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Preface

Polytope exchange transformations are higher dimensional generalizations of
interval exchange transformations, one dimensional maps which have been
extensively and very fruitfully studied for the past 40 years or so. Polytope
exchange transformations have the added appeal that they produce intricate
fractal-like tilings. At this point, the higher dimensional versions are not
nearly as well understood as their 1-dimensional counterparts, and it seems
natural to focus on such questions as finding a robust renormalization theory
for a large class of examples.

In this monograph, we introduce a general method of constructing poly-
tope exchange transformations (PETs) in all dimensions. Our construction
is functorial in nature. One starts with a multigraph such that the vertices
are labeled by convex polytopes and the edges are labeled by Euclidean lat-
tices in such a way that each vertex label is a fundamental domain for all
the lattices labelling incident edges. There is a functor from the fundamental
groupoid of this multigraph into the category of PETs, and the image of this
functor contains many interesting examples. For instance, one can produce
huge multi-parameter families based on finite reflection groups.

Most of the monograph is devoted to the study the simplest examples of
our construction. These examples are based on the order 8 dihedral reflection
group D4. The corresponding multigraph is a digon (two vertices connected
by two edges) decorated by 2-dimensional parallelograms and lattices. This
input produces a 1-parameter family of polygon exchange transformations
which we call the Octagonal PETs. One particular parameter is closely
related to a system studied by Adler-Kitchens-Tresser.

We show that the family of octagonal PETs has a renormalization scheme
in which the (2, 4,∞) hyperbolic reflection triangle group acts on the param-
eter space (by linear fractional transformations) as a renormalization sym-
metry group. The underlying hyperbolic geometry symmetry of the system
allows for a complete classification of the shapes of the periodic tiles and also
a complete classification of the topology of the limit sets.

We also establish a local equivalence between outer billiards on semi-
regular octagons and the octagonal PETs, and this gives a similarly com-
plete description of outer billiards on semi-regular octagons. Finally, we
show how the octagonal PETs arise naturally as invariant slices of certain of
4-dimensional PETs based on deformations of the E4 lattice.
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I discovered almost all the material in this monograph by computer exper-
imentation, and then later on found rigorous proofs. Most of the proofs here
are traditional, but the proofs do rely on 12 computer calculations. These
calculations are described in detail in the last part of the monograph.

I wrote two interactive jave programs, OctaPET and BonePET, which
illustrate essentially all the mathematics in this monograph. The reader can
download these programs from my website (as explained at the end of the
introduction) and can use them while reading the manuscript. I wrote the
monograph with the intention that a serious reader would also use the pro-
grams.

I would like to thank Nicolas Bedaride, Pat Hooper, Injee Jeong, John
Smillie, and Sergei Tabachnikov for interesting conversations about topics
related to this work. Some of this work was carried out at ICERM in Summer
2012, and most of it was carried out during my sabbatical at Oxford in 2012-
13. I would especially like to thank All Souls College, Oxford, for providing
a wonderful research environment.
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ship, and Brown University for their support during this time period.

Oxford, November 2012

10



1 Introduction

1.1 What is a PET?

We begin by defining the main objects of study in this monograph. §2 gives
more information about what we say here.

PETs: A polytope exchange transformation (or PET) is defined by a big
polytope X which has been partitioned in two ways into small polytopes:

X =
m⋃

i=1

Ai =
m⋃

i=1

Bi. (1)

What we mean is that, for each i, the two polytopes Ai and Bi are translation
equivalent. That is, there is some vector Vi such that Bi = Ai+Vi. We always
take the small polytopes to be convex, but sometimes X will not be convex.

We define a map f : X → X and its inverse f−1 : X → X by the formulas

f(x) = x+ Vi ∀x ∈ int(Ai), f−1(y) = y − Vi ∀y ∈ int(Bi). (2)

f is not defined on points of ∂Ai and f−1 is not defined for points in ∂Bi.
Even though f and f−1 are not everywhere defined, almost every point of x
has a well-defined forwards and backwards orbit.

The Periodic Tiling: A point p ∈ X is called periodic if fn(p) = p for
some n. We will establish the following well-known results in §2: If p is a
periodic point, then there is a maximal open convex polytope Up ⊂ X such
that p ∈ Up, and f, ..., f

n are entirely defined on Up, and every point of Up

is periodic with period n. We call Up a periodic tile. We let ∆ denote the
union of periodic tiles. We call ∆ the periodic tiling .

The Limit Set: When ∆ is dense in X – and this happens in the cases
of interest to us here – the limit set Λ consists of those points p such that
every neighborhood of p intersects infinitely many tiles of ∆. Sometimes Λ
is called the residual set . See §2.5 for a more general definition.

The Aperiodic Set: We let Λ′ ⊂ Λ denote the union of points with
well-defined orbits. These orbits are necessarily aperiodic, so we call Λ′ the
aperiodic set .
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1.2 Some Examples

The simplest examples of PETs are 1-dimensional systems, known as interval
exchange transformations (IETs). Such a system is easy to produce: Par-
tition an interval smaller intervals, then rearrange them. IETs have been
extensively studied in the past 35 years. One very early paper is [K]; see
papers [Y] and [Z] for surveys of the literature. The Rauzy induction [R]
gives a satisfying renormalization theory for the family of IETs all having
the same number of intervals in the partition.

The simplest examples of higher dimensional polytope exchange transfor-
mations are products of IETs. In this case, all the polytopes are rectangular
solids. More generally, one can consider PETs (not necessarily products)
in which all the polytopes are rectangular solids. In 2 dimensions, these
are called rectangle exchanges . The paper [H] establishes some foundational
results about rectangle exchanges.

The paper [AKT] gives some early examples of piecewise isometric maps
which are not rectangle exchanges. The main example analyzed in [AKT]
produces locally the same tiling as outer billiards on the regular octagon,
and also the same tiling as one of the examples studied here.

The papers [T2], [AE], [Go], [Low1], and [Low2] all treat a closely re-
lated set of systems with 5-fold symmetry which produce tilings by regular
pentagons and/or regular decagons. The papers [AG], [LKV], [Low1], and
[Low2] deal with the case of 7-fold symmetry, which is much more diffi-
cult. The difficulty comes from the fact that exp(2πi/7) is a cubic irrational,
though one case with 7-fold symmetry is analyzed completely in [Low2].

Outer billiards on the regular n-gon furnishes an intriguing family of
PETs. The cases n = 3, 4, 6 produce regular tilings of the plane, and the
cases n = 5, 7, 8, 10, 12, where exp(2π/n) is a quadratic irrational, can be
completely understood in terms of renormalization. See [T2] for the case
n = 5, and [BC] for the other cases. There is partial information about the
case n = 7, and the remaining cases are not understood at all.

Some definitive theoretical work concerning the entropy of PETs is done
in [GH1], [GH2], and [B]. The main results here are that such systems have
zero entropy, with a suitable definition of entropy.

The recent paper [Hoo] is very close in spirit to our work here. In [Hoo],
the author works out a renormalization scheme for a 2-parameter family of
(non-product) rectangle exchange transformations.
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1.3 Goals of the Monograph

Multigraph PETs The first goal of this monograph is to give a general
construction of PETs, based on decorated multigraphs. A multigraph is
a graph in which one allows multiple edges connecting different vertices.
The vertices are labelled by convex polytopes and the edges are labeled by
Euclidean lattices, so that a vertex is incident to an edge iff the corresponding
polytope is a fundamental domain for the corresponding lattice. Given such
a multigraph G, we choose a base vertex x and we construct a functorial
homomorphism

π1(G, x) → PET(X). (3)

Here π1(G, x) is the fundamental group of G, and PET(X) is the group of
PETs whose domain is the polytope X corresponding to x. We call the
resulting systems multigraph PETs . When G is a digon–i.e. two vertices
connected by two edges, we call the system a double lattice PET . We will
give a variety of nontrivial constructions of multigraph PETs, some related
to outer billiards as in [S2] and some based on finite reflection groups.

Structure of the Octagonal PETs The octagonal PETs are the sim-
plest example of our construction. They are planar double lattice PETs
based on the order 8 dihedral reflection group. The second, and main, goal
of this monograph is study the structure of the octagonal PETs. We state all
our main results about the octagonal PETs in the sections following this one.

Connection to Outer Billiards: The third goal is to connect the study of
the octagonal PETs to the study of outer billiards on semi-regular octagons.
We will prove that outer billiards relative to any semi-regular octagon pro-
duces a periodic tiling locally isometric to the one produced by an octagonal
PET at a suitable parameter. This fact allows us to give very detailed infor-
mation about outer billiards on semi-regular octagons.

Connection to the Alternating Grid System: The fourth goal is to
explain the connection between the octagonal PETs and a certain dynamical
system in the plane (described below) that is defined by a pair of square
grids. Each alternating grid system has a 4-dimensional compactification
which is a double lattice PET, and the PET has an invariant 2-dimensional
slice which is the octagonal PET at the same parameter. This is how we
found the octagonal PETs.
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1.4 The Octagonal PETs

Here we describe the octagonal PETs. Our construction depends on a pa-
rameter s ∈ (0,∞), but usually we take s ∈ (0, 1). We suppress s from our
notation for most of the discussion.

1

2

2

1

2

1LF

L

F

L F

L

1

2

F
(2,0)

(2s,2s)

Figure 1.1: The scheme for the PET.

The 8 parallalograms in Figure 1.1 are the orbit of a single parallelogram
P under a dihedral group of order 8. Two of the sides of P are determined
by the vectors (2, 0) and (2s, 2s). We often suppress s from our notation.
For j = 1, 2, let Fj denote the parallelogram centered at the origin and
translation equivalent to the ones in the picture labeled Fj. Let Lj denote
the lattice generated by the sides of the parallelograms labeled Lj. (Either
one generates the same lattice.)

In §2 we will check the easy fact that Fi is a fundamental domain for Lj,
for all i, j ∈ {1, 2}. We define a system (X ′, f ′), with X ′ = F1 ∪ F2, and
f ′ : X ′ → X ′, as follows. Given p ∈ Fj we let

f ′(p) = p+ Vp ∈ F3−j, Vp ∈ L3−j . (4)

The choice of Vp is almost always unique, on account of F3−j being a fun-
damental domain for L3−j. When the choice is not unique, we leave f ′

undefined. When p ∈ F1 ∩ F2 we have Vp = 0 ∈ L1 ∩ L2. We will show in §2
that (X ′, f ′) is a PET.

We prefer the map f = (f ′)2, which preserves both F1 and F2. We set
X = F1. Our system is f : X → X, which we denote by (X, f).
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1.5 The Main Theorem: Renormalization

We define the renormalizaton map R : (0, 1) → [0, 1) as follows.

• R(x) = 1− x if x > 1/2

• R(x) = 1/(2x)− floor(1/(2x)) if x < 1/2.

R relates to the (2, 4,∞) reflection triangle triangle much in the way that the
classical Gauss map g(x) = 1/x− floor(1/x) relates to the modular group.

Define
Y = F1 − F2 = X − F2 ⊂ X. (5)

For any subset S ⊂ X, let f |S denote the first return map to S, assuming
that this map is defined. When we use this notation, it means implicitly that
the map is actually defined, at least away from a finite union of line segments.
We call S clean if no point on ∂S has a well defined orbit. This means, in
particular, that no tile of ∆ crosses over ∂S.

Theorem 1.1 (Main) Suppose s ∈ (0, 1) and t = R(s) ∈ (0, 1). There is a
clean set Zs ⊂ Xs such that ft|Yt is conjugate to f−1

s |Zs by a map φs.

1. φs commutes with reflection in the origin and maps the acute vertices
of Xt to the acute vertices of Xs.

2. When s < 1/2, the restriction of φs to each component of Yt is an
orientation reversing similarity, with scale factor s

√
2.

3. When s < 1/2, either half of φs extends to the trivial tile of ∆t and
maps it to a tile in ∆s which has period 2.

4. When s < 1/2, the only nontrivial orbits which miss Zs are contained
in the φs-images of the trivial tile of ∆t. These orbits have period 2.

5. When s > 1/2 the restriction of φs to each component of Ys is a trans-
lation.

6. When s > 1/2, all nontrivial orbits intersect Zs.

The Main Theorem is an example of a result where a picture says a
thousand words. Figures 1.2 and 1.3 show the Main Theorem in action for
s < 1/2. Figures 1.4 and 1.5 show the Main Theorem in action for s > 1/2.
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Figure 1.2: Yt lightly shaded for t = 3/10 = R(5/13).

Figure 1.3: Zs lightly shaded s = 5/13.

Figure 1.4: Yt lightly shaded for t = R(8/13) = 5/13.

Figure 1.5: Zs lightly shaded for s = 8/13.
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1.6 Corollaries of The Main Theorem

1.6.1 Structure of the Tiling

A semi-regular octagon is an octagon with 8-fold dihedral symmetry. When
s ∈ (1/2, 1), the intersection

Os = (F1)s ∩ (F2)s (6)

is the semi-regular octagon with vertices

(±s,±(1− s)), (±(1− s),±s). (7)

When s ∈ (0, 1/2), the interection Os is the square with vertices (±s,±s).
Given s ∈ (0, 1), let sn = Rn(s). We call the index n good if sn−1 < 1/2

or if n = 0.

Theorem 1.2 When s is irrational, a polygon appears in ∆s if and only it
is similar to Osn for a good index n. When s is rational, a polygon appears
in ∆s if and only if it is a square, a right-angled isosceles triangle, or similar
to Osn for a good index n.

Remark: Theorem 1.2 is a consequence of a more precise and technical re-
sult, Theorem 12.1, which describes the tiles of ∆s up to translation.

According to Theorem 1.2, the tiling ∆s is an infinite union of squares and
semi-regular octagons when s is irrational. Here is some more information
in the irrational case.

Theorem 1.3 The following is true when s ∈ (0, 1) is irrational.

1. If ∆s has no squares then s =
√
2/2. If ∆s has finitely many squares,

then s ∈ Q[
√
2].

2. ∆s has only squares if and only if the continued fraction expansion of
s has the form (0, a0, a1, a2, ...) where ak is even for all odd k. This
happens if and only if Rn(s) < 1/2 for all n.

3. ∆s has infinitely many squares and a dense set of shapes of semi-regular
octagons for almost all s.
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According to Theorem 1.2, when s is rational, ∆s consists entirely of
squares, semi-regular octagons, and right-angled isosceles triangles. We say
that a periodic tile τs of ∆s is stable if, for all parameters r sufficiently close
to s, there is a tile τr of ∆r consisting of points having the same period and
dynamical behavior as the points in τs. See §8 for more information.

Theorem 1.4 When s is rational, a tile of ∆s is unstable if and only if it
is a triangle. All the unstable tiles are isometric to each other, and they are
arranged into 4 orbits, all having the same period.

1.6.2 Structure of the Limit Set

Here are some results about the limit set. The quantity dim(Λs) denotes the
Hausdorff dimension of the limit set.

Theorem 1.5 Suppose s is irrational.

1. Λs has zero area.

2. The projection of Λs onto a line parallel to any 8th root of unity contains
a line segment. Hence dim(Λs) ≥ 1.

3. Λs is not contained in a finite union of lines.

4. Λ′
s is dense in Λs.

Theorem 1.4 implies, if s ∈ Q, that there is a single number N(s) such
that ∆s has 4N(s) triangular tiles, and all unstable periodic orbits of (Xs, fs)
have period N(s). In §18, we will give a kind of formula for N(s). We will
then use this formula to get some upper bounds on the dim(Λs).

Theorem 1.6 For any irrational s, there is a sequence {pn/qn} of rational
parameters, converging to s, such that

dim(Λs) ≤ lim sup
logN(pn/qn)

log qn
. (8)

In particular

• dim(Λs) = 1 if limRn(s) = 0.

• dim(Λs) ≤ 1 + (log 8/ log 9) in all cases.
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Remarks:
(i) The sequence {pn/qn} in the theorem is closely related to the sequence of
continued fraction approximations to s. Technically, we have pn/qn → s in
the sense of §11.5.
(ii) Computer experiments with our formula for N(s) suggest that

dim(Λs) ≤
2 log(1 +

√
2)

log(2 +
√
3)

, ∀ s ∈ (0, 1). (9)

The bound is attained when s =
√
3/2 − 1/2. Figure 1.6 below shows the

picture for this parameter. The case when Rn(s) > 1/2 finitely often boils
down to a question about the dynamics of the Gauss map. In a private com-
munication, Pat Hooper sketched a proof for me that the result holds in this
case.
(iii) Theorem 1.6 says, in particular, that dim(Λs) < 2, which of course
implies that Λs has zero area. However, we prove that Λs has zero area sep-
arately because the proof of Theorem 1.6 is rather involved.

Now we turn to questions about the topololy of Λs. Here is the complete
classification of the topological types.

Theorem 1.7 Let s ∈ (0, 1) be irrational.

1. Λs is a disjoint union of two arcs if and only if ∆s contains only squares.
This happens if and only if Rn(s) < 1/2 for all n.

2. Λs is a finite forest if and only if ∆s contains finitely many octagons.
This happens if and only if Rn(s) > 1/2 for finitely many n.

3. Λs is a Cantor set if and only if ∆s contains infinitely many octagons.
This happens if and only if Rn(s) > 1/2 for infinitely many n.

Figures 1.6-1.8 illustrate the three cases of Theorem 1.7. The curve in
Figure 1.6 is isometric to one of the curves which appears in Pat Hooper’s
Truchet tile systems. The notation in Figure 1.7 refers to the even expansion
of s. See §11 for a definition. The tiling in Figure 1.8 is the same as the main
example in [AKT].
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Figure 1.6: The left half of ∆s for s =
√
3/2− 1/2.

Figure 1.7: The left half of ∆s for s = (0, 3, 1, 3, 1, 2, 2, 2...).

Figure 1.8: The left half of ∆s for s =
√
2/2.
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We will investigate Case 1 of Theorem 1.7 in more detail.

Theorem 1.8 Suppose that the continued fraction of s is (0, a1, a2, a3, ...)
with ak even for all odd k. Then the restriction fs|Λs is a Z/2 extension of
the irrational rotation with rotation number (0, 2a2, a3, 2a4, a5, 2a6, a7, ...).

Remark: Theorem 1.8, and the more precise version, Theorem 25.1, are
similar to forthcoming results of Pat Hooper. Indeed, conversations with
Hooper inspired me to formulate and prove Theorems 1.8 and 25.1.

Now we discuss the dependence of the limit set on the parameter. When s
is rational, we let Us denote the closure of the union of the unstable tiles. Let
K denote the set of compact subsets of R2. We equip K with the Hausdorff
metric. The distance between two subsets is the infimal ǫ such that each is
contained in the ǫ-tubular neighborhood of the other.

We have a map Ξ : (0, 1) → K defined as follows.

• Ξs = Us when s is rational

• Ξs = Λs when s is irrational.

Theorem 1.9 The map Ξ is continuous at irrational points of (0, 1).

Remark: Theorem 1.9 says, in particular, that the union of unstable orbits
in the rational case gives a good approximation to the limit set in the irra-
tional case. Theorem 17.9, which is the main tool we use to prove Theorem
1.6, gives another view of this same idea.

1.6.3 Hyperbolic Symmetry

The Main Theorem above implies that there is an underlying hyperbolic
symmetry to the family of octagonal PETs. (See §2.6 for some background
information on hyperbolic geometry.)

Let H2 ⊂ C denote the upper half plane model of the hyperbolic plane.
Let Γ denote the (2, 4,∞) reflection triangle group, generated by reflections
in the sides of the ideal hyperbolic triangle with vertices

i√
2
,

1

2
+
i

2
, ∞. (10)
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We extend our parameter range so that our system is defined for all s ∈ R.
The systems at s and −s are identical. Γ acts on the parameter set by linear
fractional transformations.

We say that (Xs, fs) is locally modelled on (Xt, ft) at ps ∈ Xs if there is
some pt ∈ Xt and a similarity g : ∆s ∩ Us → ∆t ∩ Ut, with Us and Ut being
neighborhoods of ps and pt respectively. We say that (Xs, fs) and (Xt, ft) are
locally equivalent if there are finite collections of lines Ls and Lt such that
(Xs, fs) is locally modelled on (Xt, ft) for all pt ∈ Λt−Lt and (Xt, ft) is locally
modelled on (Xt, fs) for all ps ∈ Λs − Ls. Intuitively, the tilings of locally
equivalent systems have the same fine-scale structure. In particular, the limit
sets of locally equivalent systems have the same Hausdorff dimension.

Theorem 1.10 Suppose s and t are in the same orbit of Γ. Then (Xs, fs)
and (Xt, ft) are locally equivalent. In particular, the function s → dim(Λs)
is a Γ-invariant function.

Remarks:
(i) Γ is contained with index 4 in the group generated by reflections in the
ideal triangle with vertices 0, 1,∞. Using this fact, together with a classic
result about continued fractions, we we will show that the forward orbit
{Rn(s)} is dense in (0, 1) for almost all s ∈ (0, 1).
(ii) The need to exempt a finite union of lines in the definition of local
equivalence seems partly to be an artifact of our proof, but in general one
needs to disregard some points to make everything work.
(iii) Given the ergodic nature of the action of Γ, we can say that there is
some number δ0 such that dim(Λs) = δ0 for almost all s. However, we don’t
know the value of δ0.

1.7 Polygonal Outer Billiards

B. H. Neumann [N] introduced outer billiards in the late 1950s and J. Moser
[M1] popularized the system in the 1970s as a toy model for celestial mechan-
ics. Outer billiards is a discrete self-map of R2 − P , where P is a bounded
convex planar set as in Figure 1.9 below. Given p1 ∈ R2 − P , one defines p2
so that the segment p1p2 is tangent to P at its midpoint and P lies to the
right of the ray −−→p1p2. The map p1 → p2 is called the outer billiards map.
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2

1

Figure 1.9: Outer billiards relative to a semi-regular octagon.

The second iterate of the outer billiards map is a PET whose domain is
the entire plane. (We make the map the identity inside the central shape.)
In particular, we define ∆(P ) and Λ(P ) as above.

Much work on outer billiards has been done in recent years. See, for
instance, [BC], [Bo], [DT1], [DT2], [G], [GS], [Ko], [S2], [S3], [T1], [T2],
and [VS]. There is a survey in [T1], and a more recent one in [S3].

The sets ∆(P ) and Λ(P ) are well understood when P is a regular n-
gon for n = 3, 4, 5, 8, 12. These cases correspond to some of the piecewise
isometric systems discussed above. (The case n = 12 has not really been
worked out, but it is quite similar to the cases n = 5, 8.) Many pictures have
been drawn for other values of n, but there are no theoretical results.

I have given some information in [S4] about ∆(P ) when P is the Penrose
kite, but the information is far from complete. In all other cases, nothing is
known about the tiling and the limit set.

The only thing known about outer billiards on semi-regular octagons is
that all orbits are bounded. This follows from the general result in [GS],
[Ko], and [VS]. Here we will give fairly complete information about outer
billiards on semi-regular octagons.

We parameterize semi-regular octagons as in Equation 6. The comple-
ment R2 − Os is tiled, in two ways, by isometric copies of Xs = (F1)s. The
two ways are mirror reflections of each other. We first divide the R2 − Os

into 8 cones, and then we fill each cone with parallel copies of Xs, in the
pattern (partially) shown.
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Figure 1.10: The tiling of R2 −Os.

Theorem 1.11 Suppose s ∈ (1/2, 1). Let Y be any parallelogram in either
of the two tilings of R2 − Os. Let ∆s and Λs be the periodic tiling and the
limit set for the octagonal PET (Xs, fs). Then ∆(Os)∩Y and Λ(Os)∩Y are
isometric copies of ∆s and Λs respectively.

Thanks to Theorem 1.11, all the results mentioned above for the octagonal
PETs have analogous statements for outer billiards on semi-regular octagons.
For instance, almost every point is periodic and the Hausdorff dimension of
the limit set is strictly less than 2. The map R does not preserve the interval
(1/2, 1) and indeed there are many points in (1/2, 1), such as s = 3/2−

√
3/2,

for which Rn(s) never returns to (1/2, 1). Thus, the family of outer billiards
systems in semi-regular octagons really only has a renormalization scheme
associated to it when it is included in the larger family of octagonal PETs.

In §3.4 we will see that the octagonal PETs correspond to the case n = 4
of what we call dihedral PETs , a more general construction which works for
n = 3, 4, 5, .... The case n = 3, corresponding to outer billiards on semi-
regular hexagons, should have a theory very similar to what we do for n = 4
in this monograph.

1.8 The Alternating Grid System

Let Gs,z denote the grid of squares in the plane, with side length s, having
z ∈ C as a vertex. We take the sides of the squares to be parallel to the

24



coordinate axes. Let Ts,z denote the piecewise isometric transformation which
rotates each square of Gs,z counterclockwise by π/2 about its center. The
map Ts,z is not defined on the edges of Gs,z.

The alternating grid system is based on the composition of two maps
like this, based on differently sized grids. The standard grid is G1,0, and
we consider the infinite group 〈T1,0, Ts,z〉. This group acts on the plane by
piecewise isometries. To get a dynamical system in the traditional sense, one
can choose a word

T e1
1,0T

e2
s,z . . . T

en−1

1,0 T en
s,z, e1, ..., en ∈ {0, 1, 2, 3} (11)

and study the action of this map on R2. It seems reasonable to require that
the exponents sum to 0 mod 4. With this restriction, the map is a PET
whose domain is the whole plane.

It is interesting to vary the choice of word and see how the system changes.
In [S6] we consider this question in detail, and show that most words lead
to systems having very few periodic points. We make a case in [S6] that the
word

Fs,z = T1,0Ts,zT1,0Ts,z (12)

is the most interesting word to study. We call the system (R2, Fs,z) the
Alternating Grid System, or AGS for short. When we discuss the AGS in
§4, we will present some interesting experimental observations about these
systems which go beyond what we can actually prove.

In [S6] (which I wrote after completing the first version of this mono-
graph) we show that the noncompact system given by the map in Equation
11 always has a higher dimensional compactification, in the sense discussed
below. In the case of the AGS, the compactification is 4 dimensional. This is
the case we discuss here. The compactification of the system (R2, Fs,z) does
not depend on z, though the map into the compactification does depend
(mildly) on z.

Theorem 1.12 The system (R2, Fs,z) has a 4-dimensional compactification

(X̃s, F̃s), where X̃s ⊂ R4 is a parallelotope and F̃s is a polytope exchange
transformation.

By compactification, we mean that there is an injective piecewise affine
map Ψ̃s,z : R

2 → X̃s such that

F̃s ◦Ψs,z = Ψ̃s,z ◦ Fs,z (13)

25



When s is irrational, Ψs,z has a dense image. This map depends on z, but

any two choices of z lead to maps which differ by a translation of X̃s. We
think of R2 as an “irrational plane” sitting inside X̃s, as fundamental domain
for a 4-dimensional torus. (The choice of plane depends on z.) The map F̃s,z

acts in such a way as to preserve this irrational plane, and thus induces the
action of Fs,z on R2.

