

(
n
(
1 + (−1)k+1

)
β∗
1 + n

(
1− (−1)k+1

)
β∗
−1 + nγ∗

0+

n(−1)k
∑

j∈O′ τ ∗o (γ
∗
j − γ∗

−j) + n(−1)k
∑

j∈E τ ∗o (γ
∗
j − γ∗

−j)
)

= n
(
1 + (−1)k+1

)
β∗
1 + n

(
1− (−1)k+1

)
β∗
−1 + nγ∗

0+
n(−1)k

∑
j∈O′(−γ∗

j−1 + γ∗
j − γ∗

j+1 + γ∗
−j−1 − γ∗

−j + γ∗
1−j)+

n(−1)k
∑

j∈E(γj − γ−j)

= n
(
1 + (−1)k+1

)
β∗
1 + n

(
1− (−1)k+1

)
β∗
−1 + nγ∗

0+

n(−1)k+1
∑2k+2

j=1 (−1)j(γ∗
j − γ∗

−j).

This proves the proposition. ♠

Proposition 9.15 For an integer n ≥ 3 and an integer k satisfying 0 ≤ k ≤ n
2
, we have

(
τ ∗o ◦ (τ ∗e )

−1
)k
(Φ∗

B) = (−1)k
∑min{2k,n−1}

j=1

(
j + (−1)j(4jk − 2jn)

)
(γ∗

j − γ∗
−j)+

(−1)k
∑n−1

j=2k+1(j − n)
(
1 + (−1)j4k

)
(γ∗

j − γ∗
−j).

Proof: First we setup some notation. We let η∗j = γ∗
j − γ∗

−j. If j = 0 or j = n, then ηj is
zero.

We will prove this proposition by induction in k. We observe the statement is true when
k = 0. Now suppose it holds for k with 0 ≤ k < n

2
. We define A and B so that they sum to(

τ ∗o ◦ (τ ∗e )
−1
)k
(Φ∗

B):

A = (−1)k
2k∑

j=1

j
(
1 + (−1)j(4k − 2n)

)
η∗j .

B = (−1)k
n−1∑

j=2k+1

(j − n)
(
1 + (−1)j4k

)
η∗j .

We first consider the action of (τ ∗e )
−1 on A. For each integer i > 0 define the collections of

even and odd integers:

E(2i) = {2, 4, . . . , 2i} and O(2i− 1) = {1, 3, . . . , 2i− 1}.
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We have:

(τ ∗e )
−1(A) = (−1)k(τ ∗e )

−1
(∑

j∈O(2k−1) j(1− 4k + 2n)η∗j +
∑

j∈E(2k) j(1 + 4k − 2n)η∗j

)

= (−1)k
(∑

j∈O(2k−1) j(1− 4k + 2n)η∗j+
∑

j∈E(2k) j(1 + 4k − 2n)(η∗j−1 + η∗j + η∗j+1)
)

= (−1)k
(
2k(1 + 4k − 2n)η∗2k+1 +

∑
j∈O(2k−1) j(3 + 4k − 2n)η∗j+

∑
j∈E(2k) j(1 + 4k − 2n)η∗j

)
.

Now we apply τ ∗o to the end of the above formula:

τ ∗o ◦ (τ ∗e )
−1(A) = (−1)k

(
2k(1 + 4k − 2n)(−η∗2k + η∗2k+1 − η∗2k+2)+∑

j∈O(2k−1) j(3 + 4k − 2n)(−η∗j−1 + η∗j − η∗j+1)+∑
j∈E(2k) j(1 + 4k − 2n)η∗j

)

= (−1)k
(
− (2k − 1)(3 + 4k − 2n)η∗2k + 2k(1 + 4k − 2n)(η∗2k+1 − η∗2k+2)+

∑
j∈O(2k−1) j(3 + 4k − 2n)η∗j +

∑
j∈E(2k−2) j(−5− 4k + 2n)η∗j

)
.

One can observe that the coefficients for ηj with j ∈ {1, . . . , 2k − 1} agree with our formula

for
(
τ ∗o ◦ (τ

∗
e )

−1
)k+1

(Φ∗
B) given in the proposition. (Note that the sign difference comes from

the fact that in the proposition, we begin with (−1)k+1.)
Now we will do a similar calculation for B. Let O and E denote the odds and evens

satisfying 1 ≤ i ≤ n− 1. We have:

(τ ∗e )
−1(B) = (−1)k(τ ∗e )

−1
(∑

j∈OrO(2k−1)(j − n)(1− 4k)η∗j+
∑

j∈ErE(2k)(j − n)(1 + 4k)η∗j

)

= (−1)k
(∑

j∈OrO(2k−1)(j − n)(1− 4k)η∗j+
∑

j∈ErE(2k)(j − n)(1 + 4k)(η∗j−1 + η∗j + η∗j+1)
)