The pair (X̃s, F̃s) is a 4-dimensional double lattice PET. The next re-
sult says that the octagonal PET (Xs, fs) is the invariant slice of the 4-
dimensional compactification of the AGS.

Theorem 1.13 The system (X̃s, F̃s) commutes with an involution Is of F̃s.
The two eigen-planes of Is are invariant under the system, and the restriction
of F̃s to each one is a copy of the octagonal PET at parameter s.

Theorem 1.13 combines with Theorem 1.5 to prove the following result.

Theorem 1.14 For every irrational s ∈ (0, 1), there is some choice of z
(depending on s) such that (R2, Fs,z) has unbounded orbits.

Let K(s) denote the set of z such that (R2, Fs,z) has unbounded orbits.
Our result above says that K(s) is nonempty. We think that K(s) = C.

Combining Theorem 1.13 and Theorem 1.11, we get the following result.

Corollary 1.15 For any s ∈ (1/2, 1) the tiling produced by outer billiards
on the semi-regular octagon Os is locally isometric to the one which appears
in the invariant slice of the system (X̃s, F̃s).

In short, one “sees” outer billiards on semi-regular octagons inside the
AGS.

So far, I do not have a good understanding of the whole AGS, but I think
that the AGS is quite rich and mysterious. It certainly deserves further
study. This monograph is really an outgrowth of my attempt to understand
the AGS. The few results here about the AGS should really just be the
beginning of the story.

1.9 Computer Assists

The proofs we give in Parts I-IV of the monograph rely on 12 computer
calculations, which we explain in Part V. These calculations involve showing
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that various pairs of convex integer polyhedra are either disjoint or nested.
Everything is done with integer arithmetic, so that there is no roundoff error.
We control the sizes of the integers, so that there is also no overflow error.

My interactive java programs OctaPET and BonePET 1 do all the cal-
culations. OctaPET does all the calculations connected to our main result,
and BonePET does all the calculations connected to Theorem 1.11. The
programs can be downloaded from the URLs
http://www.math.brown.edu/∼res/Java/OCTAPET.tar
http://www.math.brown.edu/∼res/Java/BONEPET.tar
These are tarred directories, which untar to a directories called OctaPET and
BonePET. These directories contain the programs, as well as instructions for
compiling and running them.

All the pictures shown in this monograph are taken from these programs.
We strongly advise the reader to use OctaPET and BonePET while read-
ing the monograph. In the monograph we can only illustrate the important
phenomena with a few pictures whereas the reader can see the picture for
essentially any parameter using the programs. For the sake of giving a read-
able exposition, we omit a number of routine geometric calculations. Such
calculations are all exercises in plane geometry. Rather than write out these
calculations, we illustrate them with pictures from our programs. Again,
such calculations will be all the more obvious to the reader who is using the
programs while looking at the monograph.

A common mistake made by beginning students is to try to prove a general
statement by just considering one example. We do not mean to make this
mistake here, even though superficially some of our proofs look like this. In
a written paper dealing with a 1-parameter family of systems, we cannot
illustrate the picture for every parameter. The pictures we do show are
typical for the given parameter interval, and the written arguments we give
only make statements which hold for all the relevant parameters.

Finally, we mention that our proof of Theorem 1.6 requires a small amount
of Mathematica [W] code, which we include in the a directory called Math-
ematica in the source code for our program OctaPET.

1My daughter helped me name the second program. The name derives from the fact
that the domains for the PETs we use for Theorem 1.11 look like dogbones.
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1.10 Organization

Following a chapter containing some background material, this monograph
is organized into 5 parts.

• Part I deals with the relation of the octagonal PET to other PETs. In
particular, we prove Theorems 1.11, 1.12, and 1.13. We also introduce
the multigraph PETs, which are a functorial way of producing PETs.

• In Part II we establish some elementary properties of the octagonsl
PETs and then prove the Main Theorem. Following a discussion of the
properties of the renormalization map R from the Main Theorem, we
prove Theorems 1.2, 1.3, and 1.4.

• In Part III we elaborate on the Main Theorem, by explaining more
precisely how the tiling at the parameter s is related to the parameter
R(s). We use these results to prove Theorems 1.5, 1.6, 1.9, 1.5, and
1.10,

• In Part IV we investigate the topology of the limit set, and at the end,
some of the dynamics on the limit set. In particular, we prove the
Theorems 1.7 and 1.8,

• In Part V, we present all the computer assisted calculations.

At the beginning of each part of the monograph, we will give a more
detailed overview of that part.
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2 Background

2.1 Lattices and Fundamental Domains

Here are some basic geometric objects we consider in this monograph.

Convex Polytopes: Just for the record, we say that a convex polytope
is the convex hull of (i.e. the smallest closed convex set which contains) a
finite union of points in Euclidean space. The intersection of finitely many
convex polytopes is again a convex polytope, possibly of lower dimension.

We will not bother to define a general (non-convex) polytope, because all
the polytopes we consider are convex, except for several explicit 2-dimensional
examples.

Parallelotopes: As a special case, a parallelotope in Rn is a convex poly-
tope of the form T (Q), where Q is an n-dimensional cube in Rn and T is an
invertible affine transformation of Rn.

Euclidean Lattices: We define a lattice inRn to be a discrete abelian group
of the form T (Zn), where T is an invertible linear transformtion. When L is
a lattice in Rn, the quotient Rn/L is a flat torus.

Fundamental Domains: Let L be a lattice. We say that a convex polytope
F is a fundamental domain for L if the union

⋃

V ∈L

(F + V ) (14)

is a tiling of Rn. By this we mean that the translates of the interior of F by
vectors in L are pairwise disjoint and the translates of F itself cover Rn.

Equivalently, we can say that F is a fundamental domain if the following
is true.

• For all points p ∈ Rn there is some vector Vp ∈ L such that p+Vp ∈ F .

• F and Rn/L have the same volume.

These conditions in turn imply that the choice of Vp is unique unless p lies
in a certain countable union of codimension 1 sets – namely the L-translates
of the faces of F .
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2.2 Hyperplanes

Basic Definition: A hyperplane in Rn is a solution V to an equation

v · n = d ∀ v ∈ V. (15)

for some d ∈ R and some nonzero vector n. The vector n is called a normal
to V . One might take n to be a unit vector, but this is not necessary. When
d = 0, the hyperplane V is a vector subspace of Rn.

Matrix Action: Suppose that M : Rn → Rn is an invertible linear trans-
formation. We shall have occasion to want to know how M acts on hyper-
planes. Suppose V is the hyperplane satisfying Equation 15. Then M(V ) is
the hyperplane satisfying the equation

w · (M−1)t(n) = d ∀ v ∈M(V ) (16)

This equation derives from the fact that, in general M(v) · w = v ·M t(w).

Parallel Families: We say that a parallel family of hyperplanes is a count-
able discrete set of evenly spaced parallel hyperplanes. The direction of the
parallel family is specified by giving a normal vector to any hyperplane in
the family. All the hyperplanes in the family have the same normal.

Full Families: We say that a collection of n parallel families of hyperplanes
is full if the corresponding normals form a basis for for Rn. The standard ex-
ample is the collection C1, ..., Cn, where Ci consists of those points (x1, ..., xn)
with xi ∈ Z.

Lemma 2.1 An arbitrary full family is equivalent to the standard example by
some affine map. In particular, the complement of a full family is a periodic
tiling by parallelotopes.

Proof: Let v1, ..., vn be a basis of normals, where vi is normal to the ith fam-
ily. Let M be a matrix such that (M−1)t carries our basis to the standard
basis. Then M maps the ith full family to a family parallel to Ci defined
above. Further composing with a diagonal matrix and then translating, we
get exactly the map we seek. ♠
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2.3 The PET Category

We define a category PET whose objects are convex polytopes and whose
morphisms are (equivalence classes) of PETs between them.

PETs: A PET from X to Y is a map of the form given in Equation 2,
when we have partitions

X =
m⋃

i=1

Ai, Y =
m⋃

i=1

Bi. (17)

with Ai and Bi being translates.

Composition: If we have PET maps f : X → Y and f ′ : Y → Z we
can compose them and get a PET map f ′ ◦ f : X → Z. Concretely, sup-
pose that f : X → Y is defined in terms of partitions {Ai} and {Bi} and
f ′ : X → X is defined in terms of partitions {A′

i} and {B′
i}. Then f ′ ◦ f is

defined in terms of the partitions

{f−1(B′
i) ∩ Aj}, {f ′(Bi ∩ A′

j)}. (18)

and equals the obvious composition on each piece.

Equivalence: We call f1, f2 : X → Y equivalent if the two maps agree
on a convex polytope partition which is a common refinement of the parti-
tions defining the maps. It is easy to see that the relation on PETs from X
to Y really is an equivalence relation.

The Category: PET is the category whose objects are convex polytopes
and whose morphisms are equivalence classes of PETs between the polytopes.
It is easy that the composition defined above respects the equivalence classes.
Hence PET really is a category.

Remark: Sometimes it is annoying to distinguish between a PET and an
equivalence class of PETs. We make the distinction here so that we can
interpret equation 3 precisely. In practice, however, we will have a concrete
PET defined in terms of some explicit partitions.
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2.4 Periodic Tiles for PETs

Let (X, f) be a PET, as in §1.1. The map f : X → X is based on the two
partitions of X, as in Equations 1 and 2.

Let A1 denote the collection {A1, ..., An} of polytopes in the first partition
of X and let B1 denote the collection {B1, ..., Bn} of polytopes in the second
partition.

For positive integers n ≥ 2, we inductively define An to be the collection
of polyhedra

f−1(f(P ) ∩ A), P ∈ An−1, A ∈ A1. (19)

The partition An refines the partition An−1. All these partitions consist of
convex polytopes, and the power fn is defined on the complement of the
union ⋃

P∈An

∂P. (20)

Lemma 2.2 There is a codimension 1 subset S ⊂ X such that every point
of X − S has a well-defined orbit.

Proof: Take S ′ to be the union of all the sets in Equation 20. This set has
codimension 1, and every point in X − S ′ has a well-defined forward orbit.
There is an analogous set S ′′ ⊂ X such that every point in X − S ′′ has a
well-defined backwards orbit. We let S = S ′ ∪ S ′′ and we are done. ♠

Lemma 2.3 Let P be an open polytope of An. Suppose that some point of
P is periodic, with period n. Then all points of P are periodic, with period
n.

Proof: The first n iterates of f “do the same thing” on the interior of each
polytope of An. More precisely, if p1 and p2 lie in the same open polytope in
An then

fk(p1)− fk(p2) = p1 − p2, k = 1, ..., n. (21)

Our lemma follows immediately from this observation. ♠
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Corollary 2.4 Suppose that p ∈ X is a periodic point. Then there exists a
maximal open convex polytope Up such that f is entirely defined and periodic
on Up.

Proof: Let n be the minimal period of p. Since fn is defined on p, there is
some unique convex open polytope Up of An which contains p in its interior.
By the previous result, all points of Up have period n. By definition, fn

is not defined on ∂Up, so Up is the maximal domain having the advertised
properties. ♠

Remark: There is one subtle point about our previous argument which de-
serves to be made more clear. Suppose, for instance, that there is some n
such that every point on which f is defined has period n. It is tempting to
then say that fn is defined, and the identity, on all of X. However, in order
for fn to be defined, all the iterates fk must be defined for k = 1, ..., n. So,
we will not say that fn is defined, and the identity, on all of X. Rather,
we will keep to the original convention and say that fn is defined, and the
identity, on the complement of the set in Equation 20.

As mentioned in the introduction, the periodic tiling ∆ is the union of
the open periodic tiles of f . From the results above, each tile of ∆ is an open
convex polytope belonging to some An. We might have made all of the above
definitions and arguments in terms of the inverse map f−1 and the analogous
partitions Bn. Thus, we can say at the same time that each tile of ∆ is an
open convex polytope belonging to some Bn. We find it more convenient to
work with the forward iterates of f , however.

Lemma 2.5 If {Pk} is any sequence of tiles in ∆, the period of points in Pk

tends to ∞ with k.

Proof: If this is false, then there is a single n such that Pk is an open poly-
tope of An for all k. But An has only finitely many polytopes. ♠

Remark: It is worth pointing out that ∆ might be empty. If one is willing
to disregard a countable set of points, one can view an irrational rotation
of the circle as a 2-interval IET. Such an IET has no periodic points at all.
D. Genin noticed a similar phenomenon for outer billiards relative to irra-
tional trapezoids [G]. We are interested in the opposite case, when ∆ is dense.
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2.5 The Limit Set

In the introduction we gave a definition of the limit set which works for the
systems we study in this monograph. Here we give a more robust definition.
We call a point p ∈ X weakly aperiodic if there is a sequence {qn} converging
to p with the following property. The first n iterates of f are defined on qn
and the points fk(qn) for k = 1, ..., n are distinct. We let Λ denote the union
of weakly aperiodic points. We call Λ the limit set . Some authors call Λ the
residual set .

Not all points of Λ need to have well-defined orbits. In fact, the set Λ′ ⊂ Λ
of aperiodic points is precisely the set of points of Λ with well-defined orbits.
Now we reconcile the definition here with what we said in the introduction.

Lemma 2.6 Suppose that the periodic tiling ∆ is dense. Then a point be-
longs to Λ if and only if every open neighborhood of the point contains in-
finitely many tiles of ∆.

Proof: Let Λ∗ denote the set of points p such that every neighborhood of p
contains infinitely many tiles of ∆. We want to prove that Λ = Λ∗. Every
point of Λ∗ is the accumulation point of periodic points having arbitrarily
large period. Hence Λ∗ ⊂ Λ.

To show the reverse containment, suppose that p ∈ Λ. There exists a
sequence of points qn → p with the following property f 1(qn), ..., f

n(qn) are
all defined and distinct. Since ∆ is dense, we can take a new sequence {q′n} of
periodic points converging to p, and we can make |qn−q′n| as small as we like.
Making these distances sufficiently small, we guarantee that f 1(q′n), ..., f

n(q′n)
are all distinct. This means that q′n has period more than n.

Since X is compact, there are only finitely many periodic tiles having
diameter greater than ǫ, for any ǫ > 0. Hence, the size of the periodic tile
containing q′n necessarily converges to 0. But then every neighborhood of p
intersects infinitely many periodic tiles. ♠

Lemma 2.7 When ∆ is dense, Λ is closed.

Proof: When ∆ is dense, we have simply Λ = X −∆. Since ∆ is open and
X is closed, Λ is also closed. ♠

Remark: Λ is closed even when ∆ is not dense. We leave this an an exercise
for the interested reader.
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2.6 Some Hyperbolic Geometry

This material is not used until Part 2 of the monograph. More details about
hyperbolic geometry can be found in [B], [BKS, and [S1, §10,12].

The Mobius Group: SL2(C) is the group of 2 × 2 complex matrices of
determinant 1. The matrix

M =

[
a b
c d

]
(22)

Acts on the Riemann sphere C ∪∞ by linear fractional (or Mobius) trans-
formations

TM(z) =
az + b

cz + d
. (23)

This group action is compatible with matrix multiplication:

TA ◦ TB = TAB. (24)

The two maps TM and T−M have the same action, and it is customary to
work with the group PSL2(C) = SL2(C)/ ± I. This group is often called
the Mobius group. We will sometimes confound an element of PSL2(C) with
the linear fractional transformation it determines.

Generalized Circles: A generalized circle in C ∪ ∞ is either a round
circle or a topological circle of the form L ∪ ∞ where L ⊂ C is a straight
line. Mobius transformations map generalized circles to generalized circles,
and preserve angles between them. See e.g. [S1, Theorem 10.1].

The subgroup PSL2(R) consists of those equivalence classes of real ma-
trices. Elements of this subgroup preserve R ∪ ∞ and both the upper and
lower half-planes. In particular, elements of PSL2(R) preserve the set of
generalized circles which are either vertical lines or circles having the real
axis as a diameter.

Hyperbolic Plane: The hyperbolic plane is the upper half plane in C.
We denote it by H2. We equip H2 with the Riemannian metric

〈v, w〉x+iy =
v · w
y2

. (25)

The group PSL2(R) acts on H2 by Mobius transformations.
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Lemma 2.8 PSL2(R) acts isometrically on H2.

Proof: The claim is fairly obvious for the maps z → az + b, and a direct
calculation shows that the element z → −1/z also has this property. All
other elements of PSL2(R), interpreted as linear fractional transformations,
are compositions of the maps just mentioned. Compare [S1, §10.5]. ♠

The isometry group of H2 is generated by PSL2(R) and by (say) reflec-
tion in a vertical line. The geodesics (i.e. length minimizing paths) in H2

are either vertical rays or semicircles which meet R at right angles. We have
already mentioned that PSL2(R) permutes these geodesics.

Ideal Triangles: Each geodesic in H2 has two endpoints in R ∪ ∞. We
say that two geodesics are asymptotic if they have a common endpoint. For
instance, the vertical geodesics y = 0 and y = 1 share ∞ as an endpoint.
We say that an ideal triangle is the closed region bounded by three pairwise
asymptotic geodesics. Each ideal triangle has 3 ideal vertices . One can find
an element of PSL2(R) which maps any 3 distinct points in R ∪∞ to any
other 3 distinct points in R ∪ ∞. For this reason, all ideal triangles are
isometric. Ideal triangles are noncompact but have finite area equal to π.

Discrete Groups and Hyperbolic Surfaces: For us, a hyperbolic surface
is a geodesically complete Riemannian surface that is locally isometric toH2.
Hyperbolic surfaces are closely related to certain subgroup of PSL2(R), as
we now explain.

A subgroup Γ ⊂ PSL2(R) is discrete if the identity element of Γ is not an
accumulation point of Γ. An equivalent definition is that every convergent
sequence in Γ is eventually constant. Yet another equivalent definition is
that for any compact set K ⊂ H2, the set

{γ ∈ Γ| γ(K) ∩K 6= ∅} (26)

is finite.
The group Γ is said to act freely if it never happens that γ(p) = p for

some γ ∈ Γ and some p ∈ H2. When Γ is discrete and acts freely, the
quotient H2/Γ is a hyperbolic surface. Conversely, every hyperbolic surface
arises this way. The proof just amounts to showing that the universal cover
of the surface is H2 and that the deck group Γ is discrete and acts freely on
H2.
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2.7 Continued Fractions

Here we give a rapid introduction to the theory of continued fractions.
See [Da] for a more complete exposition.

Gauss Map: The Gauss map is the map G : (0, 1) → [0, 1) defined by

G(x) =
1

x
− floor

(1
x

)
. (27)

We have G(1/n) = 0 when n > 1 is an integer. This map has an invariant
measure, the Gauss measure µ = (1 + x)−1dx. Here, the invariance means
that µ(G−1(S)) = µ(S) for all measurable sets S ⊂ [0, 1]. See [BKS, §1,4,5].

Continued Fractions: Given some s ∈ (0, 1) let sn = gn(s). There are
integers a1, ... so that

an = floor
( 1

sn−1

)
, n = 1, 2, 3, ... (28)

The sequence (0, a1, a2, a3, ...) is called the continued fraction expansion of s.
When s > 1 we set a0 = floor(s) and then define s = (a0, a1, a2, ...) where
(0, a1, a2, ...) is the continued fraction expansion for s − a0. The auxilliary
sequence

a0 +
1

a1
, a0 +

1

a1 +
1

a2

, a0 +
1

a1 +
1

a2 +
1

a3

, . . . (29)

converges to s.

The Modular Group: The Modular group PSL2(Z) ⊂ PSL2(R) is the
subgroup consisting of integer matrices. As we mentioned above, this group
acts on R ∪ ∞ by linear fractional transformations The modular group is
closely related to continued fractions. Suppose s, s′ ∈ (0, 1) respectively have
continued fractions (0, n0, n1, ...) and (0, n′

0, n
′
1, ...). Then s and s′ are in the

same orbit of SL2(Z) if and only if ns+k = n′
t+k for some integers s, t ≥ 0 of

the same parity. This result is readily derivable from [BKS, Theorem 5.16],
which treats the case when s, s′ > 1. We will not need this result here, but
it motivates a similar result involving our renormalization map R.
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Recurrence formula: Suppose that p/q has continued fraction expansion

(a0, a1, ..., an).

We introduce numbers p−2, p−1, p0, ..., pn and q−2, q−1, q0, ..., qn such that

p−2 = 0, p−1 = 1, q−2 = 1, q−1 = 0. (30)

We then define the recurrence relation

pk = akpk−1 + pk−2, qk = akqk−1 + qk−2, k = 0, ..., n, (31)

This recurrence relation gives p = pn and q = qn. One shows inductively
that

|pkqk+1 − qkpk+1| = 1, ∀k. (32)

This equation in turn implies that

∣∣∣pk
qk

− pk+1

qk+1

∣∣∣ ≤ 1

q2k
. (33)

This inequality comes from the fact that qk ≤ qk+1, as is easily seen from the
recurrence relation.

Signed Continued Fractions: We define a signed continued fraction ex-
actly like an ordinary continued fraction, except that we allow

ak ∈ Z − {0,−1}. (34)

Thus, for instance, the S.C.F. (0, 4,−3, 5,−7) means

1

4 +
1

−3 +
1

5 +
1

−7

The recurrence relation described above works for S.C.F.s just as it does for
ordinary continued fractions, and so do Equations 32 and 33. To get the
basic fact |qk| ≤ |qk+1| we need to use the fact that ak+1 6= −1.
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2.8 Some Analysis

Hausdorff Convergence: Given a metric space M and two compact sets
S1, S2 ⊂ M , one defines the Hausdorff distance d(S1, S2) to be the infimal
ǫ such that Sj is contained in the ǫ-neighborhood of S3−j for j = 1, 2. By
compactness, the infimum is actually realized. This puts a metric on the
space of compact subsets of a metric space. We say that a sequence {Sn}
of closed (but not necessarily compact) subsets of M converges to S if, for
every compact set K, we have d(Sn∩K,S ∩K) → 0 as n→ ∞. We call this
the Hausdorff topology on the set of closed subsets of a metric space.

Hausdorff Dimension: In this section, we review some basic properties
of the Hausdorff dimension. See [F] for more details.

Let M be a metric space. We let |J | denote the diameter of a bounded
subset J ⊂M . Given a bounded subset S ⊂M , and s, δ > 0, we define

µ(S, s, δ) = inf
∑

|Jn|s. (35)

The infimum is taken over all countable covers of S by subsets {Jn} such
that diam(Jn) < δ. Next, we define

µ(S, s) = lim
δ→0

µ(S, s, δ) ∈ [0,∞] . (36)

This limit exists because µ(S, s, δ) is a monotone function of δ. Note that
µ(S, n) <∞ when M = Rn. Usually we’ll work in R2. Finally,

dim(S) = inf{s| µ(S, s) <∞}. (37)

The number dim(S) is called the Hausdorff dimension of S.
We will mainly be concerned with upper bounds on Hausforff dimension.

Lemma 2.9 Suppose that there are infinitely many integers m > 0 such that
S has a cover by at most mD sets, all of which have diameter at most C/m.
Here C is some constant that does not depend on m. Then dim(S) ≤ D.

Proof: Choose and s > D. The existence of our covers tells us that
µ(S, s, δ) → 0 as δ → 0. Hence µ(X, s) = 0. But then dim(S) ≤ D by
definition. ♠
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Part I

Friends of the Octagonal PETs
Here is an overview of this part of the monograph.

• In §3 we introduce the multigraph PETs. The typical input to our con-
struction is a finite group of isometries of Rn generated by involutions,
and a parallelotope that is adapted to the generators. The octago-
nal PETs are the simplest nontrivial 2-dimensional examples; they are
based on the order 8 dihedral group acting on the plane.

• In §4 we introduce the alternating grid system and prove Theorems 1.12
and 1.13. At the end of §4 we recognize the 4-dimensional compactifi-
cation of any alternating grid system as one of the PETs constructed
in §3.

• In §5 we prove Theorem 1.11, which relates the octagonal PETs to outer
billiards on semiregular octagons. Our proof relies on 4 calculations,
Calculations 9-12, which we perform in Part IV of the monograph.
(Calculations 1-8 deal with properties of the octagonal PET. To some
extent, Calculations 9-12 rely on some of them.)

• In §6, a chapter which mainly reports on work done in [S2] and [S4],
we introduce a system called a quarter turn composition (QTC). Such
a system is, in some sense, a generalization of the alternating grid
system. We show how quarter turn systems are related to decorated
multigraphs, to outer billiards, and to double lattice PETs. Tracing
through the chain of relations, we see how polygonal outer billiards is
related to double lattice PETs.
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3 Multigraph PETs

3.1 The Abstract Construction

Elementary Members: We first describe some special members of PET,
which we call elementary . Suppose that X and Y are convex polytopes, both
fundamental domains for the same lattice L. We define partitions of X and
Y respectively, by the equations

X =
⋃

V ∈L

(Y − V ) ∩X, Y =
⋃

V ∈L

(X + V ) ∩ Y. (38)

Both unions are finite because X and Y are compact. Note that transla-
tion by V carries (Y − V ) ∩X to Y ∩ (X + V ). Hence, Equation 38 has the
same form as Equation 17. Concretely, we have a PET f : X → Y defined by
the equation f(x) = x+V for all x ∈ (V −Y )∩X. We call this map X →L Y

Decorated Multigraphs: A decoration of a multigraph Γ is labelling of
the vertices of Γ by convex polytopes and the edges by Euclidean lattices
subject to the constraint that a vertex is incident to an edge iff the corre-
sponding polytope is a fundamental domain for the corresponding lattice.

The Functor: Let PATH(Γ) denote the category whose objects are vertices
of Γ and whose morphisms are paths connecting pairs of vertices of Γ. Once
Γ has been decorated, we get a functor

Φ : PATH(Γ) → PET.

Φ maps each vertex to the corresponding polytope and each triple x →ℓ y
to the elementary PET X →L Y . Here x and y are adjacent vertices con-
nected by the edge ℓ and X,L, Y are the respective labels. Φ extends to all
of PATH(Γ) so as to respect the composition laws.

Homotopy: Say that two elements of PATH(Γ) equivalent if there is an
endpoint fixing homotopy from the one path to the other. Φ maps equivalent
paths to equivalent PETs. The reason is that the homotopy proceeds at each
stage either by creating a path of the form x→L→ y →L→ x or by deleting
such a path, and the corresponding compositions of PETs are equivalent to
the identity map.
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Restriction to Loops: Suppose we fix a vertex basepoint x ∈ Γ and let X
be the corresponding polytope. Let LOOP(Γ, x) be the semigroup of loops
in Γ which start and end at x. The functor above restricts to a map

LOOP(Γ, x) → PET(X).

Here PET(X) is interpreted as the semigroup of PETs with domain X.
If we (re)define PET(X) as the set of equivalence classes of PETs on X,

then PET(X) is a group, and we get the homormorphism

π1(Γ, x) → PET(X)

mentioned in Equation 3.

Back to Earth: Here is a more concrete description of the whole con-
struction. Imagine that we have a loop based at x, of the form

x = x0, ℓ1, x2, ..., ℓ2n−1, x2n = x,

where ℓk is an edge connecting xj−1 to xj+1. Let X = X0, ..., X2N = X be the
corresponding polytopes. and let L1, ..., L2n−1 be the corresponding lattices.
Starting with a typical p0 ∈ X0, we choose the unique lattice vector V1 ∈ L1

such that p2 = p0 + L1 ∈ X2. We then choose the unique lattice vector
V3 ∈ L3 such that p4 = p2 + L3 ∈ X4 and so on, until we reach x2n = f(p0).
The map f is our element of PET(X).

Remark: The reader might wonder why we went through so much abstrac-
tion to say something so simple. For one thing, we wanted to explain the
functorial nature of our construction. For another thing, the approach above
makes certain results automatic. For instance, one might wonder why the
concretely defined map is really a PET. One way to see this is that what we
get is a finite composition of the elementary members of PET, which is a
category.

Double Lattice PETs As we mentioned in the introduction, we say that a
double lattice PET is a multigraph PET corresponding to a decorated bigon.
A bigon is a graph consisting of two vertices connected by two edges. In this
case, π1(Γ, x) = Z, and the image in PET(X) consists of powers of a single
map.
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3.2 The Reflection Lemma

The result in this section will give us a way to produce lots of examples of
decorated multigraphs.

Let L be a lattice and suppose that

β = {v1, ..., vm, w1, ..., wn−m} (39)

is a Z-basis for L. By this we mean that L consists of the integer linear
combination of vectors in the basis. Define Fβ = Tβ([0, 1]

n), where Tβ is
the linear transformation carrying the standard basis to β. Let F = Fβ.
Certainly F is a fundamental domain for L. However, we are going to show
that F is also the fundamental domain for a different lattice.

Let ΠV denote the k-dimensional linear subspace spanned by v1, ..., vm.
Let RV denote isometric reflection in ΠV . The lattice RV (L) is spanned by
the vectors

RV (β) = {v1, ..., vm, RV (w1), ..., RV (wn−m)} (40)

Lemma 3.1 (Reflection) F is a fundamental domain for RV (L).

Proof: Let L′ = RV (L). Note that R
n/L and Rn/L′ have the same volume.

Also Rn/L and F have the same volume. Therefore, Rn/L′ and F have the
same volume. To finish the proof, we have to take an arbitrary point p ∈ Rn

and show that there is some vector V ∈ L′ such that p+ V ∈ F .
Let H be the subspace spanned by v1, ..., vm. The map RV preserves the

orthogonal complement H⊥ and acts on H⊥ as reflection through the origin.
Let π : Rn → H⊥ be orthogonal projection. The kernel of π is exactly H.
Moreover, π(F ) is a fundamental domain for π(L) in H⊥. Since RV acts as
reflection through the origin on H⊥, we have π(L) = −π(L′). At the same
time π(L′) is a lattice in H⊥, so that −π(L′) = π(L′). Hence

π(L) = π(L′). (41)

But then π(F ) is a fundamental domain for π(L′). Therefore, there is some
V ′ ∈ L′ such that the translate H ′ of H, through p+ V ′, intersects F .

Since F is a parallelotope which intersects H in a parallelotope, the in-
tersection H ′ ∩ F is isometric to H ∩ F , and hence is a fundamental domain
for the lattice L′′ = Z(v1, ..., vm). Hence, there is some V2 ∈ L′′ such that
p + V ′ + V ′′ ∈ F . But V = V ′ + V ′′ ∈ L′. So, p + V ∈ F for some V ∈ L′.
This proves what we want. ♠
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3.3 Constructing Multigraph PETs

Nice Groups: An isometric involution is an order 2 isometry of Rn which
fixes the origin. We call G a nice group if G is a finite group of isometries
generated by isometric involutions, and no odd product of the generators is
trivial. When G is nice, we can speak of odd (respectively even) elements of
G as being those which are a product of an odd (respectively even) number
of generators.

Adapted Parallelotopes: Say that a marked parallelotope is a parallelo-
tope P with a distinguished vertex p. The pair (P, p) naturally determines
a basis in Rn. The basis consists of the vectors w − p, where w is a vertex
of P adjacent to p. Suppose that G is a nice group, which is generated by
isometric involutions I1, ..., Ik. We say that a marked parallelotope (P, p)
is adapted to G if the fixed point set of each Ij is spanned by some subset
Sj of the basis vectors associated to (P, p). We call Sj the list associated to Ij.

The Main Construction: If the origin is a vertex for P , we let (P ) be
the marked parallelotope (P, 0). Suppose P is adapted to a nice group G.
Let Γ be the following graph. The vertices of Γ are the odd elements of G.
The edges connect the pairs (g, gIjIk), where g is an odd element of G. We
decorate Γ as follows.

• The vertex g of Γ is labelled the translate of g(P ) that is centered at
the origin.

• The edge e connecting g to gIjIk is labelled by the lattice L generated
by the basis β associated to (h(P )).

We now verify the compatibility condition. Let β′ be the basis associated
to (g(P )). Let Sj be the list associated to Ij. Let v1, ..., vm be the elements
of g(Sj). Let RV be isometric reflection in the subspace spanned by v1, ..., vn.
We have β′ = RV (β), because

h(P ) = RV (g(P )), RV = gIjg
−1. (42)

By the Reflection Lemma, g(P ), the parallelotope associated to g, is a fun-
damental domain for Z[β], the lattice associated to e.

Since the compatibility condition holds for all pairs (g, e), we get a deco-
rated multigraph whose underlying graph is Γ.
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3.4 Planar Examples

Here are the basic examples in the plane. We call these examples the dihedral
PETs .

• Let G = D2n, the dihedral group of order 2n. We generate G by reflec-
tions I1 and I2, where I1 is reflection in the x-axis and I2 is reflection
in the line Ln making an angle of π/n with the x-axis.

• Let P be the parallelogram having vertices

(0, 0), (2, 0), ws, ws + (2, 0).

Here ws is the point in Ln, depending on the parameter s. The dis-
tinguished vertex is p = (0, 0). The corresponding basis β is given by
(2, 0) and ws.

• The graph Γ is an n-cycle. Our decoration convention is to translate
all the parallograms so that they are centered at the origin.

When n is even, the element ι = (I1I2)
n/2 is the reflection in the origin.

In this case, our decoration of Γ commutes with the corresponding order 2
automorphism of Γ, which we also call ι. The quotient Γ/ι is a decorated
(n/2)-cycle.

In the case n = 1, there is nothing to define. The case n = 2 leads to a
decorated monogon, and the corresponding PET is the identity map. The
case n = 4 is is a double lattice PET. In this case, we take ws = (2s, 2s),
and we recover the octagonal PETs. We think that, in general, the cases
n = 3, 4, 5, ... correspond to outer billiards on semi-regular (2n)-gons in the
same way that the case n = 4 corresponds to outer billiards on semi-regular
octagons

We have not yet investigated the dihedral PETs beyond the case of the
octagonal PETs. Also, we have not spent much time investigating even the
variants of the octagonal PET in which the parallelograms are not centered
at the origin. Some preliminary computer investigation suggests that (for
irrational parameters) such such systems tend to have dense orbits, or at
least orbits which are dense in open subsets of the plane. Thanks to this
experimentally observed phenomena, we think that the convention of trans-
lating the parallelotopes so that they are centered at the origin is, in general,
a good idea.
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3.5 Three Dimensional Examples

One can give a family of examples based on spherical triangle reflection
groups. The symbol (a, b, c) denotes the spherical triangle τ with angles
π/a, π/b, and π/c. One must have the condition 1/a + 1/b + 1/c > 1, and
to get a finite reflection group we want a, b, c ∈ Z. This leaves

• (2, 3, 3): tetrahedral case.

• (2, 3, 4): cube/octahedron case.

• (2, 3, 5): icosahedron/dodecahedron case.

• (2, 2, n) for n = 2, 3, 4, 5...: dihedral case.

In each of the first three cases, the group G generated by reflections in the
sides of the triangle is the full symmetry group of the corresponding platonic
solid(s).

To produce a decorated multigraph, we choose vectors w1, w2, w3 such
that wi is a positive multiple of the ith vertex of the triangle τ . The paralle-
lapiped P is such that p = (0, 0, 0) is the distinguished vertex, and w1, w2, w3

are the vertices adjacent to p. By construction (P, p) is adapted to G. Once
again (though we have no especially good reason to do this) we use the
convention that the parallelopipeds labelling the vertices of the graph Γ are
centered at the origin.

The case (2, 2, 2) is not interesting at all; all the vertices get the same
label, namely a translated copy of P , and all the edges get the same label,
namely the lattices Z(w1, w2, w3). The case (2, 2, n) for n > 2 seems similar
in spirit to the dihedral PETs constructed in the previous section.

In the cases (2, 3, 4) and (2, 3, 5), some element of G is reflection in the
origin, and so the opposite vertices and edges of Γ get the same labels. Here,
again, it probably makes sense to quotient out by this symmetry. The case
(2, 3, 3) does not have this symmetry.

In all of these cases, the PETs we get depend on the choice of vectors
w1, w2, w3. The choice λw1, λw2, λw3 leads to the same systems modulo scale,
so really we have a 2-parameter family of decorated multigraph PETs for each
choice of spherical triangle. I would guess that these families are quite rich,
and perhaps some version of Theorem 1.10 is true, with respect to lattices in
PSL3(R) rather than a lattice in PSL2(R).
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3.6 Higher Dimensional Generalizations

We could generalize the constructions in the previous section by considering
the reflection symmetry groups of higher dimensional regular solids. Here
we will generalize in a different direction. The 2-dimensional cases of our
construction here are the octagonal PETs.

Let G = D4 act on the plane, as in our description of the octagonal PET
above. G also acts on R2n = (R2)n by acting on each factor of R2 in the
same way that it acts on R2 itself. The two generators I1 and I2 of G both
fix n-dimensional subspaces.

We can form a parallelotope P by choosing a basis β1 = {v1, ..., vn} for
the fixed subspace of I1, and a basis β2 = {w1, ..., wn} for the fixed subspace
of I2. Then, P is the parallelotope such that p = (0, ..., 0) is the distinguished
vertex and the points in β1 ∪ β2 are the adjacent vertices. By construction
(P, p) is adapted to G. The resulting decorated multigraph Γ is a 4-cycle,
but again the opposite vertices and edges get the same labels. So, taking the
quotient, we get a decorated bigon. This gives us a double lattice PET for
each choice of basis.

Let M ∈ GLn(R) denote any invertible real n × n matrix. We define
TM : R2n → R2n as follows. We identify (R2)n with Cn in the usual way
and then let M act on Cn. Under this identification, the fixed subspaces of
both I1 and I2 are totally real. The map TM preserves these subspaces and
indeed commutes with the action of G. Hence, if we replace β1 and β2 with
TM(β1) and TM(β2) we get conjugate PETs. So, up to conjugacy, we might as
well consider systems in which β1 is the standard basis on Rn = Fix(I1). So,
the space of inequivalent PETs produced by our construction is naturally
indexed by the set of bases β2, which is just a copy of the matrix group
GLn(R). It is worth noting that the systems corresponding to the subgroup
GLn(Q) have a nice property.

Lemma 3.2 For any system indexed by a member of GLn(Q), all the orbits
are periodic.

Proof: We can dilate the whole picture so that both bases β1 and β2 con-
sist entirely of vectors having integer coordinates. Letting (X, f) denote the
associated PET, we observe that all the points in an orbit of f differ from
each other by integer vectors. Moreover, such orbits are bounded. Hence,
they are finite. ♠
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4 The Alternating Grid System

4.1 Basic Definitions

In this chapter we will introduce the alternating grid systems, and then prove
Theorems 1.12 and 1.13.

We fix some s ∈ (0,∞). Let Gs,0 denote the infinite grid of squares in the
plane such that the sides of the squares have side length s and are parallel to
the coordinate axes. We pin down Gs,0 by insisting that (0, 0) is a vertex of
a square in Gs,0. Let Ts,0 denote the map which rotates each square of Gs,0

by π/2 radians counterclockwise. That is, Ts performs a counterclockwise
quarter turn to each square in Gs,0.

As we remarked in the introduction, the map 2

Fs,0 = Ts,0T1,0Ts,0T1,0 (43)

seems to be the most interesting word in the group generated by these ele-
ments. The map Fs,0 is a PET whose domain is R2. The periodic tiles of
Fs,0 are necessarily rectangles.

The map Fs,0 seems to have quite interesting dynamics. What we notice
experimentally is that almost every orbit of Fs,0 is periodic and that Fs,0 has
erratic orbits. An erratic orbit is an unbounded orbit which enters a compact
subset of the plane infinitely often.

We also notice that there seems to be a highly structured collection of
periodic tiles

P1,1, ..., P1,n1
, P2,1, ..., P2,n2

, ... (44)

• The collection converges to the origin as i→ ∞.

• The tiles Pi1, ..., Pini
all have the same size.

• The sequence (0, n1, n2, n3, ...) is the continued fraction expansion of s.
See §2.7 for an account of continued fractions.

• As i→ ∞ the diameter of the orbit of the ith tile tends to ∞.

• For i = 2, 4, 6... the tiles Pij all share an edge with the x-axis.

• For i = 3, 5, 7... the tiles Pij all share an edge with the y-axis.

2The composition means “first apply T1,0, then apply Ts,0, etc.”
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Call this the continued fraction conjecture.
Figure 4.1 shows how the unit square is tiled by the periodic tiles for

s = 36/61 = (0, 1, 1, 2, 3, 1, 2). The sequence denotes the continued fraction
expansions of s. The tiles involved in the continued fraction conjecture have
been shaded.

Figure 4.1: Tiling of the unit square for s = 36/61.

We will not really study the dynamics of the alternating grid systems in
this monograph, and in particular we will not make any progress towards
proving the continued fraction conjecture – we don’t know how to prove it.
Our main purpose here is to show the connection between the alternating
grid system, double lattice PETs, and the octahedral PETs. However, our
interest in proving the continued fraction conjecture lead to our discovery of
the octagonal PETs. The orbits involved in the continued fraction conjecture
are both intricate and wide-ranging. In order to bring them all into view,
so to speak, it seemed like a good idea to compactify the system, and then
the invariant slices of the compactifications turned out to be the octagonal
PETs.
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4.2 Compactifying the Generators

We considered the map Fs,0 above because we wanted to highlight the contin-
ued fraction conjecture. For the purposes of describing the compactification,
we find it more natural to reposition the grids. When s is irrational, any
repositioning of the grids leads to the same compactification. Let Gs be the
translate of Gs,0 such that the origin is the center of one of the squares. In
terms of the notation in §1.8, we have Gs = Gs,(s/2,s/2). We define Ts as
above, relative to Gs, and then Fs = TsT1TsT1.

Define the flat torus
T n = Rn/Zn. (45)

When we want to give coordinates to points in T n, we think of it as the cube
[−1/2, 1/2]n with opposite sides identified. Let On denote the origin in Rn.
Note that On is the center of our cube.

We sometimes suppress the parameter s in our notation. For convenience,
we take s to be irrational. We define Ψ : R2 → T 4 by the map

Ψ(x, y) =
(
x, y,

x

s
,
y

s

)
mod Z4. (46)

Observe that Ψ maps the fixed points of T1 and Ts respectively to dense
subsets of O2 × T 2 and T 2 ×O2 respectively.

We introduce matrices

M1 =




0 −1 0 0
1 0 0 0

−1/s −1/s 1 0
1/s −1/s 0 1


 , Ms =




1 0 −s −s
0 1 s −s
0 0 0 −1
0 0 1 0


 . (47)

We have the relations

M4
s =M4

1 = (MsM1)
2 = (MsM1)

2 = I, (48)

where I is the identity matrix. M1 and Ms respectively act as the identity
on the subspaces R2 ×O2 and O2 ×R2. For this reason, the maps

T̂a(p) =Ma(p) mod Z4, a ∈ {1, s} (49)

are well defined respectively on the spaces

T 4
1 =

(
− 1

2
,
1

2

)2

× T 2, T 4
s = T 2 ×

(
− 1

2
,
1

2

)2

. (50)
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However, T̂a is not defined on the complement T 4 − T 4
a which, in both

cases, is a union of 4 intersecting copies of T 3.

Lemma 4.1 T̂1 ◦Ψ = Ψ ◦ T1.

Proof: Let p ∈ R2 be in the domain of T1. We can write

p = (x1, x2) + (n2, n2), xj ∈ (−1/2, 1/2), nj ∈ Z. (51)

We have
T1(p) = (−x2, x1) + (n1, n2). (52)

Ψ(p) =
(
x1, x2,

x1
s
,
x2
s

)
+ (0, 0, n′

1, n
′
2) ∈ T 4

1. (53)

Ψ ◦ T1(p) =
(
− x2, x1,−

x2
s
,
x1
s

)
+ (0, 0, n′

1, n
′
2) ∈ T 4

1. (54)

Here n′
j is the equivalence class of nj/s mod Z. The addition makes sense

in T 4
1 because we are only adding the last two coordinates. A direct matrix

calculation shows that M1 ◦Ψ(p) equals the right hand side of Equation 54.
Interpreting M1 ◦Ψ(p) as a point in T 4

1, we get the desired equality. ♠

Lemma 4.2 T̂s ◦Ψ = Ψ ◦ Ts.

Proof: Let p ∈ R2 be in the domain of Ts. We can write

p = (sx1, sx2) + (sn2, sn2), xj ∈ (−1/2, 1/2), nj ∈ Z. (55)

This time, we have

Ts(p) = (−sx2, sx1) + (sn1, sn2) ∈ T 4
s. (56)

Ψ(p) =
(
sx1, sx2, x1, x2

)
+ (n′

1, n
′
2, 0, 0) ∈ T 4

s. (57)

Ψ ◦ Ts(p) =
(
− sx2, sx1,−x2, x1

)
+ (n′

1, n
′
2, 0, 0) ∈ T 4

2. (58)

Here n′
j is the equivalence class of snj mod Z. A direct matrix calculation

shows that M2 ◦ Ψ(p) equals the right hand side of Equation 54, and this
completes the proof as in the previous case. ♠
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4.3 The PET Structure

Lemmas 4.1 and 4.2 combine to show that Ψ is a semi-conjugacy between
the group 〈T1, Ts〉 acting on R2 and the group 〈T̂1, T̂s〉 acting on T 4. In
both cases, as usual, the elements of the groups are only defined almost
everywhere – or, more precisely, on the complement of some codimension 1
set. In particular, if we define F̂ = T̂sT̂1T̂sT̂1, then Ψ ◦ F = F̂ ◦ Ψ. Hence
(T 4, F̂ ) is a compactification for (R2, F ), as in Theorem 1.12.

The maps T̂1 and T̂s are locally affine on T 4
1 and T 4

s respectively, though

they do not extend continuously to all of T 4. The linear parts of T̂1 and T̂s
are M1 and Ms respectively. The map F̂ is the composition of these locally
affine maps. The linear part of F̂ is MsM1MsM1, which is the identity!
Hence F̂ is a piecewise translation. To complete the proof of Theorem 1.12,
we will recognize F̂ as a double lattice PET.

Lemma 4.3 T̂sT̂1 is a well-defined, and locally affine, on a dense subset of
T 4 which is isometric to the interior of a convex parallelotope.

Proof: The domain for T̂sT̂1 is the open dense set

P = T 4
1 ∩ T−1

1 (T 4
s) ⊂ T 4. (59)

To understand P , we consider the picture in the universal cover. Define

P̃ = R4
1 ∩M−1

1 (R4
s),

where R4
1 (respectively R4

s) is the universal cover of T
4
1 (respectively T 4

s.) It
is the set of points (x1, x2, x3, x4) so that x1, x2 (respectively x3, x4) do not
have the form n/2 where n is an odd integer.

R4
1 and M−1

1 (R4
s) are both the complements of a pair of parallel families

of hyperplanes. Hence P̃ is the complement of 4 infinite parallel families of
hyperplanes. The corresponding normals are

e1, e2, M t
1(e3), M t

1(e4).

Up to sign, these are just the rows of M1. The normals form a basis, so that
P̃ is a Z4 invariant infinite union of parallelotopes.

Since P = P̃ mod Z4 and (from Equation 59) ∂P is contained in a union
of 8 flat subspaces of T 4 we must have that P is isometric to an open paral-
lelotope. ♠
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Let P1 = P , the parallelotope from the previous result. Define

P2 = T̂sT̂1(P1) ⊂ T 4. (60)

Since T̂sT̂1 is locally affine on P1, the set P2 is also isometric to the interior of
a parallelotope. Since the linear part of T̂sT̂1, namelyMsM1, is an involution,
we see that P1 and P2 have the same volume. In particular, P2 is also dense
in T 4.

By construction, reflection in the origin preserves P1. Since T̂sT̂1 fixes
the origin, reflection in the origin preserves P2. For j = 1, 2, let Xj denote
the lift of Pj to R4 which is centered at the origin. Let βj : Xj → Pj

denote the isometry which amounts to reduction mod Z4. Lemma 4.5 below
characterizes X1 and X2.

Define
I =MsM1, L1 = Z4, L2 = I(Z4). (61)

By construction I is an involution which swaps X1 and X2 and also swaps L1

and L2. Also by construction X1 and X2 are both fundamental domains for
Z4. Given the symmetry under I, we see that X1 and X2 are fundamental
domains for L2. Therefore, the quadruple (X1, X2, L1, L2) defines a double
lattice PET, D : X1 → X1.

Lemma 4.4 β−1
1 ◦ F̂ ◦ β1 = D.

Proof: Note that we are trying to prove that two different maps on X1 are
the same. Recalling that F = T̂sT̂1T̂sT̂1, we write

β−1
1 F̂ β1 = A ◦B, A = β−1

1 T̂sT̂1β2, B = β−2
2 T̂sT̂1β1. (62)

The restriction B|X1
is linear, and the linear part of B|X1

is I. Therefore
B = I on X1.

Let µij denote the map from R4 to Xj which simply translates by vectors
of Li. We have

β2 = β1µ11, β−1
1 = µ11β

−1
2 . (63)

The first equation implies the second one. Therefore

A = (β−1
1 β2)B(β−1

1 β2) = µ11 ◦ I ◦ µ11. (64)

But then we have

β−1
1 ◦ F̂ ◦ β1 = µ11 ◦ I ◦ µ11 ◦ I = µ11 ◦ µ22 = D. (65)

This completes the proof. ♠

53



4.4 Characterizing the PET

We keep the notation from the previous section. Here we will describe
(X1, X2, L1, L2) more explicitly. Let

Q = (−1/2, 1/2)4. (66)

Lemma 4.5 X1 =M−1
1 (Q) and X2 =Ms(Q).

Proof: Since X2 = MsM1(X1), it suffices to prove the first equation. Let’s
look a little bit more closely at the proof of Lemma 4.3. Say that a half-odd
number is a number of the form n/2 where n is an odd integer. The set R4

1

consists of those points v such that v · e1 and v · e2 are not half-odd numbers.
The set R4

2 consists of vectors v such that v ·M t
1(e3) and v ·M3

1 (e4) are not
half-odd numbers. We can equally well say that R4

1 consists of those vectors
v such that v ·M t

1(e1) and v ·M t
1(e2) are not half-odd numbers. Hence, X

consists of those vectors v such that v ·M t
1(ej) ∈ (−1/2, 1/2). But then

v ·M t
1(ej) =M1(v) · ej ∈ (−1/2, 1/2).

In other words, all coordinates of M1(v) lie in (−1/2, 1/2). ♠

We have already mentioned that L1 = Z4 and

L2 =MsM1(Z4). (67)

So, L2 is the Z-span of the columns of

I :=MsM1 =




0 1 −s −s
−1 0 s −s
−1/s 1/s 0 −1
−1/s −1/s 1 0


 (68)

Note that I is an involution.

Remark: It is worth pointing out that we might not have the most sym-
metric picture. We are free to conjugate the whole picture by some linear
transformation γ. Perhaps the new quadruple (γ(X1), γ(X2), γ(L1), γ(L2))
will exhibit more symmetry. This approach is similar in spirit to what is
done in [AKT] for their main example.
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4.5 A More Symmetric Picture

4.5.1 Canonical Coordinates

Let us conjugate the picture by the matrix

γ =




0 0 s s
0 −2 s s
0 0 s −s
−2 0 s −s


 (69)

We replace the objects Xj and Lj with χj = γ(Xj) and Λj = γ(Lj). Here Λ1

is the Z-span of the columns of γ and Λ2 is the Z-span of the columns of

γI =




−2 0 s −s
0 0 −s s
0 2 −s −s
0 0 s s


 (70)

χ1 = γM−1
1 (Q), and

γM−1
1 =




−2 0 s s
0 0 s s
0 2 s −s
0 0 s −s


 (71)

χ2 = γMs(Q), and

γMs =




0 0 s −s
0 −2 −s s
0 0 −s −s
−2 0 s s


 (72)

The two reflections

ρ1(x1, x2, x3, x4) = (−x1, x2,−x3, x4), ρ2(x1, x2, x3, x4) = (x2, x1, x4, x3)
(73)

generate the order 8 dihedral group G, and (χ1, p) is adapted to G, when p is
chosen so that the basis determined by (χ1, p) is given by the columns of the
matrix in Equation 71. For each pair (i, j), there is some element of G which
relates χi and Λj as in the Reflection Lemma. So, our compactification fits
into the examples discussed in §3.6.

Remark: When s = 1, we have Λ1 = Λ2 = E4, the famous lattice.
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4.5.2 The Double Foliation

The composition
Υ = γ ◦ β ◦Ψ : R2 → χ1. (74)

conjugates the alternating grid map to the PET dynamics F̂ : χ1 → χ1. For
almost all s, the map Υ is injective. The image

R1 = Υ(R2) (75)

is an invariant leaf of the linear foliation whose tangent planes are spanned
by the vectors

γ(s−1, 0, 1, 0) = (1, 1, 1,−1), γ(0,−s−1, 0,−1) = (−1, 1, 1, 1). (76)

When Υ is injective, the restriction F̂ |R1 can be identified with the alter-
nating grid map.

Lemma 4.6 The involution ι(x1, x2, x3, x4) = (x1, x2,−x3,−x4) preserves
χj and Λj for j = 1, 2.

Proof: Up to sign, ι fixes the two first columns of γ and swaps the last two
columns. Hence ι(Λ1) = Λ1. The same holds for γI. Hence ι(Λ2) = Λ2.