= (−1)k
(
(3 + 8k − 2n)η∗2k+1 +

∑
j∈OrO(2k+1)(j − n)(3 + 4k)η∗j

∑
j∈ErE(2k)(j − n)(1 + 4k)η∗j

)

We apply τ ∗o to the end of the above formula:

τ ∗o ◦ (τ ∗e )
−1(B) = (−1)k

(
(3 + 8k − 2n)(−η∗2k + η∗2k+1 − η∗2k+2)+∑

j∈OrO(2k+1)(j − n)(3 + 4k)(−η∗j−1 + η∗j − η∗j+1)∑
j∈ErE(2k)(j − n)(1 + 4k)η∗j

)

= (−1)k
(
(3 + 8k − 2n)(−η∗2k + η∗2k+1)+

(−10− 16k + 4n)η∗2k+2+∑
j∈OrO(2k+1)(j − n)(3 + 4k)η∗j +

∑
j∈ErE(2k+2)(j − n)(−5− 4k)η∗j

)
.
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The coefficients match with our formula for
(
τ ∗o ◦ (τ ∗e )

−1
)k+1

(Φ∗
B) so long as j ≥ 2k + 3.

We now check the coefficients of η∗j for 2k ≤ j ≤ 2k+2. The coefficient of η∗2k of the sum
(τ ∗e )

−1(A+ B) is given by

(−1)k
(
− (2k − 1)(3 + 4k − 2n)− (3 + 8k − 2n)

)
= (−1)k+1(2k + 2− n)

(
1 + 4(k + 1)

)
,

as required by the proposition. The coefficient of η∗2k+1 is given by:

(−1)k
(
2k(1 + 4k − 2n) + (3 + 8k − 2n)

)
= (−1)k+1(2k + 1)(1− 4(k + 1) + 2n)

as required. The coefficient of η∗2k+2 is given by:

(−1)k
(
− 2k(1 + 4k − 2n)− 2(5 + 8k − 2n))

)
= (−1)k+1(2k + 2)

(
1 + 4(k + 1)− 2n

)
.

This also coincides with the formula in the proposition. We have now checked all coefficients.
♠

Proof of Theorem 9.10 (The odd case): By the Stability Lemma, it is equivalent

to show that the coefficient of γ∗
n−2 is zero in (τ ∗e )

n−3

2 ◦
(
τ ∗o ◦ (τ ∗e )

−1
)n−1

2 (φ∗
1). Let A =

(
τ ∗o ◦ (τ ∗e )

−1
)n−1

2 (φ∗
1). Using the Elliptic Orbit Lemma, we compute that:

A = 3(−1)
n−1

2 γ∗
n−3 + 2(n− 3)(−1)

n−1

2 γ∗
n−2 + (−1)

n−1

2 γ∗
n−1 + . . . .

The coefficients of the rest of the expression are irrelevant. Observe that if n = 3, the
coefficient of γ∗

n−2 of A is zero. This proves this statement in this case. Otherwise, we need

to apply (τ ∗e )
n−3

2 to this expression. We find:

(τ ∗e )
n−3

2 (A) = (−1)
n−1

2

(
3
(
3−n
2
γ∗
n−4+γ∗

n−3+
3−n
2
γ∗
n−2

)
+2(n−3)γ∗

n−2+(3−n
2
γ∗
n−2+γ∗

n−1)
)
+ . . . .

These are the only terms which contribute to the coefficient of γ∗
n−2, so we see this coefficient

is zero. ♠

Proof of Theorem 9.11 (The even case): We will again use the Stability Lemma.

We will show that the coefficient of γ∗
n−2a+1 is zero in (τ ∗o )

1−b
2 ◦

(
τ ∗o ◦ (τ ∗e )

−1
)n

2 (φ∗
1). Let

A =
(
τ ∗o ◦ (τ ∗e )

−1
)n

2 (φ∗
1). Using the Elliptic Orbit Lemma, we compute that:

A = (−1)
n
2

(
(−2a+1 − 1)γ∗

n−2a+1−1 + 2(n− 2a)γ∗
n−2a+1 + (−2a+1 + 1)γ∗

n−2a+1+1

)
+ . . . .

The coefficients of the rest of the expression are irrelevant. Then,

(τ ∗o )
1−b
2 (A) = (−1)

n
2

(
(−2a+1 − 1)( b−1

2
γ∗
n−2a+1−2 + γ∗

n−2a+1−1 +
b−1
2
γ∗
n−2a+1)+

2(n− 2a)γ∗
n−2a+1+

(−2a+1 + 1)( b−1
2
γ∗
n−2a+1 + γ∗

n−2a+1+1 +
b−1
2
γ∗
n−2a+1+2)

)
+ . . . .

Only these terms contribute to the coefficient of γ∗
n−2a+1 . We compute this coefficient:

(−1)
n
2

(
(−n+ 2a +

1− b

2
) + (2n− 2a+1) + (−n+ 2a +

b− 1

2
)
)
= 0.

♠
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