Similarly, a calculation shows that, up to sign, the columns of ιγM−1
1 are

permutations of the columns of γM−1
1 . For this reason,

ι(χ1) = ιγM−1
1 (Q) = γM−1

1 (Q) = χ1.

A similar argument shows that ι(χ2) = χ2. ♠

The image
R2 = ι(R1). (77)

is an invariant leaf of the linear foliation whose tangent planes are spanned
by

(1, 1,−1, 1), (1,−1, 1, 1). (78)

For almost all s, the leaves R1 and R2 are dense in their respective
foliations. Hence, F̂ preserves every leaf of the corresponding foliations. In
particular, F̂ preserves every translate of R1. We will use this fact when we
discuss unbounded orbits below.
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4.5.3 The Octagonal PETs

Now we consider the picture in the invariant subspaces of ι, namely the planes
R2

12 and R2
34. Let Π be either of these planes. We identify Π with R2 in the

obvious way – just drop off the zero coordinates. Referring to Figure 1.1, it
is easy to check that

Fj = Π ∩Xj, Lj = Π ∩ Λj (79)

for j = 1, 2. Just take one representative example, R2
12 ∩Λ1 is the Z-span of

(0, 2, 0, 0) and (2s, 2s, 0, 0), exactly as is L1 in Figure 1.1.
In short, we see the octagonal PET at parameter s in both slices. This

completes the proof of Theorem 1.13.

4.6 Unbounded Orbits

Let s be an irrational parameter. From the description above, the foliation
containing R1 is transverse to

F1 = R2 ∩ χ, (80)

the domain of the octagonal PET. Let Fs,z be the alternating grid map
in Theorem 1.14. Let Λ′

s be the aperiodic set for the octagonal PET at
parameter s. We know that Λ′

s is nonempty, by Statement 4 of Theorem 1.5.

Lemma 4.7 Suppose Fs,z has unbounded orbits for some z ∈ C.

Proof: We have already remarked that F̂s preserves every translate of R1.
In particular, there is a translate R2

s,z of R1 such that F̂s preserves R
2
s,z and

acts there as Fs,z. This translate is again transverse to F1. We can choose z
such that R2

s,z ∩ F1 contains a point p having infinite orbit Op. By transver-
sality, and the piecewise linear nature of the embedding Υ, each bounded
subset of R2 includes into a subset of R2

s,z which intersects F1 in a finite set.

If Op is bounded in R2, then Op is a finite subset of F1, and this would be a
contradiction. ♠
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4.7 The Complex Octagonal PETs

4.7.1 Complex Coordinates

We call the PETs (χ1, F̂ ) from §4.5 the complex octagonal PETs because it
seems natural to interpret them as complexifications of the octagonal PETs.
This statement is made more clear by the introduction of complex coordi-
nates, as follows.

(x1, x2, x3, x4) = (x1 + ix3, x2 + ix4) = (z1, z2). (81)

With these coordinates, we reinterpret the main formulas in §4.5.
Before we start, we remind the reader that a real plane in C2 is a 2-plane

Π such that Π and iΠ are orthogonal. A complex line in C2 is a 2-plane
Π such that iΠ and Π are parallel A complex foliation is a 2-dimensional
foliation whose tangent planes are complex lines.

4.7.2 Basic Features

There are the basic features of the the complex octagonal PETs.

• The group G described above is generated by the reflections

ρ1(z1, z2) = (z1,−z2), ρ2(z1, z2) = (z2, z1). (82)

The invariant subspaces of ρ1 and ρ2 respectively are the complex lines
given by {z2 = 0} and {z1 = z2}.

• χ1 is the parallelotope defined by the vectors

(2, 0), (2i, 0), (sζ, sζ), (sζ, sζ); ζ = 1 + i. (83)

The first two vectors lie in the complex line fixed by ρ1 and the second
two vectors lie in the complex line fixed by ρ2.

• The foliation containing R1 is tangent to the basis (ζ, ζ) and (ζ,−ζ).
The foliation containing R2 is tangent to the basis (ζ, ζ) and (ζ,−ζ).
Both foliations are complex foliations.

• The involution ι is given by coordinate-wise conjugation. The invariant
planes Π0 and Π2 for ι are the real planes R2 and iR2. Note that ι
fixes Π0 pointwise but acts as a reflection on Π2. The restriction of
F̂ to each of χ1 ∩ Π0 and χ1 ∩ Π2 is a copy of the octagonal PET at
parameter s.
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4.7.3 Additional Symmetry

The symmetry ι = ι1 is an element of the order 8 dihedral group Γ generated
by the two elements

ι1(z1, z2) = (z1, z2), ι2(z1, z2) = (iz1, iz2). (84)

Each of these elements preserves χ1, χ2,Λ1,Λ2. Hence Γ acts as an order 8
groups of symmetries of the complex octagonal PET.

The existence of Γ in turn reveals more structure. There are 4 elements
of Γ which act as real reflections – i.e., they pointwise fix real planes in C2.
The planes Π0 = R2 and Π2 = iR2 are two of the fixed planes. The other
two fixed planes are Π1 = ζR2 and Π3 = ζR2. More simply,

Πk = ζkR2, k = 0, 1, 2, 3. (85)

For instance, the map ι2◦ι1 fixes Π1 pointwise. The slices χ1∩Π1 and χ1∩Π3

are also invariant under F̂ .

Lemma 4.8 There is a complex linear similarity Ss having the property that
Ss(Π0) = Π1) and F̂

−1
s = Ss ◦ F̂1/s ◦ S−1

s .

Proof: We define

Ss =
ζ

2s

[
1 1
1 −1

]
. (86)

We compute that Ss has the following properties:

1. Ss maps Πk to Πk+1, with indices taken mod 4.

2. Ss maps χj,s to χj,1/s for j = 1, 2.

3. Ss maps Λj,s to Λ3−j,1/s for j = 1, 2.

Our result follows from these computations. ♠

In §7.6 we will prove that the octagonal PETs fs and f1/2s are conjugate
by a similarity. Combining this fact with the preceding result, and with
symmetry, we get the following corollary.

Corollary 4.9 The systems F̂s|Π1 and F̂s|Π3 are conjugate, by similarities
to the octagonal PET f2s.

Thus, the complex octagonal PET F̂s contains 2 slices which are copies
of fs and two slices which are copies of f2s.
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5 Outer Billiards on Semiregular Octagons

5.1 The Basic Sets

The Central Octagon: As in the introduction, let Os be the semi-regular
octagon having vertices

(±s,±(1− s)), (±(1− s),±s) (87)

Here s ∈ (1/2, 1). We define the outer billiards map as in Figure 1.7. In this
section we introduce some auxilliary sets.

The Barrier: Outer billiards relative to a polygon has a much simpler
structure far away from the polygon. For the family Os we can quantify this.
We define the barrier to be the octagon having vertices

(±6, 0), (0,±6), (±6s,±6s). (88)

We mean for all possible sign choices to be made. Figure 5.1 shows a picture
of the barrier.

The Fundamental Strips: For each edge e of Os, we let Σs be the strip
with the following characterization. One boundary line of Σe contains e.
The other boundary line of Σs is such that the edge opposite e lies in the
centerline of Σ. There are 8 such strips. Figure 5.1 below shows the strips
and the barrier together.

The Far Domain: The barrier is chosen so that all the strip intersections
take place in the barrier. 4 of these intersection points take place on the
boundary of the barrier. Let e be the bottom edge of Os. We define the Far
Domain to be the region inside Σe and to the right of the barrier. Figure 5.1
shows the far domain.

Barrier Orbit: In Part IV, we will prove (Calculation 9) that there is a
periodic tile whose orbit is a translate of Os, such that the boundary of the
barrier is contained in the union of the orbit. Figure 5.1 shows these tiles. In
particular, the 8 vertices of the barrier are centers of some of these octagonal
tiles. We emphasize that this structure holds for all s ∈ (1/2, 1), though we
are just showing the picture for s = 3/4.
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Figure 5.1: The fundamental objects for s = 3/4.

Here are the objects shown in Figure 5.1.

• Os is black.

• The barrier is lightly shaded.

• The far domain darkly shaded.

• The strips are uncolored.

• The barrier orbit is uncolored.

Since the barrier orbit is invariant under the outer billiards map, and also
covers the boundary of the barrier, we see that the orbit of any point outside
the barrier orbit remains outside the barrier orbit forever.
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5.2 The Far Partition

Now we will study the dynamics outside the barrier. We fix some parameter
s ∈ (1/2, 1) and then suppress it from our notation. Let ψ′ be the outer
billiards map and let ψ = (ψ′)2 be the second iterate. ψ is a piecewise
translation. The partition for ψ consists of a finite union of compact polygons
and convex noncompact polygonal sets.

Lemma 5.1 All the compact pieces of the domain for ψ are contained inside
the barrier, and all the noncompact domains are bounded by segments or rays
contained in the lines of the fundamental strips.

Proof: Say that a primary line is a line extending a side of Os. Say that a
secondary line is the image of a primary line under reflection in one of the
vertices of Os. The union of secondary lines is precisely the set of lines in
the fundamental strips described above.

Let B be the partition for ψ2. Consider first the partition A of R2 into
regions where both ψ′ and (ψ′)−1 are completely defined. The regions of A
are simply the complementary regions of the primary lines. The pieces of
B are obtained by reflecting various pieces of A in various vertices of Os.
Hence, all the regions of B are bounded by segments or rays contained in the
secondary lines.

The outermost intersections of secondary lines occur on the boundary of
the barrier. Hence, none occur outside the barrier. This means that all the
compact pieces of B are contained in the barrier. ♠

Let B denote the barrier. Let F ⊂ R2 − B denote the far domain. The
union of the boundaries of the fundamental strips divides R2 − B into 32
noncompact pieces, which we call the far partition and denote by F . Note
that 24 of the pieces of F are half-strips, and the other 8 pieces are cones.
F is a union of two of the half-strips of F .

Each piece S of F is labeled by a vector VS which has the property that
ψ(p) = p+ VS for all p ∈ S. Each half-strip of F intersects the barrier orbit.
For this reason, we can deduce the labels of the pieces of F just by inspecting
the barrier orbit. For instance, the upper half of the far domain gets the label
(0,−4s). The cone pieces of F are labeled according to the following rule:
Each cone piece gets the same label as the half-strip which lies before it in
the clockwise cyclic order.
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5.3 The First Return Map

In this section we consider the dynamics outside the barrier. The dynamics
is completly controlled by the 32 pieces of the far partition and their vector
labels. We say that a far orbit is one which remains outside the barrier.
From what we have said above, every point outside the barrier lies on a far
orbit.

Lemma 5.2 Every far orbit intersects the far domain and the forward orbit
of a point in the far domain returns to the far domain after one clockwise
revolution around the barrier.

Proof: Let B denote the barrier. We make 2 observations.

1. For any point p ∈ R2−B, the vectors ψ(p)−p and −→
0p form a positively

oriented basls (same as {e1, e2}) and have a uniformly large angle be-
tween them. This is a precise way to say that, outside the barrier, the
ψ-orbits circulate clockwise around Os.

2. Suppose p ∈ R2 − B lies above the far domain. Then ψ(p) cannot
lie below the far domain. The vector labels do not have large enough
y-components to skip over the far domain. Hence, ever orbit outside
the barrier intersects the far domain every time it circulates around the
barrier.

Our result follows immediately from these two observations. ♠

Let Ψ = ψ|F be the first return map of ψ to the far domain F . Lemma
5.2 says that we can determine everything about the dynamics outside the
barrier by looking at Ψ : F → F .

As is familiar to people who have studied polygonal outer billiards on
quasi-rational polygons, the map Ψ has a translational symmetry. This result
follows from the quasi-rationality of the polygon. See [VS], [K], and [GS].
We will prove a precise result along these lines, from scratch.

Before we state and prove our lemma, we observe that the lower half of
F and the 2 domains just below the lower half of F are both labeled by the
vector

(4s− 4,−4s). (89)

These 3 pieces in a row all get the same label. This vector plays a crucial
role in our arguments, and we will see it appear many times below.
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Lemma 5.3 For any point p ∈ F , we have Ψ(p+ (0, 4)) = Ψ(p) + (4, 0).

Proof: If p and q lie in the upper half of F , then

ψ(q) = q − (0, 4s) = p+ (4, 0)− (0, 4s) = ψ(p) + (4, 0).

In this case, we replace p with ψ(p). In this way we arrange that p and q lie
in a region of F labeled by the vector (4− 4s,−4s), as discussed above.

For the first few iterates of ψ, we have the formula

ψk+1(q)− ψk(p) = (4s− 4,−4s) + (4, 0) = (4s,−4s). (90)

This formula is valid until the two points on the left hand side of Equation
90 enter the upper fundamental strip of slope −1, as shown in Figure 5.2.

p q

Figure 5.2: Return to the next strip.

The argument can now be repeated for points starting in the strip of slope
−1.

We have gone 1/8 of the way around, so to speak. Applying a similar
argument for the next leg of the journey, we see that

ψm+2(q) = ψm(p) + (0,−4) (91)

the first time both orbits enter into the left vertical fundamental strip. Our
lemma now follows from the 4-fold rotational symmetry of the picture. ♠

Remark: In fact Ψ(p + (2, 0)) = Ψ(p) + (2, 0) but this is more tedious to
prove.
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5.4 The Necklace Orbits

We say that a necklace orbit is a union P1, ..., Pn of octagons comprising the
orbit of a single periodic tile, such that Pi and Pi+1 share a vertex for all i,
but otherwise the octagons are disjoint. Here the indices are taken cyclically.
We insist that all the octagons are translation equivalent to Os. The orbit
shown in Figure 5.1 and guaranteed by Calculation 9, is a necklace orbit.
Call this orbit Ω6.

One of the octagons in Ω6 has its center at the point (6, 0). We check
by direct calculation (Calculation 10) that there are necklace orbits Ωn for
n = 2, 4, 6, 8, 10. For each n = 2, 4, 6, 8, 10, there is an octagon of Ωn centered
at (n, 0). See Figure 5.3 below. For n = 8, 10, these two octagons lie in the
far domain.

Lemma 5.4 For each n = 12, 14, 16, ... there exists a necklace orbit Ωn, one
of whose octagons is centered at (n, 0).

Proof: We will show that the existence of Ω(k) implies the existence of
Ω(k + 4) as long as k ≥ 8 is congruent to 0 mod 4. For ease of exposition,
we will show this for k = 8. The general case is the same. It follows imme-
diately from Lemma 5.3 and the existence of Ω8 that there is an orbit Ω12,
one of whose octagons is centered at (12, 0) and is a translate of the central
octagon. The argument given in the proof of Lemma 5.3 shows that the first
three octagons of Ω12 are translates by (4, 0) of the corresponding octagons
in Ω8. But then these three octagons touch vertex to vertex, as in a necklace.
But then ψ maps the first octagon to the third one, and the second octagon
to the fourth one. Since ψ just acts as a translation on these octagons, we
see that the third and fourth octagon share a vertex. This pattern continues
until two octagons in a row enter the upper fundamental strip of slope −1
(shown in in Figure 5.2.) Using the dihedral symmetry of the orbit, we see
that Ω12 is a necklace. In short, the existence of Ω8 implies the existence of
Ω12. ♠

We have established the existence of necklace orbits Ω2,Ω4,Ω6, .... There
are 4n octagons in Ωn. The regions between the necklace orbits, which we
discuss below in detail, are invariant under the outer billiards map. In par-
ticular, all orbits are bounded. Compare the arguments in [VS], [K], and
[GS].
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5.5 Parallelograms, Halfbones, and Dogbones

Recall that Theorem 1.11 involves a tiling ofR2−Os by parallelograms which
are translates of F1, the domain of the octagonal PET at parameter s. The
following result can be interpreted as saying that Theorem 1.11 is true for
the central tiles of the octagonal PETs.

Lemma 5.5 Every octagon O′ in a necklace orbit is contained in some par-
allelogram F ′ in the tiling from Theorem 1.11. The translation carrying F ′

to F1 carries O′ to the central tile F1∩F2 of the octagonal PET. Conversely,
every parallelogram in the tiling contains an octagon from a necklace orbit.

Proof: Our argument refers to figure 5.3 below. Let Pn be the octagon in
Ωn centered at (n, 0). Our tiling is such that there is a parallelogram Πn

centered at (n, 0) for n = 2, 4, 6... (These parallelograms the top row of the
right-hand shaded sector in Figure 5.3.) We check our result by hand for
the pairs (Pn,Πn) for n = 2, 4. But the map p → p + (2, 0) maps (Pn,Πn)
to (Pn+1,Πn+1). So, by symmetry, our result holds for all octagons and
parallelograms centered on the positive x-axis.

Our tiling is divided into 8 sectors, one of which is shaded in Figure 5.3.
For the octagons in the shaded sector, the map

p→ p+ (2− 2s,−2s) (92)

moves one octagon to the next and also moves one parallelogram to the next.
The above symmetry now gives us our result for all the octagons and parallel-
ograms in the shaded sector. Similar arguments work for the other sectors. ♠

The region Θ2n+1 between Ω2n and Ω2n+2 is invariant under ψ. (This is
the way one sees that all orbits are bounded.) Going outward from the central
octagon, we encounter regions Θ1,Ω2,Θ3,Ω4, .... The regions Θ1,Θ3,Θ5 lie
in the barrier and the rest of them lie outside the barrier.

In view of Lemma 5.5, each region Θj is tiled by objects we call halfbones .
A halfbone is a translate of a component of F1∩F2. Halfbones are nonconvex
quadrilaterals. Figure 5.3 shows the picture for s = 3/4. We say that
a dogbone is a union of two consecutive halfbones which share a common
edge, provided that this union has bilateral symmetry. Each region Θn is
partitioned into some finite union of dogbones and halfbones. (The partitions
are not unique.)
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Figure 5.3: Parallelograms, Dobgones, and Halfbones for s = 3/4.

We make the following observations.

• Each of the regions Θ1,Θ3,Θ5, .. is partitioned into halfbones.

• Θ1 contains no dogbones.

• No region Θn is partitioned into dogbones.

• The regions Θ3,Θ5,Θ7 are all unions of (overlapping) dogbones.

Whether a union of two adjacent halfbones is a dogbone is simply a com-
binatorial matter of how the two halfbones are oriented. Thus, the picture at
a single parameter tells the whole story about which halfbones glue together
to make dogbones. See Figure 5.7 below for another parameter.

67



5.6 The Dogbone Map

To the right of the central octagon, the top horizontal strip intersects Ωn in
a pair of dogbones, for n = 3, 5, 7.... Starting with n = 5, these dogbones lie
in the far domain. Figure 5.4 shows the first few of these dogbones.

Figure 5.4: The row of dogbones for s = 3/4.

LetDn ⊂ Ωn denote the union of the two dogbones in the upper horizontal
strip. We have

Dn = Ωn ∩ F, n = 5, 7, 9... (93)

Here F is the far domain. The case n = 3 is special, but what we say below
applies to that case as well.

Recall that Ψ is the first return map of ψ (the second iterate of outer
billiards) to F . Given that Ωn is invariant under the outer billiards map, we
have

Ψ : Dn → Dn, n = 7, 9, 11... (94)

Technically, we have not defined Ψ on Dn for n = 3, 5, but we do so now.

Remark: The arguments we gave about the structure of Ψ do not apply
directly to the domains D3 and D5, because they lie inside the barrier. How-
ever, we can still write down the map Ψ : D3 → D3 and Ψ : D5 → D5 with
the understanding that perhaps these maps are not entirely defined. That is,
there might be some points which start in these domains and never return.
In fact, our calculation will show that all points in D3 and D5 eventually do
return to these regions. This calculation is part of Calculation 11, described
below.
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It is tempting to show that the first return map to Dn is conjugate to
the octagonal PET at the corresponding parameter. However, this does not
work directly. We need to massage the picture a bit to make things work.

Looking at Figure 5.4, we can see that it makes sense to write

Dn = D0
n ∪D1

n (95)

where D0
n is the lower dogbone and D1

n is the upper dogbone.
There is an obvious involution ι : Dn → Dn which simply interchanges

the two dogbones using a piecewise translation. As part of Calculation 11,
described below, we will show that

Ψ ◦ ι = ι ◦Ψ (96)

on Dn for n = 3, 5, 7, 9. Equation 96 then holds for n = 11, 13, 15, ... by
Lemma 5.3. Equation 96 allows us to “compress” the map Ψ so that it really
just lives on a single dogbone.

We define a new map Υ : D0
n → D0

n by the rule

• Υ(p) = Ψ(p) if Ψ(p) ∈ D0
n.

• Υ(p) = ι ◦Ψ(p) if Ψ(p) ∈ D0
n.

We call Υ(p) the dogbone map.

Lemma 5.6 The periodic tiling of D0
n relative to Υ is just the restriction of

the outer billiards periodic tiling to D0
n.

Proof: It follows immediately from Equation 96 that the Υ-orbit of p is
periodic (respectively aperiodic or undefined) if and only if the Ψ-orbit of p
is periodic (respectively aperiodic or undefined). Hence, the periodic tiling
of D0

n relative to Υ is the same as the periodic tiling relative to Ψ. But the
periodic tiling with respect to Ψ is the same as the periodic tiling with re-
spect ψ, because Ψ is just the first return map of ψ to some domain. Finally,
the periodic tiling with respect to ψ is the same as the periodic tiling with
respect to ψ′ because ψ is the second iterate of ψ′. ♠
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5.7 The First Conjugacy

As usual, all our constructions depend on a parameter s ∈ (1/2, 1), which we
sometimes suppress from our notation.

Let F1 and F2 be the parallelograms associated to the octagonal PET.
We have a partition

F1 = H1 ∪ (F1 ∩ F2) ∪H2 (97)

where F1 ∩ F2 = Os is isometric to the octagons we have been considering
above and each of H1 and H2 is isometric to a halfbone. We define

D = H2 ∪ (H1 + (2, 0)) (98)

D is the dogbone shown on the right hand side of Figure 5.5.

Figure 5.5: H1 (dark) and F1 ∩ F2 (black) and H2 (light).

Let f be the octagonal PET. Since H1 ∪ H2 is an invariant set for f ,
we can take D as the domain for f |(H1 ∪ H2). More precisely, there is a
piecewise isometry from H1∪H2 to D, and we consider the map on D which
is conjugate to f by this piecewise isometry. Conveniently, the map

θn(p) = p+ (0, n) (99)

maps D to D0
n for n = 0, 2, 4, .... Here D0

n is the bottom half of the domain
Dn.

In Part IV we establish the following result by direct calculation.
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Lemma 5.7 (Calculation 11) The following is true for n = 3, 5, 7, 9:

• Equation 96 holds on Dn.

• θn conjugates f 2 to Υ on Dn.

In particular, Υ is well defined on almost all points of Dn.

Corollary 5.8 The periodic tiling on D relative to f is isometric to the
restriction of the outer billiards periodic tiling to Dn for all n = 3, 5, 7....

Proof: Combining Lemma 5.7 with Lemma 5.3, we see that in fact Lemma
5.7 is true for all n = 3, 5, 7, .... Hence the tiling on D relative to f 2 is
isometric to the tiling on D0

n relative to Υ (and relative to outer billiards).
Finally, the second iterate f 2 produces the same tiling on D as f does. ♠

Before we go further, we remark on an extra symmetry of the outer bil-
liards tiling which would not be so easy to see without Corollary 5.8. At the
same time, we get an extra symmetry of the octagonal PET which we would
not notice (or, rather, know how to prove) without the connection to outer
billiards.

Corollary 5.9 For n = 3, 5, 7, ... the restriction of the outer billiards tiling
to D0

n. has 4-fold dihedral symmetry.

Proof: Reflection in the origin commutes with all the objects defining the
octagonal PET. Hence the tiling of F1 relative to f has rotational symmetry.
Hence the tiling of D relative to f has rotational symmetry. Hence the tiling
of D0

n relative to outer billiards has rotational symmetry.
At the same time, reflection in the x-axis conjugates the outer billiards

map to its inverse. Hence, the tiling of D0
n relative to outer billiards has

reflection symmetry. The reflection and rotation generate an order 4 dijedral
group of symmetries. ♠

Figure 1.2 shows the picture for a rational parameter very close to the
parameter u = 3/2−

√
3/2. Note that 1−u is oddly even, so (by the rational

version of Statement 2 of Corollary 1.3) all the tiles in Figure 5.6 except the
very smallest ones are squares.
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Figure 5.6: The tiling of D0
3 for s = 71/112.

Say that a parallelogram is clean if it does not intersect Ω1. All parallelo-
grams but the innermost 8 are clean. Let Σ be the horizontal strip associated
to Os which goes off to the right. Σ contains the dogbones shown in Figure
5.4. Note that Σ contains two rows of dogbones, a lower row and an upper
row. All the parallelograms in Σ are clean except for the one closest to Os.
For convenience we repeat Figure 5.4.

Figure 5.4: The row of dogbones for s = 3/4.
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Lemma 5.10 Theorem 1.11 holds for all the clean parallelograms in Σ.

Proof: Recall that Πn is the parallelogram in our tiling which contains
the octagon of Ωn that is centered at (n, 0). Note that Πn is clean for all
values n = 4, 6, 8, ... but not for n = 2. Let us consider Π4. We have the
decomposition

Π4 = H3U ∪ P4 ∪H5L (100)

Here H3U is the upper halfbone of D0
3 and H5L is the lower halfbone of D0

5.
It follows from what we have already proven, and symmetry, that the tiling
of F1 relative to the octagonal PET is isometric to the tiling of Π4 relative
to outer billards. But the same argument works for Πn for n = 6, 8, 10, ....
Now we know Theorem 1.11 for all the clean parallelograms in the lower half
of Σ.

Given Equation 96, everything we said about the outer billiards tiling in
D0

n for n = 3, 5, 7, ... holds inside D1
n for n = 3, 5, 7, .... The same cut-and-

paste argument as above shows that Theorem 1.11 holds for all the clean
parallelograms in the upper half of Σ. Hence Theorem 1.11 holds for all the
clean parallelograms in Σ. ♠

Lemma 5.11 Theorem 1.11 holds for all the clean parallelograms.

Proof: By symmetry, Theorem 1.11 holds for all the clean parallelograms
in all 8 strips defined by Os. The argument here is a bit subtle. The tiling in
the diagonal strips associated to Os is isometric to the tiling in the horizontal
and vertical strips associated to Ot, where t = 1/(2s). This subtlety does
not bother us, because Lemma 5.10 holds for all s ∈ (1/2, 1).

Let Z be an arbitrary clean parallelogram. In view of our description of
the outer billiards dynamics, there is a clean parallelogram Z ′, contained in
one of the strips, such that the tiling in Z is just a translate of the tiling in
Z ′. Hence, Theorem 1.11 holds for Z. ♠

It only remains to prove Theorem 1.11 for the innermost 8 parallelograms.
We will establish this for the parallelogram Π2. Once we know the result for
Π2 we get the remaining 7 by symmetry. That will finish the proof of Theorem
1.11.
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5.8 The Second Conjugacy

To deal with Π2 we have to understand what happens in the domain Θ1.
This domain contains no dogbones, so it is hard to find a direct conjugacy to
the octagonal PET. Instead we proceed as follows. Let E1 ⊂ Ω be the shaded
region shown in Figure 5.7. It appears that E1 is the union of a dogbone and
two halfbones, but the dark central piece is not a union of halfbones which
come from the parallelogram tiling. Even so, let D3 = E1 + (2, 0).

Figure 5.7: Close-up of Θs for s = 4/5.

In Part IV we prove the following result by direct calculation.

Lemma 5.12 (Calculation 12) The map p → p + (2, 0) conjugates Ψ|E1

to Ψ|E3.

It follows from Lemma 5.12 that the restriction of the outer billiards tiling
to the halfbones of E1 is isometric to the restriction of the outer billiards
tiling to the halfbones of E3. In particular, this gives us Theorem 1.11 for
the prallelogram Π2. This completes the proof of Theorem 1.11.
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6 Quarter Turn Compositions

In this chapter, we generalize some of the ideas discussed in previous chapters.
The results here are proved in full in [S2]. Our main purpose is to illustrate
the close connection between polygonal outer billiards and double lattice
PETs. The common theme is provided by a family of maps which we call
quarter turn compositions . These are similar to the alternating grid systems.

6.1 Basic Definitions

We will work in the infinite strip

S = R× [−1/2, 1/2]. (101)

We are going to define two kinds of maps of S, shears and quarter turns.
We define the shear

Ss =

[
1 −s
0 1

]
, s > 0. (102)

The map Ss is a shear of S which fixes the centerline pointwise, moves points
with positive y-coordinate backwards and points with negative y-coordinate
forwards.

Let � be a rectangle with sides parallel to the coordinate axes. We define
a quarter turn of � to be the order 4 affine automorphism of � which maps
the right edge of � to the bottom edge of �. For any a > 0 we distinguish 2
tilings of the strip S by a× 1 rectangles. In Tiling 0 , the origin is the center
of a rectangle. In Tiling 1 , the origin is the center of a vertical edge of a
rectangle. For q = 0, 1 let Rq,a denote the map which gives a quarter turn to
each rectangle in Tiling q. We call the piecewise affine map Rq,a a quarter
turn.

We define a quarter turn composition (QTC) to be a finite alternating
composition T of quarter turns and shears. That is,

T = Ssn ◦Rqn,rn ◦ · · · ◦ Ss1 ◦Rq1,r1 . (103)

• q1, ..., qn ∈ {0, 1} specify the tiling offsets.

• r1, ..., rn are the parameters for the widths of the rectangles.

• s1, ..., sn > 0 are the parameters for the shears.

We call n the length of the QTC.
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6.2 The Polytope Graph

Here we explain a generalization of the concept of a multigraph PET. The
construction suggests a definition of 3-dimensional polyhedral outer billiards,
at least for fairly generic polyhedra.

Partial Lattices and Extended Polytopes: Say that a partial lattice
is an abelian subgroup of rank k < n contained in Rn. (For k = 1, we are
talking about Z(V ) for some vector V .) Say that an extended polytope is
a subset of Rn which is isometric to the product P k ×Rn−k where P k is a
k-dimensional convex polytope. (For k = 1 we get an infinite strip.)

We say that an extended polytope is a fundamental domain a partial lat-
tice if the translates of the extended polytope by the vectors in the partial
lattice forms a tiling of Rn. (For k = 1 we require that the vector generating
the lattice can be placed so that the head lies on one edge of the strip and
the tail lies on the other.)

Generalized Decorations: We generalize the construction of a decorated
multigraph by allowing the vertices to be labelled by extended polytopes and
the edges to be labelled by partial lattices. We require the basic property
that a vertex is incident to an edge if and only if the corresponding extended
polytope is a fundamenta domain for the corresponding partial lattice. With
this generalization, we get the same functors as above, provided we enlarge
the category PET so that it includes maps on partial polytopes which are
piecewise translations.

The Facet Graph: Let Ω be a convex polytope. By a facet of a poly-
tope we mean a codimension 1 face. Suppose, for each facet f there is a
unique vertex v(f) of Ω which is farthest from the hyperplane extending f .
We form a graph Γ = Γ(Ω) as follows. The vertices of Γ are the facets of Ω.
We join two vertices f1 and f2 of Γ if and only if v(f1) is a vertex of f2 and
v(f2) is a vertex of f1. (When Ω is a polygon with no parallel sides, the facet
graph is a cycle.)

We decorate Γ as follows. For each vertex f we assign the partial polytope
Pf which is an infinite slab bounded by parallel hyperplanes. One of the
hyperplanes is the extension of the face f . The other hyperplane is parallel
to the first one, so that v(f) is equidistant between the two hyperplanes. To
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the edge joining f1 and f2 we assign the lattice

Z(V ), V = 2(v(f1)− v(f2)). (104)

Note that this definition is independent of the order in which we choose f1
and f2.

1

f1v( )

f2v( )

f2

f

V

Figure 6.1: Constructing the facet graph

Figure 6.1 shows the example of the regular pentagon. We show facets f1
and f2, and the corresponding strips, and the vector V . The two strips are
the extended polygons associated to f1 and f2. Notice that both strips are
fundamental domains for Z(V ). The picture looks similar for any polygon
without parallel sides.

The Tetrahedron: Consider the case of a tetrahedron τ . In this case,
the facet graph Γ is the complete graph on 4 vertices. Each pair of facets
(f1, f2) of τ meet in an edge, and the opposite edge, when suitably oriented,
equals the vector v(f1) − v(f2). Once we choose a distinguished facet of Γ,
corresponding to a vertex γ of Γ, and suitably scale the picture, we get an
action of the fundamental group π1(Γ, γ) on the infinite slab R2× [0, 1]. Here
π1(Γ, γ) is isomorphic to the free group on 3-generators. This seems like an
appealing example to study. For reasons which will emerge below, we would
call this system “outer billiards on a tetrahedron”.
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6.3 QTCs and Polygon Graphs

In the 2-dimensional version of our construction, Ω is an n-gon with no
parallel sides, Γ is an n-cycle, and the vertices of Γ are labelled by infinite
strips Σ1, ...Σn. The corresponding faces are f1, ..., fn. The edges are labeled
by Z(Vk), where Vk = 2v(fk)− 2v(fk−1).

We fix one of the strips of Γ, say Σ = Σn. Let f be the corresponding
vertex of Γ. We get a (generalized) PET ξ : Σ → Σ. Here ξ is the image
of 1 under the composition Z ↔ π1(Γ, f) → PET(Σ). (This defines ξ up to
taking inverses.) In [S2] we prove the following result.

Lemma 6.1 There is an affine transformation from Σ to S which conjugates
ξ2 to a the map T 2, where T is a quarter turn composition.

Proof: (sketch) Consider the elementary maps

Tk = Σk−1 →Vk
Σk. (105)

In order the consider the second iterate, we define Σk+n = Σk, etc.
We have

ξ2 = T2n ◦ T2n−1 ◦ · · · ◦ T1. (106)

For k = 1, ..., 2n we define area- and orientation-preserving affine maps

Ak,± : Σk → S, (107)

such that Ak,± carries Σk±1 ∩ Σ to a rectangle and v(fk) to the origin.
Let ρ(x, y) = (−x,−y) be reflection about the origin. Our description

determines Ak,± up to composition with ρ. It turns out that one can make
consistent choices so that the two maps

Rk = Ak+1,− ◦ Tk ◦ A−1
k,+; Sk = Ak+1,+ ◦ (Ak+1,−)

−1 (108)

respectively are affine shears and quarter turn maps. We need to go around
twice to make the choices consistent because An+k,± = ρ ◦ Ak,±.

Let
T = Sn ◦Rn ◦ · · · ◦ S1 ◦R1. (109)

When we compose these maps there is a lot of cancellation, and we get
T 2 = S2nξ

2S−1
0 = S0ξ

2S−1
0 . ♠
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We say that T is finitary if the set of differences

{T (p)− p| p ∈ S} (110)

is a finite set.

Lemma 6.2 T 2 is finitary.

Proof: Our whole construction is affinely invariant, so we normalize P so
that in fact ξ2 = T 2. We use the notation from the proof of Lemma 6.1. Let
p = p0 ∈ Σ0 and define

pk = Tk ◦ ... ◦ T1(p0). (111)

Let mk be such that
pk = pk−1 +mkVk. (112)

Then

T 2(p)− p =
2n∑

i=1

miVi =
n∑

i=1

(mi +mi+n)Vi. (113)

1

2

R2

R3R4

p1

p2

p3

p4

p5

R1

1

4

3

K
Figure 6.2: Far from the origin.

Ourside of a large compact set K, the portion of the ξ-orbit of p, going
from p to T 2(p), lies within a uniformly bounded distance of a centrally sym-
metric 2n-gon. The point is that all the strips come within a uniform distance
of the origin. This means that there is a uniform bound to |mi +mi+n| for
all i. Hence, there are only finitely many choices for T 2(p)− p. ♠
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6.4 QTCs and Outer Billiards

Let Ω be a convex polygon with no parallel sides, as in the previous section.
On the outer billiards side, the constructions given in §5.1 generalize (to
some extent) to any convex polygon. However, on the QTC side, we have
only worked out the picture for polygons having no parallel sides.

In general, there may not be a “barrier” which separates “far orbits” from
“near orbits”. For instance, in [S3] we proved the following result.

Theorem 6.3 (Erratic Orbits) Let K be any irrational kite. Then there
exists an unbounded outer billiards orbit relative to K which has a vertex of
K as a subsequential limit.

A kite is irrational if one of its diagonals divides it into regions having irra-
tionally related areas. The orbits guaranteed by the Erratic Orbits Theorem
will pass through any barrier one might try to place around the kite.

On the other hand, there is always a barrier in the weaker sense that the
first return map to one of the half-strips (the far domain from §5.1) has a
quite simple description: The orbit just circulates once around Ω and comes
back to the strip in roughly the same place. However, after many revolutions
around, the orbit can drift towards Ω, as in the Erratic Orbits theorem.

Let ψ′ denote the outer billiards map relative to Ω and let ψ = (ψ′)2.
The map ψ is always a translate by a vector of the form 2v − 2w, where v
and w are vertices of Ω. Far from the origin, f 2 is a translate by some ±Vk,
where V1, ..., Vn are the vectors considered in the previous section.

Indeed, let Σ be the strip considered in the previous section. Let Ψ′

denote the first return map of ψ to Σ. (Here we are deliberately considering
the first return map of ψ, and not ψ′.) Let Ψ = (Ψ′)2. So, Ψ is the second
return of the second iterate of the outer billiards map.

The two maps Ψ and ξ2 coincide outside a large compact set K = KΩ.
Here K plays the role of the barrier from §5.1. What we are saying is that
Figure 6.2 describes both maps ξ2 and Ψ. Our result [S4, Pinwheel Theorem]
gives much tighter control on the relation between ξ2 and Ψ.

Theorem 6.4 (Pinwheel) There is a canonical bijection between the set of
unbounded orbits of ξ2 and the set of unbounded orbits of Ψ. The bijection
is such that corresponding orbits agree outside a compact set. In particular ξ
has unbounded orbits if and only if Ψ does.
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The point of the Pinwheel Theorem is that, up to some bounded error,
every polygonal outer billiards map can be expressed in terms of a quarter
turn composition. As we already mentioned above, part of the Pinwheel
Theorem is easy: outside of K, the maps ξ2 and Ψ coincide.

The analysis of what happens fairly near Ω is intricate, and it seems
miraculous that it works out: The ξ2 orbit and the Ψ orbit of a point can
look quite different when the point is near Ω. We think of outer billiards near
Ω as being like the complicated part of a pinball machine. Points wander
into the complicated part and get banged around, but then they emerge later
on in a way that is predicted by the much simpler QTC.

It is interesting to compare the general case to what happens for semi-
regular octagons. In the case of the semi-regular octagons, there is an infinite
sequence of “necklace orbits” which confine the remaining orbits between
them. This happens for any quasi-rational polygon, according to the results
in [VS], [K], and [GS]. The polygon Ω is quasi-rational if one can scale Ω so
that the parallelograms Σk∩Σk+1 have integer area for all k. In general there
are no such necklace orbits, and the Erratic Orbits Theorem shows that in
fact there can be unbounded orbits.

Given the connection between QTCs and both outer billiards and the
PETs which arise from the polytope graph in 2 dimensions, we see that
there is a connection between outer billiards and the PETs which arise from
the polytope graph. This suggests that one way to define outer billiards in
higher dimensions is to start with a polytope and consider the subcategory
of PETs defined by the associated polytope graph.

One shortcoming of our definition is that it does not work so gracefully
when the polytope has parallel faces (of any dimension). This is disappoint-
ing, because one would like to try things out for the platonic solids, and 4
out of 5 of them have parallel facets. Probably there is a way to extend our
definition to the case where there are some parallel faces, but we have not
tried to do it.

There is one more thing we would like to say in connection with higher
dimensional outer billiards. Our proposal for a higher dimensional definition
is perhaps only useful in odd dimensions. Sergei Tabachnikov has pointed
out that one can use the complex structure on R2n = Cn to make a well-
defined outer billiards map in all even dimensions. These higher dimensional
systems, both his and ours, are completely unexplored.
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6.5 QTCs and Double Lattice PETs

QTCs are similar in spirit to the alternating grid systems considered in the
previous chapter. Here they have the added complication that the maps
involved are affine maps rather than isometries. However, if T is a quarter
turn composition corresponding to a polygonal outer billiards system, then
T 2 is a finitary piecewise translation. One would expect that such a map has
a compactification which is a higher dimensional PET. In [S2] we prove the
following result.

Theorem 6.5 (Compactification) Suppose that T is a length-n quarter
turn composition with parameters {ai} and {ri} and {si}. Suppose also that
T 2 is a finitary piecewise isometry. Then (S, T ) has a compactification which
is a double lattice PET. The dimension of the compactification is the dimen-
sion over Q of the vector space Q(r1/rn, ..., rn−1/rn).

Proof: (sketch) The proof of Theorem 6.5 is very similar to the proof of

Theorem 1.12 given in the previous chapter. Let Ŝ = Rn+1/Zn+1.

Ψ(x, y) =
( x
r1
, ...,

x

rn
, y
)

mod Zn+1 (114)

Referring to Equation 109, the first step in our proof here is to show that
there are affine maps R̂1, ..., R̂n, Ŝ1, ..., Ŝn of Ŝ such that

Ψ ◦Rk = R̂k ◦Ψ, Ψ ◦ Sk = Ŝk ◦Ψ (115)

This is done, as in the previous chapter, by finding explicit formulas for
these map. These maps depend on the parameters a1, ..., an and s1, ..., sn,
but only in a mild way. For different parameters, we get the same maps up
to composition with a translation of Ŝ.

Once we have the maps R̂k and Ŝk, for k = 1, ..., n, we define T̂ exactly
as we defined T , but with respect to these new maps. Below we will explain

how we use the finitary condition to prove that (T̂ 2
, Ŝ) is a piecewise trans-

lation. An analysis of the singularity set of T̂ , along the lines of Lemma 4.3,
allows us to replace the domain T by a parallelotope and recognize T̂ as a
double lattice PET. ♠

Using the Finitary Property: It seems worthwhile explaining how the

finitary condition implies that T̂ 2
is a local translation. For simplicity, we

82



will treat the (generic) case when Ψ(S) is dense in Ŝ. In this case, it suffices
to prove that the restriction of T 2 to Ψ(S) is a local translation.

Suppose that p̂ ∈ Ψ(S) and {p̂n} ∈ Ψ(S) is a sequence of points converg-
ing to p̂. We want to show that

T̂ (p̂)− p̂ = T̂ (p̂n)− p̂n, (116)

for all n sufficiently large. We have points p, pn ∈ S such that p̂ = Ψ(p) and
p̂n = Ψ(pn). Note that {pn} need not be a convergent sequence in S.

Lemma 6.6 Let Vq = T (q)− q for any q ∈ S, we have

T̂ (p̂)− p̂ = Ψ(Vp), T̂ (p̂n)− p̂n = Ψ(Vpn). (117)

Proof: We have

T̂ (p̂)− p̂ = T̂ ◦Ψ(p)−Ψ(p) = Ψ ◦ T (p)−Ψ(p) = Ψ(Vp) (118)

The last equality comes from the fact that Ψ(V +W ) = Ψ(V )+Ψ(W ) when-
ever V , W , and V +W all belong to S. Here we are taking V = Vp and
W = p. The same argument works for pn. ♠

We now observe the following properties.

1. By continuity and Equation 117, we have Ψ(Vpn) → Ψ(Vp) as n→ ∞.

2. Since T is finitary, there is a uniform upper bound to |Vpn|.

3. Ψ is injective.

It follows from these properties that Vpn → Vp. But T is finitary. Hence
Vpn = Vp for n large. But then Ψ(Vp) = Ψ(Vpn) for n large. This fact com-
bines with Equation 117 to establish Equation 116 for n large.

Summary: The first return map to the strip Σ captures all the essential
information about the dynamics of a polygonal outer billiards system. The
first return map just mentioned is equivalent, in a strong sense, to a quarter
turn composition. The quarter turn composition in turn has a compactifica-
tion which is a double lattice PET. Thus, many features of a polygonal outer
billiards system, including the existence of unbounded orbits, can be studied
by looking at a suitable double lattice PET.
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Part II

Renormalization and Symmetry
The main goal of this part of the monograph is to introduce the elementary
symmetry properties of the octagonal PET and to prove the Main Theorem.

• In §7 we explain some elementary symmetry properties enjoyed by the
octagonal PETs.

• In §8 we introduce a combinatorical gadget which we call the arithmetic
graph. We use this gadget to show that the tiles in ∆s, for any irrational
s, are limits of periodic tiles of nearby parameters.

• In §9 we explain how to decompose ∆s, in several ways, into pieces
having bilateral symmetry. These pieces play an important role in our
overall work. Establishing the bilateral symmetry requires to computer
calculations, Calculations 1 and 2, which we do in Part V of the mono-
graph.

• In §10 we prove the Main Theorem modulo 6 more calculations, Cal-
culations 3, ..., 8. We do these calculations in Part V.

• In §11 we establish various properties of the renormalization map R,
such as its connection with continued fractions.

• In §12 we prove Theorem 1.2, Theorem 1.3, and Theorem 1.4. These
results only require the Main Theorem and symmetry, so we present
their proofs at the earliest possibly time. Theorem 1.2 is an immedi-
ate corollary of the stronger Theorem 12.1. Most of our effort in this
chapter is devoted to proving Theorem 12.1.
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7 Elementary Properties

7.1 Notation

Basic Objects: Let (F1, F2, L1, L2) be the data that defines the octagonal
PET at some parameter s, as shown in Figure 1.1. We repeat Figure 1.1
here for convenience. These objects all depend on s, but we usually suppress
s from our notation. Here are the definitions of these sets.

1

2

2

1

2

1LF

L

F

L F

L

1

2

F
(2,0)

(2s,2s)

Figure 1.1: The scheme for the PET.

• F1 is the parallelogram with vertices (ǫ1 + ǫ2s, ǫ2s) for ǫ1, ǫ2 ∈ {−1, 1}.
• F2 is the parallelogram with vertices (ǫ2s,−ǫ1−ǫ2s) for ǫ1, ǫ2 ∈ {−1, 1}.
• L1 is the Z span of (0, 2) and (2s, 2s).

• L2 is the Z span of (2, 0) and (2s,−2s).

Note that F1 and F2 differ from the labeled parallelograms in Figure 1.1 in
that they have been translated so that they are centered at the origin.

We usually set X = F1. The parallelogram X is the domain of the PET.
We denote the PET by (X, f).

Dynamical Objects: Here are some objects objects associated to (X, f).

• ∆ is the periodic tiling of the (X, f).

• Λ is the limit set of (X, f).

• Λ′ is the aperiodic set of (X, f).
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7.2 Intersection of the Parallelograms

As in the introduction, we define

O = F1 ∩ F2. (119)

This set has the following description.

• When s ∈ (0, 1/2], O to be the square with vertices (±s,±s).
• When s ∈ (1/2, 1), O as the octagon with vertices

(±s,±(1− s)), (±(1− s),±s).

• When s ∈ [1,∞), O is the square with vertices (±1, 0) and (0,±1).

7.3 Intersection of the Lattices

Lemma 7.1 L1 ∩ L2 = {0} when s is irrational.

Proof: A typical point in L1 has the form (2Bs, 2A + 2Bs) and a typical
point in L2 has the form (2C + 2Ds,−2Ds) for A,B,C,D ∈ Z. If two such
points coincide, we have

Bs = C +Ds, A+ Bs = −Ds. (120)

Since s is irrational, the first equation is only possible if C = 0 and B = D.
But the second equation gives A = 2Ds. This forces A = D = 0. In short
both points are 0. ♠

Remark: We don’t care about the intersection of the lattices in the rational
case, but we mention that when s = p/q, both L1 and L2 contain the vectors
(2p, 0) and (0, 2q). Hence L1 ∩ L2 is a sub-lattice of both.

7.4 Rotational Symmetry

Now we discuss the symmetry of the system (Xs, fs). Define

ι(x, y) = (−x,−y) (121)

Note that ι(X) = X for every parameter.

Lemma 7.2 (Rotation) ι and fs commute for all s ∈ (0, 1).

Proof: ι preserves F1, F2, L1, and L2. For this reason ι commutes with f . ♠
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7.5 Central Tiles

We make the following definitions.

• When s ∈ (1/2, 1), we call O = F1 ∩ F2 the central tile.

• When s ≤ 1/2 or s ≥ 1, the intersection F1 ∩ F2 is a square. This
square generates a grid in the plane, and finitely many squares in this
grid lie in X = F1. We call these squares the central tiles .

See Figure 7.1. Our definition is designed so that the complement of the
central tile(s) plays the same role for all parameters of s.

Figure 7.1: The central tiles (dark) for s = 5/4 and t = 9/4.

Let X0 denote the portion of X which lies to the left of the central tiles.
We have

X = X0 ∪ central tiles ∪ ι(X0). (122)

Here ι is reflection in the origin, as defined in the previous section.
For any relevant subset S ⊂ X, we define

S0 = S ∩X0 (123)

The subsets of ∆s and Λs lying to the right of the central tiles are reflected
images of ∆0

s and Λ0
s. this reason, we will usually consider the picture just

on the left hand side.
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7.6 Inversion Symmetry

Lemma 7.3 (Inversion) (Xt, ft) and (Xs, f
−1
s ) are conjugate if t = 1/2s.

Proof: Let L be the line through the origin which makes an angle of π/8
with the x-axis. Referring to Figure 1.1, the line L is an angle bisector for
F1. If we reflect Figure 1.1 in L and then dilate by 1/2s, we get another
instance of Figure 1.1, corresponding to the parameter t. Up to similarity,
the corresponding PET for t is the inverse of the one for the parameter s. ♠

7.7 Insertion Symmetry

Figures 7.2 and 7.3 show our next result in action.

Figure 7.2: ∆s for s = 5/13.

Figure 7.3: ∆t for t = 5/23.

Lemma 7.4 (Insertion) Suppose s ≥ 1 and t = s+ 1, or suppose s ≤ 1/2
and t = s/(2s + 1). The restriction of fs to X0

s ∪ ι(X0
s ) is conjugate to the

restriction of ft to X
0
t ∪ ι(X0

t ). The conjugacy is a piecewise similarity.

Proof: The case when s < 1/2 is equivalent to the case s > 1 by the
Inversion Lemma. So, we will take s > 1 and t = s+ 1.
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We consider how Xs and Xt sit relative to the grid of diamonds mentioned
above. When s, t > 1, the squares in the grid are diamonds – their diagonals
are parallel to (±2, 0) ∈ L1 and (0,±2) ∈ L2. There are two more diamonds
contained in Xt than there are in Xs. On the central tile, the map f has the
obvious action shown in Figure 7.1.

The sets X0
s and X t

s have the same position relative to the diamond grid,
and there is an obvious translation carrying the one set to the other. This
translation extends to give piecewise translation from the complement of the
diamonds in Xs to the complement of the diamonds in Xt. Call points related
by this piecewise translation partners

Let ps ∈ X0
s and pt ∈ X t

s be partners. Let λs and λt respectively be the
vectors in (L2)s and (L2)t such that ps + λs ∈ (F2)s and pt + λt ∈ (F2)t. We
have either λs = λt + (2, 0) or λs = λt + (0, 2), depending on whether or not
ps + λs and pt + λt lie in the top or bottom of (F2)s and (F2)t respectively.
The answer (top/bottom) is the same for s as it is for t. In short, the two
new points ps + λs and pt + λt are again partners. Repeating this argument,
we see that fs(ps) and ft(pt) are partners. This is what we wanted to prove. ♠

7.8 The Tiling in Trivial Cases

Lemma 7.5 ∆s consists entirely of squares and right-angled isosceles trian-
gles when s = 1, 2, 3... and when s = 1/2, 1/4, 1/6, ....

Proof: We check this for n = 1 just by a direct calculation. See Figure 7.4.

Figure 7.4: The tiling ∆s for s = 1.

The cases n = 2, 3, 4... now follow from the Insertion Lemma. The cases
n = 1/2, 1/4, 1/6... follow from the cases n = 1, 2, 3... and the Inversion
Lemma. ♠
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8 Orbit Stability and Combinatorics

8.1 A Bound on Coefficients

We suppress the parameter s from our notation. Consider the set of points

S(V1, V2) = {p ∈ F1| p+ V2 ∈ F2, p+ V1 + V2 ∈ F1} (124)

This set, if nonempty, is convex: It is the intersection of 3 parallelograms.
Here V1 ∈ L1 and V2 ∈ L2. We write

V1 = a1(0, 2) + b1(2s, 2s), V2 = a2(2, 0) + b2(2s,−2s). (125)

These coefficients are all integers. In this section we prove a technical lemma
which we will use in the next section. Qualitatively, the lemma says that the
vectors which arise in the sets S(V1, V2), for s ∈ [1/4, 1/

√
2], are short in an

algebraic sense (as well as in a geometric sense).

Lemma 8.1 If S(V1, V2) is nonempty and s ∈ [1/4, 1/
√
2] then |aj| ≤ 1 and

|bj| ≤ 2.

Proof: We will give the proof for V1. The proof for V2 is similar. Inspecting
the positions of the vertices of F1 and F2, we see that the maximum distance
between a point of F1 and a point of F2 is

λ = ‖(1, 2s+ 1)‖ =
√
4s2 + 4s+ 2. (126)

On the other hand, if |a1| ≥ 2, we have ‖V1‖ ≥ 2
√
2 > λ. Hence |a1| ≤ 1. If

|b1| ≥ 4 then ‖V1‖ ≥ 8s > λ. Hence |b1| ≤ 3. If |b1| = 3 then ‖V1‖ ≥ 6s > λ
as long as s > 1/3.

So, we are left with the case s ∈ [1/4, 1/3] and |b1| = 3. In this case, we
have the estimate

‖V1‖ ≥ min(‖(6s, 6s)‖, ‖(6s, 6s− 4)‖) =

min(6
√
2s,

√
16− 48s+ 72s2) > 8s. (127)

The last estimate uses s ≤ 1/3. From Equation 127, we see that ‖V1‖ > λ
in this case as well. ♠
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8.2 Sharpness

Recall from §2.4 that (X, f) defines a partition A1 consisting of the maximal
domains on which f is defined and continuous. Each tile P of A1 has associ-
ated to it a vector VP such that f(p) = p+ VP for all p ∈ P . We call (X, f)
sharp if VP = VQ implies that P = Q. In other words, different tiles in the
partition have different translations associated to them.

Lemma 8.2 If s < 1, then (Xs, fs) is sharp unless s = 1/2, 1/3, 1/4, ...

Proof: By Insertion Symmetry, it suffices to prove this result for s ∈ [1/4, 1).
By inversion symmetry, it suffices to prove the result for both f and f−1 when
s ∈ J = [1/4, 1/

√
2]. We will prove the result for f when s ∈ J . The result

for f−1 has essentially the same proof.
If (Xs, fs) is not sharp, then we can find vectors (V1, V2) ∈ L1 × L2 and

(V ′
1 , V

′
2) ∈ L1 × L2 such that

• S(V1, V2) and S(V
′
1 , V

′
2) are both nonempty,

• V1 + V2 = V ′
1 + V ′

2

• (V1, V2) 6= (V ′
1 , V

′
2).

Let
W1 = V1 − V ′

1 = (2Bs, 2A+ 2Bs) ∈ L1,

W2 = V ′
2 − V2 ∈ L2 = (2C + 2Ds,−2Ds) ∈ L2. (128)

We have W1 = W2 ∈ L1 ∩L2 and this gives the same equations as in Lemma
7.1. Solving Equation 120, we get

• s = C/(B −D) if B 6= D

• s = −2B/A if B = D.

Lemma 8.1 gives bounds

‖A‖ ≤ 2, ‖B‖ ≤ 4, ‖C‖ ≤ 2, ‖D‖ ≤ 4. (129)

The case B = D yields no solutions in J .
Consider the case B 6= D. We have |C| ≤ 2 and |B −D| ≤ 8. The only

solutions in J are s = 1/2, 1/3, 1/4 and s = 2/3, 2/5, 2/7. We check by hand
that the system is sharp in the latter 3 cases. ♠

Remark: In fact, (Xs, fs) is not sharp when s = 1/n. This will not bother
us at all.
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8.3 The Arithmetic Graph

Recall that f ′ : (X1∪X2) → (X2∪X1) is the square root of the PET map f .
Suppose that p0 ∈ X is some point on which the orbit of f is well defined.
Call this orbit {pi}. There are unique vectors Vi ∈ L1 and Wi ∈ L2 such that

f ′(pi) = pi + Vi, f ′(pi + Vi) = pi + Vi +Wi = pi+1.

We call the sequence {(Vi,Wi)} the symbolic encoding of the orbit.
We define the arithmetic graph to be the polygon whose ith vertex is

V0 + ... + Vi. We define the conjugate arithmetic graph to be the polygon
whose ith vertex is W0 + ... +Wi. The arithmetic graph is a polygon with
vertices in L1 and the conjugate arithmetic graph is a polygon with vertices
in L2. We call these two objects together the arithmetic graphs of the orbit.

For each j = 1, 2 and each s there is a canonical isomorphism from Lj

to Z2. The isomorphism sends the two basis vectors listed in §7.1 to the
standard basis for Z2. These isomorphisms allow us to compare the graphs
at different parameters. When we consider the images of the arithmetic
graphs under this isomorphism, we will call them simply the graphs .

The arithmetic graph plays a major role in the analysis of outer billiards
on kites in [S1]. Also, the arithmetic graphs associated to the octagonal
PETs are quite pretty. The paper [S5] works them out in detail for the
parameter s = 1/

√
2. In this monograph they play a more minor role.

Lemma 8.3 If s is irrational and p is a periodic point of f , then both the
arithmetic graph of p and the conjugate arithmetic graph are closed polygons.

When the orbit is periodic, of period n, we have

n∑

i=1

(Vi +Wi) = 0,
n∑

i=1

Vi = −
n∑

i=1

Wi. (130)

The first equation implies the second. But then the common sum belongs to
L1 ∩ L2. Lemma 7.1 gives us

n∑

i=1

Vi = 0,
n∑

i=1

Wi = 0. (131)

These two equations are equivalent to the lemma. ♠
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8.4 Orbit Stability

We call a periodic point p stable relative to the parameter s if p is also
periodic with respect to all parameters s′ sufficiently close to s, and the
integer arithmetic graphs associated to (p, s′) are the same as those associated
to (p, s). In this case, we say informally that small variations in the parameter
do not destroy the orbit. Since each periodic orbit corresponds to a periodic
tile, and vice versa, we can also speak about stable and unstable periodic
tiles.

Lemma 8.4 A periodic point is stable if and only if its arithmetic graphs
are closed loops.

Proof: Let p be a periodic point, relative to the parameter s. Let {sn} be a
sequence of parameters converging to s. Let N be the periodic of p relative
to the parameter s. Suppose first that the arithmetic graphs of p are closed
loops. No point of ∂Xs has a well-defined orbit. So, p lies in the interior of
Xs. Hence p lies in the interior of Xsn for all sufficiently large n. Moreover,
by continuity, the first N iterates of fsn are defined on p once n is sufficiently
large. For n sufficiently large, the first N steps of the arithmetic graphs of p
relative to sn must be the same as the first N steps of the integer arithmetic
graphs of p with respect to s. But then these graphs form closed polygons
for all sn with n large enough. Hence p is periodic with respect to sn and
has the same integer arithmetic graphs.

Suppose on the other hand that the arithmetic graphs of p are not closed.
Then we get relation in Equation 130, where each side is the same nontrivial
vector in (L1)s∩(L2)s. If p was stable then we would get a nontrivial element
in the intersecton of the two lattices for all s′ sufficiently close to s. But this
is impossible when s′ is irrational. Hence p is an unstable periodic point
relative to s (and s is rational). ♠

As an immediate corollary, we have

Lemma 8.5 (Stability) All periodic orbits relative to an irrational param-
eter are stable.

Remark: Theorem 1.4 characterizes unstable orbits as those whose periodic
tiles are right-angled isosceles triangles.

93



8.5 Uniqueness and Convergence

To each periodic tile of ∆ we associate the ordered pair of Z2 polygons which
are the graphs associated to any point of the tile. We call these polygons the
graphs associated to the tile.

Lemma 8.6 (Uniqueness) Suppose that s < 1 and 1/s 6∈ Z. Then distinct
periodic tiles in ∆s have distinct graphs.

Proof: Suppose that p and q are both points having period n. We want to
show that p and q lie in the same perodic tile of the partition An constructed
in §2.4. Let p0 = p and pk = fk

s (p0). Likewise define qk. There are vectors
V1, ..., Vn so that pk = pk−1 + Vk and qk = qk−1 + Vk for all k. But then, since
(Xs, fs) is sharp, we see that pk and qk belong to the same tile of A1 for all
k. But then p and q lies in the same periodic tile. ♠

Lemma 8.7 (Approximation) Let s∞ ∈ (0, 1) be irrational, and let {sn}
be a sequence of rationals converging to s∞. Let P∞ be a tile of ∆∞. Then
for all large n there is a tile Pn of ∆n such that {P n} converges to P∞. The
graphs associated to Pn are the same as the ones associated to P∞.

Proof: Let Γ(z, t) denote the graph associated to a point or tile z at the
parameter t. Let p1, ..., pm be any finite collection of points in P∞. By the
Stability Lemma, Γ(pj, sn) = Γ(P∞, s∞) for large n. By the Uniqueness
Lemma, these points all lie in the same convex tile Pn. By choosing these
points very close to the vertices of P∞ we see that and subsequential limit of
{P n} contains P∞, and moreover Γ(Pn, sn) = Γ(P∞, s∞) for large n.

Suppose that P n does not converge to P∞. Passing to a subsequence we
can assume that {P n} converges to some closed convex set Q∞ which strictly
contains P∞. Almost every point of Xs has a well-defined fs-orbit. So, we
can find a point q ∈ Q∞ − P∞ which has a well-defined orbit relatice to s∞.
Note that q ∈ Pn for all large n. If q is aperiodic, then the period of the fsn
orbit of q tends to ∞ with n, contradicting q ∈ Pn. Suppose q is periodic.
For large n we have

Γ(q, s∞) = Γ(q, sn) = Γ(Pn, sn) = Γ(P∞, s∞).

The first equality is the Stability Lemma. But then q ∈ P∞ by the Unique-
ness Lemma. ♠
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8.6 Ruling out Thin Regions

We say that a translation T of R2 is adapted to a parallelogram F if there
are opposite sides e and e∗ of F such that T (e∗) ∩ e is a segment.

Lemma 8.8 Suppose that {Fn} is a convergent sequence of parallelograms
and {Ln} is a convergent sequence of lattices, and {Wn} is a convergent
sequence of vectors such that Wn ∈ Ln. Suppose that Fn is a fundamental
domain for Ln for all n. If translation by W is adapted to F then translation
by Wn is adapted to Fn for all large n.

Proof: Let Fn denote the finite set of Ln translates of Fn which contain
more than one point of ∂Fn. Let en and e∗n be the edges of Fn which con-
verge to e and e∗ respectively. Since R2 is tiled by Ln translates of Fn, our
hypotheses imply that Fn+Wn is a member of Fn once n is sufficiently large.
Our result follows immediately from this. ♠

Recall that f ′ is the square root of the map f . Let J ⊂ (0, 1) be some
compact interval. We fix some parameter s ∈ J and consider everything
relative to this parameter. We call two parallel sequence offset if they do not
lie in the same line. Let A be the partition for f ′.

Lemma 8.9 For any d > 0 there is some ǫ > 0 with the following property.
If is impossible for two offset segments in the boundary of A to have length
greater than d and to have their centers less than ǫ apart. The constant ǫ
only depends on the interval J and on d.

Proof: Suppose we had a sequence of counter-examples, and a corresponding
sequence {sn} ⊂ J . Passing to a subsequence, we can assume that sn → s.
At the parameter s, the relevant line segments overlap. For ease of exposi-
tion, we suppress the dependence on the parameter sn. Recall that the PET
is given by (F1, F2, L1, L2). Let e and e

∗ be the offset seqments, and let q and
q∗ be their centers. Looking at the vectors associated to the regions on either
side of e and e∗, we find distinct vectors V, V ∗ ∈ L2 such that q + V and
q∗ + V ∗ lie in parallel edges of ∂F2. But then we consider the parallelograms
F2 and F2 +W ∈ L2, where W = V − V ∗. These two parallelograms have
two sides which are parallel, very close together, and offset. Letting n→ ∞,
we contradict Lemma 8.8. ♠
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Lemma 8.10 For any d > 0 there is some ǫ > 0 with the following property.
Suppose that P is a periodic tile for f and some edge e of P has length greater
than d and does not lie in an edge of A. Then e must be at least ǫ from any
parallel edge in the boundary of A. The constant ǫ only depends on the
interval J and on d.

Proof: There is some smallest k so that (f ′)k is not defined on e. If k ≥ 2,
we can replace P by the tile containing Rf ′(P ) and e by the edge of P ′

containing Rf ′(e). Here R : F2 → F1 is rotation. The new pair (P ′, e′) has
exactly the same relevant features as (P, e), except that perhaps the length
d has increased.

Thus, without loss of generality, we can consider the case when k = 1.
That is, f ′ is not defined on e. But then e is contained in an edge of A which
is parallel to, offset from, and close to, another edge of A. This contradicts
Lemma 8.9 once the constants are appropriately chosen. ♠

8.7 Joint Convergence

Suppose that s is an irrational parameter and that P and P ∗ are tiles of ∆s

which share an edge. If {sn} is a sequence which converges to s, we know
by Lemma 8.7 that there are tiles Pn and P ∗

n of ∆n such that Pn → P and
P ∗
n → P ∗. We don’t know yet that Pn and P ∗

n also share an edge. Our main
goal is to prove the following result.

Lemma 8.11 Pn ∩ P ∗
n is a segment en, and en converges to e = P ∩ P ∗.

We will prove this result through a series of smaller lemmas.

Lemma 8.12 Pn has an edge fn which converges to e.

Proof: Pn has at most 8 sides, and the possible slopes for these sides lie
in {−1, 0, 1,∞}. The lemma follows almost immediately from this fact, and
from the fact that {P n} converges to P . ♠

The same result holds for P ∗
n . Moreover, given the constraints on the

slopes, the edges fn and f ∗
n are parallel for large n. Let en = fn ∩ f ∗

n. For
all we know now, en is the empty set. We want to show that en is nonempty
and converges to e.

Now we use the notation from the previous section.
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Lemma 8.13 It suffices to prove Lemma 8.11 in the case when e is contained
in edge of the partition for f ′

s.

Proof: This argument is just like the one used in Lemma 8.10. Note that
there is some smallest k so that (f ′

s)
k(e) lies in the partition for f ′

s. If k > 1,
then both tiles P and P ∗ lie in the interior of some open tile in the partition
for f ′

s. But then, by continuity, both Pn and P ∗
n lie in the corresponding tile

in the partition for f ′
sn .

Now we replace P and P ∗ by Rf ′
s(P ) and Rf

′
s(P

∗) and we replace Pn and
P ∗
n by Rf ′

sn(Pn) and Rf
′
sn(P

∗
n). Here R : F2 → F1 = X is 90 degree rotation.

Once we make these replacements, we get a new counterexample where k
has been decreased by 1. We continue this construction until we arrive at a
counterexample with k = 0. ♠

Since P and P ∗ are contained in distinct tiles of the partition A for f ′
s,

the tiles Pn and P ∗
n are contained in distinct tiles of the partition A(n) for

f ′
sn . Moreover, there is an edge of A(n) which is close to e. Hence Pn has a
long edge fn which is parallel to, and close to, an edge of A(n). Once n is
sufficiently large, Lemma 8.10 says that fn must lie in this edge of A(n). But
the same argument works for f ∗

n. Hence fn and f ∗
n lie in the same line. Since

both fn and f ∗
n converge to e, this is only possible if fn ∩ f ∗

n also converges
to e. This completes the proof of Lemma 8.11.
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9 Bilateral Symmetry

9.1 Pictures

The kind of symmetry described in this chapter looks obvious from the pic-
tures, but it seems to require a nontrivial computational proof. In view of
the Inversion and Insertion symmetry, we will describe the symmetry just for
s ∈ [1/4, 1). In this section we will show pictures and in the next section we
will describe things in terms of formulas. Ultimately, we depict two different
decompositions

∆0
s = As ∪Bs = Ps ∪Qs (132)

into regions which have bilateral symmetry. Here are typical pictures for the
case s ∈ (1/4, 1/2).

Figure 9.1 As (white) and Bs (lightly shaded) for s = 6/17.

Figure 9.2 Ps (white) and Qs (lightly shaded) for s = 6/17.
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Here are typical pictures for the case s ∈ (1/2, 1).

Figure 9.3 As (white) and Bs (lightly shaded) for s = 8/13.

Figure 9.4 Ps (white) and Qs (lightly shaded) for s = 8/13.
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9.2 Definitions and Formulas

We say that a line L is a line of symmetry for ∆s if

∆s ∩
(
Xs ∩RL(Xs)

)
(133)

is invariant under the reflection RL in L. Note that Xs itself need not be
invariant under RL. Consider the following lines.

• Let H be the line y = 0.

• Let V be the line x = −1.

• For Ds be the line of slope −1 through (−s,−s).

• For s ∈ [1/4, 1/2], Es be the line of slope −1 through (−3s,−3s).

• For s ∈ [1/2, 1], Es is the line of slope 1 through (−s,−s).
We call these the fundamental lines of symmetry . For each line L above, the
line ι(L) is also a line of symmetry.

We define

As = (Xs ∩RH(Xs))
0, Bs = Xs ∩RV (Xs),

Ps = Xs ∩RD(Xs), Qs = Xs ∩RE(Xs). (134)

Here is the main result in this chapter.

Lemma 9.1 (Bilateral) For all s ∈ [1/4, 1], the lines H, V,D,E respec-
tively are the lines of symmetry for the regions A,B, P,Q.

We prove this result modulo two computer calculations, which we defer until
Part V.

We first deal with the pieces A and B. We have the decomposition

X ′ := X − central tiles = A ∪B ∪ ι(A) ∪ ι(B). (135)

Each of the pieces on the right hand side has a vertical line of bilateral
symmetry. The reflections across these vertical lines gives rise to a piecewise
isometry µ : X ′ → X ′. Note also that X ′ is an fs-invariant set. If p ∈ A
we define µ(p) to be reflection in the vertical line of symmetry for A, etc. In
Part V we prove by computer calculation the following result.

100



Lemma 9.2 (Calculation 1) If s ∈ [1/4, 1] then µs◦fs◦µs = f−1
s wherever

both maps are defined. Moreover, both As and Bs are clean sets.

By rotational symmetry, it suffices to prove that ∆ ∩ A and ∆ ∩ B are
µ-invariant. We do this for A. The proof for B is the same.

Let τ be a tile of ∆ that is contained in A. We just need to see that µ(τ)
is a periodic tile for ∆. Indeed, it suffices to show that µ(τ) is contained in a
periodic tile of ∆, because µ is an involution. Let n be the period of f on τ .
We just need to show that the first n iterates of f are defined on all points
of µ(τ)

Let Γ(p, f) denote the arithmetic graph associated to the map f relative
to the point p. Note that µfµ is defined on almost all points of τ , and equals
f−1 on such points. Hence, by Calculation 1, the map f is n-periodic on
almost all points of µ(τ). If one of the first n iterates of f is not defined on
µ(τ) then several distinct periodic tiles intersect µ(τ). By the Uniqueness
Lemma from the previous chapter, there are points q1, q2 ∈ µ(τ) such that

Γ(q1, f) 6= Γ(q2, f).

Set pj = µ(qj) ∈ τ . Tautologically, we have

Γ(p1, µfµ) 6= Γ(p2, µfµ).

But both maps µfµ and f−1 are defined on pj. Hence

Γ(pj, µfµ) = Γ(pj, f
−1),

by Calculation 1. Hence

Γ(p1, f
−1) 6= Γ(p2, f

−1).

But Γ(pj, f) determines Γ(pj, f
−1), and vice versa. Hence

Γ(p1, f) 6= Γ(p2, f).

This contradicts the fact that p1, p2 ∈ τ .

Now we turn to the second partition. We have a decomposition just like
Equation 135, but with P and Q replacing A and B. This time, each piece
in the partition has a line of slope −1 as a line of symmetry. We define ν
with respect to these lines just as we defined µ above.

In Part V we prove the following result by direct calculation.
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Lemma 9.3 (Calculation 2) If s ∈ [1/4, 1], then νs◦fs◦νs = f−1
s wherever

both maps are defined. Moreover, both Ps and Qs are clean sets.

The rest of the proof is identical to what we did for the first partition.

Remark: Calculations 1 and 2 involve finitely many integer linear alge-
bra operations performed on finitely many convex integer polyhedra in R3.
Were we to take s ∈ (0, 1) rather than s ∈ [1/4, 1) we would have to con-
tend with infinitely many polyhedra, and we could not make a direct finite
calculation. The Insertion Symmetry is what allows us to reduce the desired
calculations to finite ones.
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10 Proof of the Main Theorem

10.1 Discussion and Overview

The Inversion Lemma and the Insertion Lemma go part of the way towards
proving the Main Theorem. These two results give the desired relation be-
tween (Xs, fs) and (Xt, ft) for pairs (s, 1/2s), and for pairs (s, s + 1) when
s > 1. However, these results are not strong enough to establish the Main
Theorem. For instance, when s = 2/5 we have R(s) = 1/4. The relations
above give no connection between 5/4 = 1/(2s) and 1/4.

In this chapter, we reduce the Main Theorem to some computer calcu-
lations, which we call Calculations 3,...,8. We do these calculations in Part
V. For any given parameter, an obvious finite proof of the Main Theorem
suggests itself. Find the partitions associated to each of the maps and verify
the result. If things are set up carefully, we need only check a single point
in each tile of the partitions. Calculations 3-8 treat the whole 1-parameter
family as a 3-dimensional system and then make a direct verification along
the lines suggested.

Here are the two results we prove in this chapter. The first is equivalent
to the half of the Main Theorem corresponding to s ∈ (0, 1/2). We use the
notation from the Main Theorem. Recall that Ys is the complement of the
central tile(s) in the domain Xs.

Lemma 10.1 Suppose s ∈ (1, 2) and s = s − 1. Let φs : Ys → Xs be the
map which is a translation on each half of Ys and maps the acute vertices of
Ys to the acute vertices of Xs. Let Zs = φs(Ys). Then φs conjugates fs|Ys to
fs|Zs, and Zs is a clean set. Either half of φs extends to the trivial tile of ∆s

and maps it to tiles τ1 and τ2. The only nontrivial fs-orbits which miss Zs

are contained in τ1 ∪ τ2 and have period 2.

Our other result is just a restatement of the half of the Main Theorem
corresponding to s ∈ (1/2, 1).

Lemma 10.2 Suppose s ∈ (1/2, 1) and s = 1 − s. Let φs : Ys → Xs be the
map which is a translation on each half of Ys and maps the acute vertices of
Ys to the acute vertices of Xs. Let Zs = φs(Ys). Then φs conjugates fs|Ys to
f−1
s |Zs, and Zs is a clean set. All nontrivial fs-orbits intersect Zs.
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Proof of the Main theorem: Lemma 10.2 is just a restatement of the
Main Theorem for s ∈ (1/2, 1). Suppose that s < 1/2. By the Insertion
Lemma, it suffices to consider the case when s ∈ (1/4, 1/2). By the Inver-
sion Lemma, the system (Xs, fs) is conjugate to the system (Xt, f

−1
t ), where

t = 1/2s. Here t ∈ (1, 2). But now Lemma 10.1 applies to the pair (t, t− 1)
and t − 1 = R(s). When we combine the conjugacy given by the Inversion
Lemma with the one given by Lemma 10.1, we get the Main Theorem. ♠

A direct computational proof of Lemmas 10.1 is difficult. Consider, for
instance, what happens as s→ 1. In this case, s→ 0 and the area of Ys tends
to 0. But then the area of Zs tends to 0 as well. On the other hand, the area
of Xs does not tend to 0. Hence, the proportion of Xs taken up by Zs tends
to 0. But then the amount of time it takes for some orbits to return to Zs

probably tends (and, in fact, does tend) to ∞. A similar problem happens
in Lemma 10.2 when s→ 1.

Our first two calculations stay away from the parameters which lead to
these unbounded calculations.

Lemma 10.3 (Calculation 3) Lemma 10.1 holds for all s ∈ [5/4, 2].

Lemma 10.4 (Calculation 4) Lemma 10.2 holds for all s ∈ [1/2, 3/4].

Let

T (s) =
s− 2

2s− 3
. (136)

Below we prove the following results.

Lemma 10.5 If Lemma 10.1 is true for some u ∈ (1, 3/2), then Lemma
10.1 is also true for s = T−1(u).

Lemma 10.6 If Lemma 10.2 is true for some u ∈ (1/2, 1), then Lemma
10.1 is also true for s = T (u).

The map T has the action 1/2 → 3/4 → 5/6 → · · · The map T−1 has the
action 3/2 → 5/4 → 7/6 → · · · . Hence

∞⋃

k=1

(1, 3.2) = T−k[5/4, 3/2), (3/4, 1) =
∞⋃

k=1

T k(1/2, 3/4). (137)

Lemma 10.1 follows from Calculation 3, Lemma 10.5 and Equation 137.
Likewise Lemma 10.2 follows from Calculation 4, Lemma 10.6 and Equation
137.
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10.2 Proof of Lemma 10.5

Let u ∈ (1, 3/2) and s = T−1(u). Define ωs : Yu → Xs by the formula

ωs(x, y) = (3− 2s)(x, y)± (2− 2s, 0). (138)

The (+) option for ωs is taken when x < 0 and the (−) option is taken then
x > 0. Let

Ws = ωs(Yu). (139)

The left hand side of Figure 10.1 showsW 0
s (red) for s = 22/19. The right

hand side of Figure 10.1 shows Y 0
u (red) for u = T (22/19) = 16/13. Note

that we have used two different shades of red (and blue) in these pictures,
for the purpose of distinguishing certain subsets.

Figure 10.1: Some sets for s = 22/19 (left) and u = T (s) = 16/13 (right).

Lemma 10.7 (Calculation 5) Let s ∈ (1, 4/3] and u = T (s). Then ωs

conjugates fu|Yu to fs|Ws. Moreover, Zs is a clean set.

We define some auxilliary sets.

• The blue set in Figure 10.1 is isometric to Ys−1, and we call it Z0
s .

• Let δs be the diagonal vector pointing from the bottom left edge of Z0
s

to the top left edge of Z0
s .

• Let Zs = Z0
s ∪ ι(Zs). Here ι is reflection in the origin.

• Let τu denote the square whose left side coincides with the right side of
Z0

u. The square τu is a darker red than the others in Figure 10.1, right.

• We define τs just as we defined τu, with s in place of u.
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Lemma 10.8 (Calculation 6) Let s ∈ (1, 5/4]. Then

1. τu is a tile of ∆u, having period 2.

2. f−1
s (p) = p+ δs for all p ∈ Z0

s .

3. f−1
s (Xs − Zs −Ws) ⊂ Zs ∪ τs ∪ ι(τs).

Now we prove Lemma 10.5. This is really a diagram chase. Let s = s− 1
and u = u− 1. We are going to fill in the arrows of the following diagram.

Yu
φu−→ Zu

l l
Y ′
s −→ Z ′

s

↓ ↓
Ys −→ Zs

(140)

The top row of the diagram is what we get from Lemma 10.1 for the param-
eter u. The bottom row will give us Lemma 10.1 for the parameter s.

Top Left Arrow: To explain the top left arrow, we compute s = u/(2u+1).
That is, s and u are related exactly as in the Insertion Lemma. The set Y ′

u is
obtained from Yu by chopping off the rightmost central square from the left
half of Yu and the leftmost central square from the right half. The map (l)
is the conjugacy guaranteed by the Insertion Lemma.

Bottom Left/Right Arrows: The set Z ′
s is obtained from Zs just as Y ′

s

is obtained from Ys. In Figure 10.1, the set Z ′
s is the light blue set. The

bottom left and bottom right arrows are both inclusion.

Top Right Arrow: The top right arrow is

fs ◦ ωs : Zu → Z ′
s. (141)

Here ωs is the map from Calculation 5, and fs is the PET on Xs, discussed
in Calculation 6. The point here is that ωs(Zu) abuts the left edge of X0

s ,
but is a translate of Z ′

s by the vector δs: It is the light red set in Figure 10.1.
Then, fs translates ωs(Zu) to Z ′

s. Statement 2 of Calculation 6 implies fs
conjugates fs|ωs(Wu) to fs|Z ′

s. Calculation 5 says that ωs conjugates fu|Zu

to fs|ωs(Zu). Hence, the map in Equation 141 conjugates fu|Wu to fs|Z ′
s.
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Middle Arrow: The middle arrow is then defined to make the top square
commute. At this point, we have the desired conjugacy from Lemma 10.1,
for the parameter s, except that the (primed) sets are slightly too small.

Bottom Arrow: It follows from Statement 2 of Calculation 6 that the
union of two square tiles in Zs − Z ′

s are in the same orbit and have period
2. This lets us define the bottom right arrow to make the bottom square
commute. We call this map φs and note that it satisfies the main conclusion
(the conjugacy) in Lemma 10.1.

Extension to the Central Tile: Statement 1 of Calculation 6 guaran-
tees that each half of φs extends to the central tile of ∆s. The image of this
central tile under the left half is τs and the image under the right half if ι(τs).

The following lemma takes care of the one piece of unfinished business.

Lemma 10.9 Any nontrivial fs-orbit, except those contained in τs ∪ ι(τs),
intersects Zs.

Proof: Consider first the orbit of a point p ∈ Ws. Let q = ω−1
s (p). Since the

Main Theorem is true for the parameter u, the orbit of q intersects Z∗
u. But

then, by Calculation 5, the orbit of q intersects ωs(Z
∗
u) = f−1

s (Zs). But then
fs(q) ∈ Zs. Finally, consider the orbit of p ∈ Xs −Zs −Ws. If p ∈ τs ∪ ι(τs),
there is nothing to prove. Otherwise, Statement 3 of Calculation 6 finishes
the proof. ♠

10.3 Proof of Lemma 10.6

We set U = T−1. The proof of Lemma 10.6 is similar to the proof of Lemma
10.5. Mainly we explain the differences. We define

ωs(x, y) = (2s− 1)(x, y)± (2s− 2). (142)

We set Ws = ωs(Yu).
The left hand side of Figure 10.2 shows W 0

s (red) and Z0
s (blue) for the

parameter s = 28/31. The right hand side of Figure 10.2 shows Y 0
u (red) and

Zu (light red) for u = U(28/31) = 22/25.
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Figure 10.2: Some sets for s = 28/31 and u = U(s) = 22/25.

The rest of the definitions are done as in the previous section. The main
difference here is that the tiles τs and τu belong to Zs and Zu respectively.
This causes slightly differences in the statements of the two calculations be-
low, which parallel Calculations 5 and 6.

Lemma 10.10 (Calculation 7) Let s ∈ [3/4, 1) and u = U(s). Then ωs

conjugates fu|Yu to fs|Ws. Moreover, Zs is a clean set.

Lemma 10.11 (Calculation 8) Let s ∈ [3/4, 1). Then

1. τs is a tile of ∆s, having period 2.

2. fs(p) = p+ δs for all p ∈ (Z ′
s)

0.

3. fs(Xs − Zs −Ws) ⊂ Z ′
s.

Here Z ′
s has the same meaning as above.

The rest of the proof of Lemma 10.2 is like what we did for Lemma 10.1,
but there are two small differences. First, this time we know that τs is a tile
of Zs, so all the nontrivial orbits intersect Zs. Second, when s ∈ [3/4, 5/6)
and u ∈ [1/2, 3/4) the tile τu does not exist. (This is why Statement 1 of
Calculation 8 refers to τs rather than τu.) This does not change the argument
in any substantive way. Figure 10.3 shows the same sets as in Figure 10.2
for s = 4/5 and u = U(s) = 2/3.

Figure 10.5: Some sets for s = 4/5 and u = U(s) = 2/3.
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11 The Renormalization Map

11.1 Elementary Properties

In this chapter we work out properties of the renormalization map R. Here
we recall the definition R : (0, 1) → [0, 1) as follows.

• R(x) = 1− x if x > 1/2

• R(x) = 1/(2x)− floor(1/(2x)) if x < 1/2.

Lemma 11.1 Let p/q ∈ (0, 1) be any rational. Then there is some k such
that Rk(p/q) = 0.

Proof: We write pk/qk = Rk(p/q). If p/q < 1/2 then 2p < q and hence
q1 < q0. If p/q > 1/2 then q1 = q0, and the previous argument shows that
q2 < q1. So, in both cases, we have q2 < q0. Repeated applications of R2

decrease the denominator, until we reach 0. ♠

For s ∈ (0, 1) we define E(s) by the equation

1

E(s) + 1
≤ s ≤ 1

E(s)
, (143)

and (if necessary) the condition that E(s) is even. What we mean here is that
E(s) is completely unambigious unless s = 1/n. In this case, the inequalities
pin one of two choices of E(s), and we choose the even one. That is,

E
( 1

2n

)
= E

( 1

2n+ 1

)
= 2n, n = 1, 2, 3... (144)

We call s trivial is s = 1/n for some integer n = 2, 3, 4....

Lemma 11.2 Suppose s is nontrivial and let t = R(s).

• If E(s) = 1 then E(t) ≥ 2.

• If E(s) ≥ 2 then E(t) = 1 if and only if E(s) is odd.

Proof: This is an easy exercise. ♠
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11.2 The Even Expanson

We define the even expansion of s ∈ (0, 1) to be the sequence

{E(Rn(s))}n≥0. (145)

We sometimes write ek = E(Rk(s)) when the choice of s is either clear
or unimportant. When s is rational, we stop the sequence at the point
when Rn(s) = 1/2k for some integer k. Thus, the even expansion of a
rational number always ends in an even integer. By Lemma 11.2, we have
the following structure.

• ek = 1 implies that ek+1 ≥ 2.

• ek = 2, 4, 6, ... implies that ek+1 ≥ 2.

• ek = 3, 5, 7, ... implies that ek+1 = 1.

• The even expansion of a rational cannot end in 1, 2.

Other than these restrictions, any sequence is possible. To see this, one
simply starts with a point in the desired interval, and starts pulling back
using the desired branches of R−1.

Now we give some examples.

• 1/3 has even expansion (2, 2).

• When s = 11/28 we have

R0(s) =
11

28
, R1(s) =

3

11
, R2(s) =

5

6
, R3(s) =

1

6
.

This leads to the even expansion (2, 3, 1, 6).

• −1/2 +
√
3/2 has even expansion (2, 2, 2, ...).

•
√
2/2 has even expansion (1, 3, 1, 3, ...).

• −1/2 +
√
5/2 has even expansion (1, 2, 3, 1, 2, 3, ...).

Below we will explain how to relate the even expansion of a number to (some
version of) its continued fraction expansion.
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11.3 Oddly Even Numbers

When s is rational, we tweak the definition of the continued fraction of a
rational number, as follows. If the continued fraction fraction ends (..., k),
with k > 1 odd, we change it so that it ends (..., k − 1, 1). This does not
change the value of the expression, when it is written out as a continued
fraction.

Having made this change, we call s ∈ (0, 1) oddly even if the following
properties hold.

1. s has C.F.E. (0, a1, a2, ...) with ak even for all odd k.

2. The even expansion of s is entirely even.

3. Rk(s) < 1/2 for all k = 0, 1, 2, ...

Lemma 11.2 shows that Properties 2 and 3 are equivalent. Now we show
that Properties 1 and 3 are equivalent.

Lemma 11.3 Let (a, b, ...) be the first two terms in the even expansion of s.
If a and b are both even, then R2(s) = G2(s).

Proof: Let t = R(s) and u = R(t). We compute

t =
1

2s
− a

2
, u =

1

2t
− b

2
. (146)

But then, after some algebra, we get

s =
1

a+
1

(b/2) + u

. (147)

On the other hand, from Lemma 146 and the equation for the Gauss map,
we see that G(s) = 2t and G(2t) = u. Hence R2(s) = G2(s). ♠

Lemma 11.3 immediately shows that Property 1 implies Property 3. Con-
versely, suppose that Property 1 fails. Applying Lemma 11.3 finitely many
times if necessary, we reduce to the case where the first term in the continued
fraction expansion of s is odd. If s > 1/2 we are done. Otherwise, s lies in
one of the intervals (1/3, 1/2), (1/5, 1/4), (1/7, 1/6),..., and R maps each of
these intervals onto (1/2, 1), by Lemma 11.2. Hence Property 3 fails.
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11.4 The Even Expansion and Continued Fractions

We begin with a result in the oddly even case.

Lemma 11.4 s has even expansion (2a1, 2a2, 2a3, ...) if and only if s has
continued fraction expansion (0, 2a1, a2, 2a3, a4, ...).

Proof: In view of Lemma 11.3, we just have to check this for the first two
terms. Equation 147 implies the result for the first two terms. ♠

In general, the same method of proof establishes a translation between
the even expansion and the signed continued fraction when s < 1/2. We
illustrate the translation for (the randomly chosen) s = 3073/7256.

• We convert the even expansion to a new sequence by putting a 0 in front
and then replacing each fragment ...2m − 1, 1, ... with the decorated
number 2m. For instance (2, 5, 1, 4, 6, 7, 1, 3, 1, 6) → (0, 2, 6, 4, 6, 8, 4, 6).

• We take our decorated sequence and cut every other term in half, start-
ing with the 0. For instance, (0, 2, 6, 4, 6, 8, 4, 6) → (0, 2, 3, 4, 3, 8, 2, 6).

• We take the last sequence and convert it into a continued fraction and
then put (−) signs in front of all the decorated terms.

3073

7256
=

1

2 +
1

3− 1

4 +
1

3 +
1

8− 1

2− 1

6

• To get a signed continued fraction in the sense discussed in the pre-
vious section, we put a (−) sign in front of each term of our last
sequence if and only if there are an odd number of terms preceding
it, and then we remove the decorations. Thus (0, 2, 3, 4, 3, 8, 2, 6) →
(0, 2, 3,−4,−3,−8, 2,−6).
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11.5 Diophantine Approximation

Let E.E. stand for even expansion. Suppose σ, s ∈ (0, 1/2) are such that σ
is rational and s is irrational. We write σ → s if one of two situation holds.

1. The E.E. of σ is an initial portion of the E.E. of s.

2. The E.E. of σ has the form (a1, ..., an−1, 2an) and the E.E. of s has the
form (a1, ..., an−1, 2an − 1, 1, ...).

For example, if s has E.E. (3, 1, 3, 1, 3, 1, ...) then σ → s when σ has E.E.
(3, 1, 4) or (3, 1, 3, 1, 4), etc. The point of our definition is that, when σ → s,
it means that σ is one of the truncations of the signed continued fraction
expansion of s.

Lemma 11.5 If σ → s and σ = p/q, then |σ − s| ≤ 6/q2.

Proof: We can take the S.C.F. for s, based on the E.E. of s. We define the
numbers p1, p2, ... and the numbers q1, q2, ... as in Equation 31. There is some
k such that σ = σk = pk/qk. We have already mentioned that

|σk+1 − σk| ≤
1

q2k
. (148)

A case-by-case analysis shows that

|qk+3| ≥ 2|qk|. (149)

The point here is that we have |qk+2| ≥ 2|qk| unless ak+2 = −2, and this
cannot happen for two indices in a row.

From here it is easy to see that {σk} is a Cauchy sequence whose limit is
s. We also have the estimate

|s− σk| ≤
∞∑

j=k

|σj+1 − σj| ≤
∞∑

j=k

1

q2j
≤ 6

q2k
. (150)

This completes the proof. ♠
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11.6 Dense Orbits

Now we prove that almost all R-orbits are dense. It suffices to consider R-
orbits of points in (0, 1/2). Define R1 : (0, 1/2] → (0, 1/2] so that R1(s) =
R(s) if R(s) < 1/2 and otherwise R1(s) = 1−R(s) = R2(s).

Lemma 11.6 Let s ∈ (0, 1/2). If {Rn
1 (s)} is dense in (0, 1/2) then {Rn(s)}

is dense in (0, 1).

Proof: Note that {Rn(s)} contains {Rn
1 (s)} because R1 is always a power of

R. Hence {Rn(s)} is dense in (0, 1/2). But R maps (1/4/1/3) onto (1/2, 1)
in a continuous way. Hence {Rn(s)} is dense in (1/2, 1) as well. ♠

Let Γ be the (2, 4,∞) triangle group which appears in some of our results,
and let T be the (2, 4,∞) hyperbolic triangle generating Γ. One of the
edges of T is contained in the geodesic circle C fixed pointwise by the map
z → 1/(2z). We color C red and the other two edges blue. We identify the
set of (vertical) geodesics emanating from the cusp of T with (0, 1/2]. The
recipe is that each s ∈ (0, 1/2] corresponds to a geodesic connecting s to ∞.
The identification gives a natural measure on the set of such geodesics.

Consider the family of vertical blue lines connecting ∞ to half-integers.
One can describe R1 like this. Starting with s = s0 ∈ [0, 1/2), we first reflect
in the red circle C to produce the point s1. There is some nearest vertical
blue line which separates s1 from 0. We reflect in this blue line to produce
s2. We now repeat these reflections in blue lines until we arrive at a point in
(0, 1/2), and this point is R1(s).

Now we describe a construction that is very similar to what C. Series
does in [BKS, §5]. If γ is the vertical geodesic billiard path corresponding
to s, then γ bounces off the red side and points to s1 in the following sense.
Were we to follow the new trajectory in H2 all the way to the limiting point
on ∂H2, that point would be s1. Next, γ bounces off a blue side and points
to s2, etc. When our billiard path finally hits the red side again, it points to
R(s). Hence, we can recover the action of R1 on s by looking at the billiard
path determined by γ. The orbit {Rn

1 (s)} is dense provided that the lift of
the billiard path is dense in the unit tangent bundle of T . The following
result finishes our proof.

Lemma 11.7 (Triangle) Almost all geodesics emanating from the cusp of
T have billiard trajectories which are dense in the unit tangent bundle.
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11.7 Proof of the Triangle Lemma

We begin with a classic result about the Gauss map.

Lemma 11.8 Almost every Gauss-orbit is dense in (0, 1).

Proof: Combine Theorem 2.2, Theorem 3.18, and Exercise 5.20 in [BKS]. ♠

Let Σ0 be the hyperbolic surface obtained by doubling an ideal triangle.
If we choose to double the ideal triangle with vertices 0, 1,∞, then we can
identify Σ0 with the quotient H2/Γ, where Γ is an index 6 subgroup of the
modular group. The lifts of the two triangles gives rise to the famous modular
tiling of the hyperbolic plane by ideal triangles. The ideal triangles in this
tiling have rational vertices, and every rational point of R ∪ ∞ (including
∞) is the vertex of infinitely many ideal triangles in the tiling.

Lemma 11.9 Almost all geodesic rays emanating from a cusp of Σ0 lift to
dense subsets of the unit tangent bundle T1(Σ0).

Proof: Let β be a geodesic emanating from the cusp of Σ0 corresponding
to ∞. Let x denote the point where β limits on the real axis. We can
assume that x ∈ (0, 1). Suppose x has dense image under the Gauss map.
As is discussed in [BKS, §5.4] there is a natural correspondence between the
continued fraction expansion of x and the cutting sequence associated to β –
i.e. the pattern in which β intersects the edges of the modular tiling.

One sees every finite string of digits in the continued fraction expansion
of x. Suppose we choose some pair (γ, p) where γ is a geodesic with irrational
endpoints and p ∈ γ is some point. We can find points qn ∈ β so that the
length 2n segment of β centered at qn and the length 2n segment of γ cen-
tered at p have the same cutting sequences. Since γ has irrational endpoints,
this situation forces the sequence (β, qn) to converge to (α, p). Hence β lifts
to a dense curve in T 1(Σ0). ♠

Let Σ be a finite normal covering surface of Σ0. That is, Σ0 = Σ/G,
where G is some finite group acting on Σ. There is again a natural measure
on the set of geodesics emanating from a cusp of Σ.

Lemma 11.10 Almost all geodesic rays emanating from the cusp of Σ lift
to dense subsets of T1(Σ).
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Proof: Let α be a geodesic emanating from our cusp of Σ. Let α be the
projection of α to Σ0. As we saw in the previous section, almost every choice
of α leads to α having a dense lift in T1(Σ0). But then the G-orbit of the lift
of α is dense in T1(Σ). Let C be the closure of the lift of α in T1(Σ). We
know that G(C) = T1(Σ). At the same time, we know that α approximates,
with arbitrary precision, any closed loop in Σ0. From this we see that in fact
C is G-invariant. Hence C = T1(Σ), as desired. ♠

The (2, 4,∞) triangle T is finitely covered by a normal cover Σ of Σ0.
The covering projection maps geodesics in the surface to billiard paths on Σ.
Almost every billiard path on T emanating from the cusp lifts to a geodesic
on Σ which emanates from the corresponding cusp and is dense in T 1(Σ).
But then the billiard path is dense in T 1(T ).
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12 Properties of the Tiling

12.1 Tedious Special Cases

To make our result work out perfectly, we have to deal with some tedious
special cases which are not covered by the Main Theorem. Let s0 = s and
sn = Rn(s). We list these special cases here, and also explain how we inter-
pret the quantities which will appear in our results below.

• We define R(1/2n) = 0 for n = 1, 2, 3, ... Thus, when s is rational,
we have sn = 0 for some n. This is how all the sequences end in the
rational case.

• Recall that Os is the trivial tile for all s ∈ (0, 1). We define O0 as the
set of 4 isosceles triangles having vertices (0, 0) and (±1,±1). This case
is relevant because, in the rational case, all our sequences end in 0.

• We call s exceptional if s = 1/2n for n = 1, 2, 3, .... Since R(s) = 0 in
this case, the map φs is not defined. However, we now define

φs(x, y) =
( x

2n
,
y

2n

)
, s =

1

2n
. (151)

• When sn = 1/2 we must have sn−1 < 1/2. We interpret φsn−1
(Osn) as

the image of the central tile under the extension of φsn−1
guaranteed

by the Main Theorem.

• When s < 1/2 is exceptional, we know from the Insertion Lemma that
∆s has at least 2 additional tiles which are translates of Os. These
additional tiles are the central tiles which lie on either side of Os. In
this case, we interpret φsn−1

(Osn) as the image of one of these other
central tiles under φsn−1

.

• Recall that n > 0 is a good index when sn−1 < 1/2. In this case we
interpret φsn−1

(Osn) as the image of Osn under one of the two extensions
of φsn−1

, as in Statement 3 of the Main Theorem.
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12.2 Classification of Tile Shapes

As we mentioned in the introduction, Theorem 1.2 describes the tiles in ∆s

up to similarity. We stated Theorem 1.2 mainly for convenience. Here we
state a more precise result which immediately implies Theorem 1.2. Theorem
12.1 below describes the tile in ∆s up to translation.

At least up to translation, the sets

O0
s = Os, On

s = φs0 ◦ ... ◦ φsn−1
(Osn), n = 1, 2, 3, ... (152)

make sense for every index n which is either good or exceptional. We use the
convention that these sets are undefined the other indices.

Theorem 12.1 Let s ∈ (0, 1). A polygon arises in ∆s if and only if it is a
translate of On

s for some good or exceptional index n ≥ 0.

Proof of Theorem 1.2: Theorem 12.1 immediately implies Theorem 1.2 in
the irrational case. In the rational case, Theorem 12.1 implies all the state-
ments of Theorem 1.2 except possible the statement that ∆s must contain a
square tile. We will see in Lemma 12.10 below that ∆s must have a square
tile. ♠

To prove Theorem 12.1 we first consider the case when s is rational and
then we take limits.

Lemma 12.2 Theorem 12.1 is true for s exceptional.

Proof: Inspecting Figure 7.4 we see that ∆1/2 consists of one square and 4
right angled isosceles triangles, each one similar to one of the triangles in O0.
By the Insertion Lemma, we see that ∆1/2n consists of a row of equally sized
squares – the central tiles – and the 4 isosceles triangles. The maps φ1/2n

have been designed to get the scaling correct. ♠

Lemma 12.3 Theorem 12.1 for all rational s ∈ (0, 1).

Proof: Let t = R(s). Now we can assume that s is not exceptional. So,
the Main Theorem applies to the pair (s, t). By the Main Theorem, a tile σ
appears in ∆s if and only if the following holds.
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• σ = Os.

• σ is a translate of φs(τ) where τ 6= Ot is a tile of ∆t.

• s < 1/2 and σ = φs(Ot).

From this menu of options, we see that the truth of Theorem 12.1 for the
parameter t implies the truch of Theorem 12.1 for the parameter s. Our
result now follows by induction on the length of the sequence {Rn(s)}. ♠

This completes the proof of Theorem 12.1 in the rational case. Now
suppose s is irrational. The same argument in the rational case applies to
show that some translate of each tile in Equation 152 does in fact appear as
a tile of ∆s. To finish the proof, we need to establish the converse.

Suppose that P is a tile of ∆s. Let {ns} be a sequence of rationals
converging to s. By Lemma 8.7, there is a tile nP of ∆

ns such that nP → P
as n → ∞. From the rational case of Theorem 12.1, there is some kn such
that nP is a translate of

nTkn(Oun
), un = Rkn(ns).

Here nTj, for j = 0, 1, 2, ..., are the maps in Equation 152.
The scale factor of nTk tends to 0 as k → ∞, and nP has uniformly large

diameter. Therefore, the sequence {kn} is a bounded sequence. Passing to
a subsequence, we can assume that nk is independent of n. Hence nP is a
translation of

nTk(Oun
), un = Rk(ns). (153)

But

nTk → Tk, un → u = Rk(s), Oun
→ Ou.

Hence P is a translate of Tk(Ou). This completes the proof of Theorem 12.1
in the irrational case.

Remark: The reader might wonder what happened to the triangular tiles
which exist in the rational case but not in the irrational case. What is going
on is that these tiles shrink to points as we pass to an irrational limit. In
terms of the proof give above, we would need the sequenc {nk} to be un-
bounded in order to see these triangles in the limit, but this is not possible.
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12.3 Classification of Stable Orbits

We prove Theorem 1.4 through a series of lemmas.

Lemma 12.4 There are 4 triangular orbits for any rational s.

Proof: When s = 1/2n there are 4 triangular tiles, each one its own orbit.
The Main Theorem implies that the number of triangular orbits for s is the
same as the number of triangular orbits for t = R(s). So, by induction, there
are always 4 triangular orbits. ♠

Lemma 12.5 There is a single period N(s) such that all the unstable orbits
have period N(s). In particular, ∆s contains the same number of right angled
isosceles triangles in each of the 4 orientations.

Proof: We have already established that the unstable periodic tiles group
themselves into 4 orbits. Call these orbits O1, ..., O4. Rotation in the origin
permutes these orbits. Let’s say that rotation in the origin has the effect
O1 ↔ O3 and O2 ↔ O4. The map µs from Calculation 1 (Lemma 9.2) also
permutes the orbits, but the permutation is different on account of the fact
that the linear part of µs is orientation reversing. The orbits can be labeled
so that µs has the action O1 ↔ O2 and O3 ↔ O4. The existence of these
permutations shows that all these orbits have the same period. ♠

Let s ∈ (0, 1) be rational. Theorem 1.4 says that a periodic tile of ∆s is
stable if and only if it is not a triangle. We prove this result through a series
of lemmas.

Lemma 12.6 Suppose that p ∈ Xs is periodic for all s′ sufficiently close to
s. Then p is a stable periodic point.

Proof: Consider the integer arithmetic graph of p, as a function of s. These
graphs must be constant in a neighborhood of s, or else there would be pa-
rameters arbitrarily close to s relative to which p did not have a well-defined
orbit. Since the graphs are constant in a neighborhood of s, the point p is
stable by definition. ♠
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Lemma 12.7 Let s and t = R(s) be as in the Main Theorem. Given a
periodic tile Pt ∈ ∆t, suppose that φs(Pt) is contained in the same orbit as
Ps. Then Pt is stable iff Ps is stable.

Proof: By the Insertion Lemma, we can take s ∈ [1/4, 1). Note that R is not
defined on s = 1/4 and s = 1/2. So, either s ∈ (1/4, 1/2) or s ∈ (1/2, 1). In
either situation, the same case of the Main Theorem holds for all parameters
sufficiently near s, and the map R is continuous in a neighborhood of s.

Suppose Pt is stable. Any p ∈ Pt is stable. Let qs′ = φs′(p). By the Main
Theorem, qs′ is periodic for all s′ sufficiently close to s. Hence qs is stable.
Hence, the periodic tile φs(Pt) containing qs is stable. But then Ps is stable.

The converse has a similar proof. ♠

Lemma 12.8 A tile of ∆s is unstable if and only if it is a triangle.

Proof: We check the truth of the result for s = 1/2. The case s = 1/(2n)
follows from the Insertion Lemma. In general, the result follows from Lemma
12.7 and induction on the number n such that Rn(s) = 0. The one case we
need to worry about is when s < 1/2 and t = R(s). In this case, the only
tiles of ∆s not directly covered by Lemma 12.7 are the tiles of order 2 coming
from the image of the trivial tile under the extensions of φs. But the Main
Theorem applies here as well, for such tiles are the images of the trivial tile
under the extensions of the two halves of φs. ♠

These lemmas together complete the proof of Theorem 1.4.

12.4 Existence of Square Tiles

In this section we prove Statement 1 of Theorem 1.3.
We mention first of all that when s =

√
2/2, there are no square tiles

at all. See Figure 1.7. In this case Rn(s) =
√
2/2 when n is even and

Rn(s) = 1 − s when n is odd. In this case, n is a good index if and only if
n is even. Hence, the tiles On

s are defined when n is even, and they are all
regular octagons. Thus ∆s consists entirely of regular octagons. This is one
of the main points of the paper [AKT], and the proof there also goes by way
of renormalization.
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Lemma 12.9 If s 6=
√
2/2 is irrational, then ∆s has a square tile.

Proof: Suppose first that the even expansion of s is not entirely odd. Then,
by Lemma 11.2, there is some k such that Rk(s) < 1/2 and Rk+1(s) < 1/2.
But then, in the notation of Theorem 12.1, there is some n such that n is
good and Osn is a square. Theorem 12.1 finishes the proof in this case.

Suppose that the even expansion of s is entirely odd. We set ∆n = ∆sn

for ease of notation. Let {en} be the even expansion of s. If en < 5 for all
n, then the even expansion must be either (3, 1, 3, 1, ...) or (3, 1, 3, 1, ...). In
the first case, s < 1/2 and the trivial tile is a square. In the second case
s =

√
2/2.

The only case left is when there is some n such that en ∈ {5, 7, 9, ...}.
But then, by the Insertion Lemma, some central but nontrivial tile of ∆n is
a square. But then some noncentral tile of ∆n−1 is a square. Repeated ap-
plications of the Main Theorem now show that some tile of ∆0 is a square. ♠

Lemma 12.10 If s 6=
√
2/2 is rational, then ∆s has a square tile.

Proof: The argument is the same as the irrational case unless the even ex-
pansion of s has the form (1, 3, 1, 3, ..., k), where just the last term k is even.
If k = 2 then sn = 1/2 and sn−1 < 1/2. Here ∆sn−1

contains a noncentral
square tile, the image of the central square O1/2 under the extension of the
map φsn−1

from the Main Theorem. If k = 4, 6, 8, ... then n is an exceptional
index and a similar argument shows that ∆sn−1

contains a noncentral square
tile. But now the same inductive argument as in the irrational case shows
that ∆s contains a noncentral square tile. ♠

Lemma 12.11 If ∆s contains finitely many squares, then s ∈ Q[
√
2].

Proof: Suppose ∆s has finitely many squares. Then there is some u = Rn(t)
such that ∆u has no squares. But then Rn(t) =

√
2/2. This implies that

t ∈ Q[
√
2]. ♠

The lemmas in this section combine to prove Statement 1 of Theorem 1.3.
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Remark: Lemma 12.11 is somewhat imprecise. A more precise statement
would be that ∆s contains finitely many squares if and only if the even ex-
pansion of s eventually agrees with that of

√
2/2. That means, it terminates

as 1, 3, 1, 3, ....

12.5 The Oddly Even Case

Statement 2 of Theorem 1.3 follows from what we have already said. Suppose
s is irrational and the continued fraction of s has the form (0, s1, s2, ...) with
sk even for all odd k. By the characterization given in §11.3, we know that
Rn(s) < 1/2 for all n. But then every tile of ∆s is a square by Theorem 12.1.

12.6 Density of Shapes

Statement 3 of Theorem 1.3 also follows from what we have already said.
By Theorem 12.1, the set ∆s contains a dense set of shapes of semi-regular
octagons, and an infinite number of squares, provided that the orbit Rn(s)
is dense in (0, 1). But, since almost every R-orbit is dense, this holds
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Part III

Metric Properties
Here is an overview of this part of the monograph.

• In §13 we elaborate on how the Main Theorem relates the tiling ∆s to
the tiling ∆t for t = R(s). This rather technical chapter is important
for understanding the global structure of the tiling. We call our main
result the Filling Lemma.

• In §14 we give a second elaboration of the Main Theorem, this time
establishing a kind of recursive decomposition of the tiling ∆s into the
similar copies of the pieces from §8. We call this result the Covering
Lemma.

• In §15 we prove several auxilliary geometric facts about ∆s.

• In §16 we put together the work from §13-15 and prove Theorems 1.5
and 1.10.

• In §17 we prove Theorems 1.9 and a related result, Corollary 17.9.

• In §18 we give a recursive formula for the the period N(p/q) of the
unstable orbits of fp/q.

• In §19 we deduce Theorem 1.6 from Corollary 17.9 and the formula in
§18.
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13 The Filling Lemma

13.1 The Layering Constant

We were able to get a lot of information about the tiling ∆s just from the
Main Theorem and symmetry. However, to prove more subtle results, such
as the fact that ∆s has full measure, we need more information about the
Main Theorem. The basic limitation of the Main Theorem is that the subset

φs(∆t ∩ Yt) = Zs ∩∆s (154)

could be a very small subset of ∆s. Looking at pictures such as Figure 9.3,
we see that many copies of the set in Equation 154 can be layered on top of
each other. In this chapter, we elaborate on this structure.

The constant we introduce in this section essentially determines how many
copies of φs(∆t ∩ Yt) we see in ∆s. When s < 1/2 we let t = R(s) and
u = R(t).

• If s < 1/2 and t > 1/2 let ℧ = 1.

• If s < 1/2 and t < 1/2 and u < 1/2, let ℧ = floor(1/(2t)).

• If s < 1/2 and t < 1/2 and u > 1/2, let ℧ = 1 + floor(1/(2t)).’

• If s > 1/2 let

℧ = floor
( 1

2− 2s

)

We call ℧ the layering constant.
Here we explain the value of ℧ in terms of the even expansion. We write

℧(a, b) = k if ℧(s) = k whenever the even expansion of s starts out (a, b, ...).
We have

• ℧(a, 1) = 1 if a > 1 is odd.

• ℧(a, b) = b/2 if a and b are even.

• ℧(a, b) = (b+ 1)/2 when a is even and b > 1 is odd.

• ℧(1, b) = b/2 when b is even.

• ℧(1, b) = (b− 1)/2 when b is odd.
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13.2 The Filling Lemma, Part 1

We first describe our result for the case s < 1/2. Our discussion refers
(initially) to Figure 13.1 below, which shows the relevant sets for two different
parameters.

Figure 13.1: The relevant sets for parameters 13/44 and 11/26.

Let Us be the image, under of φs, of the trivial tile in ∆t. These are is
the dark red tiles in Figure 13.1. Define

Ψ0
s = Z0

s ∪ Us. (155)

Ψ0
s is the (light and dark) red set on each half of Figure 13.1. Let τs denote

the subset of Z0
s lying beneath the line extending the top right edge of Us.

Here τs is the colored region in each half of Figure 13.1.
Let Ts denote the transformation which translates by a vector pointing in

the positive x direction and having length equal to the length of the bottom
side of Ψ0

s. We have a partition

τs =

℧(s)⋃

j=0

Ψj
s, where Ψj

s = T j
s (Ψ

0
s) ∩ τs (156)

Here ℧(s) is the layering constant. For larger j, the sets in Equation 156 are
empty.

The whole tiling is determined by the tiling inside τs and symmetry. Let
Ps, and its symmetry RD, be as in §9. In terms of sets, we have

Xs = X0
s ∪ central tiles ∪ ι(X0

s ), X0
s = τs ∪RD(τs ∩ Ps). (157)

The second equation is a consequence of the fact that the top right boundary
of τs is parallel to the line of symmetry Ds of RD, and above it.
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The following result explains the structure of ∆s inside τs. What the
result says is that the translaton T−j

s respects the tiling of ∆s on the relevant
domain.

Lemma 13.1 (Filling) T−j
s (∆s ∩Ψj

s) = ∆s ∩ T−j(Ψj
s) for all j = 1, ...,℧.

Proof: We remind the reader that our system is given by fs : Xs → Xs.
By the Insertion Lemma, we can take s ∈ (1/4, 1/2). The map fs is

defined in terms of a partition of Xs. On each piece of this partition, fs is a
translation. Let Ωs be the piece of the partition which shares the lower left
vertex of X0

s . A routine calculation shows that the restriction of fs to Ωs is
Ts.

When s ∈ (1/3, 1/2), the set Ωs is the quadrilateral with the following
properties.

• The left edge of Ωs is contained in the left side of Xs.

• The bottom edge of Ωs is contained in the bottom edge of Xs.

• The top edge of Ωs lies in the same line as the top edge of Z0
s .

• The right edge es of Ωs is vertical and has the property that Ts(e) lies
in the left edge of the leftmost central tile of ∆s.

When s ∈ (1/4, 1/3), the set Ωs is a triangle whose left, right, and bottom
sides are as above. Our argument works the same in either case.

Figures 13.2, 13.3, 13.4 below show the picture for s = 19/60, 11/30, 9/20.
The diagonal line Ls bisects the yellow square and the green diamond in each
picture.

A routine calculation shows that

T−1
s (τs −Ψ0

s) ⊂ Ωs. (158)

If we start with any point p ∈ τs − Ψ0
s = Z0

s ∪ Us, we see from the shape of
Ω0

s that the iterates f−j
s (p) are defined and lie in Ω0

s, for each j = 0, 1, 2, ...
until we reach some k ≤ ℧ such that f−k

s (p) ⊂ Z0
s . Our result follows from

this observation and from the fact that ∆s is fs-invariant. ♠
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Figure 13.2: Z0
s (red, orange), Ωs (red) and fs(Ωs) green

Figure 13.3: Z0
s (red, orange) and Ωs (red) and fs(Ωs) (green).

Figure 13.4: Z0
s (red), Ωs (red, orange), and fs(Ωs) (green, orange, blue).

128



13.3 The Filling Lemma, Part 2

Now we explain the picture for s ∈ (1/2, 1).
This time, the right edge of Z0

s lies on the same line as the left edge of
the central tile of ∆s. Let δs denote this line. Let Ts denote the translation
by the vector which is positivel proportional to (1, 1) and whose length is the
same as the length of the left side of Z0

s . Let τs be the region of X0
s lying to

the left of δs. In Figure 13.5, the region τs is colored.

Figure 13.5: Ψj
s for j = 1, 2, 3 (red, blue, yellow) for s = 14/17.

We have a partition

τs =
℧⋃

j=0

(s)Ψj
s, where Ψj

s = T j
s (Zs) ∩ τs. (159)

The whole tiling is determined by the tiling inside τs and symmetry. Let As,
and its symmetry RV , be as in §9. In terms of sets, we have

Xs = X0
s ∪ central tiles ∪ ι(X0

s ), X0
s ⊂ τs ∪RV (τs ∩ As). (160)

With these definitions, the Filling Lemma holds verbatim, and the proof
is essentially the same. This time Ωs is a right isosceles triangle, and the left
edge of fs(Ωs) lies in δs, and fs translates diagonally along the vector that
generates the left side of Zs. In Figure 13.5, Ωs is the union of the light red
and light blue tiles.
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14 The Covering Lemma

14.1 The Main Result

In this chapter we establish a variant of the Filling Lemma. The variant
gives a more precise recursive description of the set ∆s.

In §9 we defined 4 bilaterally symmetric subsets As, Bs, Ps, Qs ⊂ X0
s . We

call these sets the symmetric pieces . An ǫ-patch is a triple (K,ψ, u) where

• u ∈ (0, 1).

• K is one of the 4 symmetric pieces Au, Bu, Pu, Qu.

• ψ : K → Xs is a similarity which contracts by some factor λ ≤ ǫ.

• ψ(∆u ∩K) = ∆s ∩ ψ(K).

The last condition means that ψ gives a bijection between tiles of ∆u∩K and
tiles of ∆s ∩Ψ(K). When we have an ǫ-patch (K,ψ, u), we are recognizing a
small portion of ∆s as being a similar copy of a large portion of ∆u. When
the choice of ǫ is not relevant to the discussion, we will just say patch.

Lemma 14.1 (Covering) For any ǫ > 0, each symmetric piece is parti-
tioned into a finite union of tiles and a finite union of ǫ-patches.

Lemma 14.1 comes from iterating Lemma 14.2.

Lemma 14.2 Suppose s ∈ (0, 1) is irrational, and let t = R(s). Each sym-
metric piece is partitioned into a finite union of tiles and a finite union of
patches of the form (Kt, φs, t).

Let ℧ = ℧(s) be the layering constant for s which appears in the Filling
Lemma. Let RD, RV , etc. be the symmetries discussed in §9. We use the
notation X ∼ Y to denote that X and Y agree up to the insertion or deletion
of a finite union of tiles. We define

ν(a, b) =
b⋃

a

Ψk
t . (161)

As long as k < ℧(t), this set is a union of patches of the form discussed in
Lemma 14.2. For instance Ψ0

t ∼ φs(At) ∪ φs(Bt).
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Lemma 14.3 Lemma 14.2 is true when s ∈ (3/4, 1).

Proof: In this case ℧(s) ≥ 2. Figure 14.1 shows a picture.

Figure 14.1: ∆0
s for s = 4/5 and ∆0

t for t = R(s) = 1/5. Here ℧(s) = 2.

1. As is green.
As = RDφs(Bt).

Here φs(Bt) is dark red.

2. Bs is red/pink/yellow/blue.

Bs ∼ Qs ∪RV (Qs) ∪RDφs(At).

Here Qs is blue and φs(At) is light red. This equation reduces the case
of Bs to the case of Qs.

3. Ps is red/pink/yellow/green.

Ps = ν(0,℧− 1) ∪RDφs(Qt).

Here RDφs(Qt) is light green.

4. Qs is blue.

Qs ∼ RV (ν) ∪RERDφs(Qt), ν = ν(0,℧− 2).

This completes the proof. ♠
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Lemma 14.4 Lemma 14.2 is true when s ∈ (1/2, 3/4).

Proof: In this case ℧(s) = 1.

Figure 14.2: ∆0
s for s = 9/14 and ∆0

t for R(s) = 5/14. Here ℧(s) = 1.

Here are the decompositions in this case.

1. As is yellow/green. As = RDφs(Bt). (As in the previous case.) φs(Bt)
is (dark red)/pink.

2. Bs is red/pink/blue.

Bs = Rdφs(At) ∪ φs(Qt) ∪RV φs(Qt).

The first set on the right is (light red)/pink, the second set is dark red,
and the third set is blue.

3. Ps is red/pink/green/yellow.

Ps = φs(Pt) ∪ φs(Qt) ∪RDφs(Qt).

The first set on the right is pink/red/green, and the second set is dark
red, and the third set is yellow.

4. Qs is blue. Qs = RV φs(Qt).

This completes the proof. ♠
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Lemma 14.5 Lemma 14.2 is true when s ∈ (1/3, 1/2).

Proof: In this case R(s) < 1/2. Let ℧
′ = ℧ − 1 when R(t) < 1/2 and

℧
′ = ℧− 2 when R(t) > 1/2.

Figure 14.3: ∆0
s for s = 7/17 and ∆0

t for t = R(s) = 3/14. Here ℧(s) = 2.

1. As is blue/yellow/red.

As ∼ RHRD(Es) ∪RD(Es) ∪RD(ν
′) ∪RDRV φs(Qt).

Es = φs(At) ν ′ = ν(1,℧′).

As is blue/red/yellow. The first set on the right is yellow. The second
set is red. The union of the third and fourth sets is dark blue. ν is
medium green.

2. Bs is green.

Bs = ν ∪RV φs(Qt), ν = ν(0,℧′).

The set RV φs(Qt) is light green, just beneath the yellow tiles.

3. Ps is everything colored except the dark green corner.Ps = As∪RD(As).

4. Qs is the dark green corner. Qs = φs(Bt).

This completes the proof. ♠
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Lemma 14.6 Lemma 14.2 is true when s ∈ (1/4, 1/3).

Proof: In this case R(s) > 1/2.

Figure 14.5:
∆0

s for s = 5/16 and ∆0
t for t = R(s) = 3/5. Here ℧(s) = 1.

1. As is grey/red/blue/(dark green).

As ∼ RDφs(At) ∪RHRDφs(At) ∪ φs(Qt)

The first set on the right is blue. The second one is red. The third one
is dark green.

2. Bs is yellow/(light green). Bs = φs(Pt).

3. Ps is grey/red/yellow/blue.

Ps ∼ φs(At) ∪RDφs(At) ∪RHRDφs(At).

The first set on the right is yellow. The second one is blue. The third
one is red.

4. Qs is green. Qs = φs(Bt).

This completes the proof. ♠

Remark: The decompositions in the lemmas above are meant for all pa-
rameters in the given range, even though we are illustrating the proofs with
single representative pictures. Ideally, we would show all possible pictures.
In the next section, we will show some additional pictures in each range.
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14.2 Some Additional Pictures

Figure 14.6: ∆0
s for s = 7/9, 6/7 ∈ (3/4, 1).

Figure 14.7: ∆0
s for s = 4/7, 5/7 ∈ (1/2, 3/4).

Figure 14.8: ∆0
s for s = 5/13, 3/7 ∈ (1/3, 1/2).

Figure 14.9: ∆0
s for s = 2/7, 3/10 ∈ (1/4, 1/3).
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15 Further Geometric Results

15.1 The Area Lemma

For each symmetric piece K ∈ {A,B, P,Q} and each parameter s, define

λ(Ks) =
area(Ks ∩∆s)

area(Ks)
. (162)

Lemma 15.1 (Area) The function λ(K, s) is uniformly bounded away from
0, for all K ∈ {As, Bs, Ps, Qs} and s ∈ (0, 1/2).

Proof: Clearly, it suffices to take s to be irrational. Let t = R(s). Referring
to the Covering Lemma, we call Ks active if Ks divides into more than one
patch of the form Lt. Otherwise, we call Ks passive.

Consider a passive patch, say As when s ∈ (1/2, 1). We have the equality
As = RDφs(Bt). Since the similarity RD ◦ φ respects the tilings, we have
λ(A, s) = λ(B, t). The same goes for the other passive patches. Inspecting
the proof of the Covering Lemma, we see that a passive patch eventually
subdivides into an active patch. To explain what we mean, we continue with
our example. As subdivides into Bt, where t = 1 − s. By the Insertion
Lemma, we can find a new parameter t′ ∈ (1/4, 1/2) such that Bt′ and Bt

are similar. This leads us to consider Bs for s ∈ (1/4, 1/2). The piece Bs is
passive when s ∈ (1/4, 1/3) and active when s ∈ (1/3, 1/2). In the former
case Bs = φs(Pt), and Pt is active. The several other cases have similar
treatments. So, it suffices to prove our result for the active patches.

If Ks is an active patch, then we have

Ks = Θ ∪
O(℧)⋃

j=1

K ′
t. (163)

Here Θ is a finite union of tiles and the union is taken over the patches given
by the relevant case of the Covering Lemma. The notation O(℧) indicates
that there are on the order of ℧ patches in the union. Here ℧ is the layering
constant. As long as ℧ is uniformly bounded, the diameter of the smallest
tile in Θ is bounded away from 0. So, we just have to worry about the case
when ℧ is large. In all cases, the diameter of each patch K ′

t is O(℧
−1), and so

each such patch takes up area O(℧−2). But then λ(Ks) → 1 as ℧(s) → ∞.
Figures 15.2 and 15.3. illustrate what is going on. ♠
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15.2 Tiles in Symmetric Pieces

The goal of this section is to prove the following result.

Lemma 15.2 Let s ∈ (0, 1) be irrational. For each symmetric piece Ks and
each edge es of Ks, there is a periodic tile of ∆s having an edge in e.

We prove Lemma 15.2 through a series of smaller results.

Lemma 15.3 Let t = R(s). If Lemma 15.2 holds true for t then Lemma
15.2 also holds true for s.

Proof: By the Covering Lemma, every edge of Ks contains an edge of a
similar copy of some symmetric piece K ′

t. By this we mean that there is a
patch (K ′, ψ, t) so that ψ(K ′) ⊂ K and one edge of ψ(K ′) is contained in
the relevant edge of K. Thus, Ks inherits the desired tile from K ′

t. ♠

In view of the previous result, it suffices to prove Lemma 15.2 for the case
s < 1/2.

Lemma 15.4 Lemma 15.2 is true for Bs and Qs.

Proof: Suppose Ks ∈ {Bs, Qs}. Applying the Main Theorem repeatedly,
we see that there are infinitely many tiles which have edges in the bottom
edge of Xs and infinitely many tiles which have edges in the left edge of Xs.
Eventually these tiles lie in both Bs and Qs. This takes care of two out of
three edges of Bs and Qs. The result for the third edge, in each case, follows
from bilateral symmetry. ♠

Lemma 15.5 Lemma 15.2 is true when s < 1/2 and R(s) > 1/2.

Proof: In this case, by the Main Theorem, the left branch of φs extends
to the central tile Ot, and φs(Ot) has edges in all 5 sides of As and Ps. See
Figure 15.1. We have already taken care of Bs and Qs above. ♠
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Figure 15.1: The big octagon for s = 7/23.

Lemma 15.6 Lemma 15.2 is true provided Rn(s) > 1/2 for some n.

Proof: Combine Lemma 15.3 and the previous result. ♠

Lemma 15.7 Lemma 15.2 is true when R(s), R2(s) < 1/2.

Proof: Let t = R(s) and u = R(t). Let τs denote the central tile of ∆s, and
similarly for t and t. The tiles τt and τu are both squares, and various of the
squares

φs(τt), φs ◦ φt(τu), RD ◦ φs ◦ φt(τu), RV ◦ φs ◦ φt(τu) (164)

work for all the edges of As and Ps. Here RD and RV are reflections in the
diagonal and vertical lines of symmetry. ♠

Figure 15.2: The 4 square tiles for s = 7/20.

We have exhausted the cases. This completes the proof of Lemma 15.2.
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15.3 Pyramids

Say that a pyramid of size k is a configuration of squares having the structure
indicated in Figure 15.3 for k = 1, 2, 3.

Figure 15.3: Pyramids for k = 1, 2, 3.

We will suppose that s < 1/2 and t = R(s) < 1/2. In this case ∆0
s has

a square tile Qs whose left vertex is the left vertex of the horizontal line H
of symmetry. We define Ψs to be the union of all the tiles in ∆0

s which are
translation equivalent to Qs. These are the largest noncentral tiles in ∆s.
Figure 15.4 shows an example.

Figure 15.4: Qs (dark) and Ψs (shaded) for s = 27/61.

Lemma 15.8 Let ℧ = ℧(s) be the layering constant for s. Then Ψs is a
pyramid of size ℧− 1.

Proof: The bottom ℧ − 1 squares in the base of the desired pyramid are
guaranteed by the Main Theorem and the Insertion Lemma (applied to ∆t).
The bottom half of the pyramid is then guaranteed by the Filling Lemma.
The top half is then guaranteed by the bilateral symmetry corresponding to
the diagonal line Ds. ♠
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16 Properties of the Limit Set

16.1 Elementary Topological Properties

Lemma 16.1 ∆s is dense in Xs for all s.

Proof: Lemma 3.2 takes care of the rational case. Suppose that s is irra-
tional. Let p ∈ Xs be any point. Given any ǫ > 0 the Covering Lemma
implies that we can find an ǫ-patch (K,ψ, u) such that p ∈ ψ(K). But ψ
maps ∆u ∩K to ∆s ∩Ψ(K). Now, ∆u ∩K certainly contains a periodic tile,
by Lemma 15.2. But then ∆s ∩ ψ(K) also contains a periodic tile, and this
tile lies within ǫ of p. ♠

It now follows from Lemma 2.6 that Λs consists of those points p such
that every neighborhood of p contains infinitely many tiles of ∆s.

Lemma 16.2 When s is irrational, Λs has no isolated point.

Proof: Suppose, for the sake of contradiction, that then there is some p ∈ Λs

and some open disk U containing p such that U∩Λs = p. The open set U must
contain infinitely many tiles of ∆s, because Λs∩U is nonempty. Therefore, if
we write ∆s as in the Covering Lemma, the image of some patch must have
p as an accumulation point. Choosing ǫ small enough, we can guarantee that
there exists an ǫ-patch (K,ψ, ǫ) such that ψ(K) ⊂ U .

IfK is a triangle, then two of the vertices v1 and v2 ofK have acute angles.
(The angle is π/4.) These vertices must be accumulation points of infinitely
many tiles, because all the tiles are squares and semi-regular octagons. But
then ψ(v1) and ψ(v2) are accumulation points of infinitely many squares in
∆s. Hence Λs ∩ U contains at least 2 points. This is a contradiction.

If K is a pentagon, then K has 2 vertices v1 and v2 with obtuse angles.
(The angle is 3π/4.) If v1 is not an accumulation point of infinitely many tiles
of ∆u ∩K, then v1 is the vertex of some octagon of ∆u ∩K, But then there
are two new acute vertices w1 and w2 which must be accumulation points
of infintely many tiles of ∆u ∩ K. This gives us the same contradiction as
above. The only way out of the contradiction is for both v1 and v2 to be
accumulation points of infinitely many tiles of ∆u ∩ K, but this is again a
contradiction. There is no way out. ♠
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16.2 Zero Area

Now we turn to the proof that ∆s has full measure, or equivalently that Λs

has zero area. This is Statement 1 of Theorem 1.5. We first recall a basic
result from measure theory.

Say that a K-disk is a compact set D which is contained in a disk of
radius Kr and contains a disk of radius r, for some r. For example, the
symmetric pieces As, Bs, Ps, Qs are, say, 10-disks for every s. The constant
10 is a convenient but fairly arbitrary choice.

Here is a special case of the well-known Lebesgue Differentiation Theorem.
A proof can be found, e.g., in G. B. Folland’s graduate textbook on real
analysis.

Lemma 16.3 Fix K. Suppose that S ⊂ R2 is a bounded measurable set of
positive Lebesgue measure. Then almost every point p ∈ S has the following
property. If {Dn} is a sequence of K-disks containing p, having diameter
shrinking to 0, then µ(Dn ∩ S)/µ(S) → 1, as n→ ∞.

The points p ∈ S satisfying the conclusion of Lemma 16.3 are called
Lebesgue points .

Now we turn to Statement 1 of Theorem 1.5. We will argue by contra-
diction. Suppose that Λs has positive measure. Let p ∈ Λs be a Lebesgue
point. Then, by the Covering Lemma, we can find a 1/n-patch (Kn, ψn, un)
so that p ∈ ψn(Kn). Let λ be the function defined in connection with the
Area Lemma in §15.1. We have

lim
n→∞

λ(Kn, un) = lim
n→∞

λ(ψn(Kn)) = 0. (165)

The first equality, which actually holds for each n, comes from the definition
of a patch. The second equality comes our characterization of Λ, and also
from the fact that p is a Lebesgue point. But Equation 165 contradicts the
Area Lemma for large n. This contradiction shows that Λs has area 0.

Corollary 16.4 Almost every point of the system (Xs, fs) is periodic.

This corollary is yet another way to see that ∆s is dense in Xs.
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16.3 Projections of the Limit Set

Now we prove Statement 2 of Theorem 1.5.

Lemma 16.5 Let π be projection onto some line parallel to an 8th root of
unity. Then π(Λs) contains a line segment when s is irrational.

Proof: We first assume that π is projection onto a horizontal line. Since Λ
is a closed set, it suffices to prove that π(Λ) is dense in a segment.

We ignore the countably many vertical lines containing vertices of tiles in
∆. Let L be an otherwise arbitrary vertical line which contains both a point
on the bottom edge b of X and a point on the left edge ℓ of X. We will prove
that L contains a point of Λ; our projection result follows immediately.

Suppose L does not intersect Λ. Then L only intersects finitely many
tiles, τ1, ..., τn. We order these tiles according to when L enters them as we
move upwards along L. Note that L must leave τi and enter τi+1 at the same
point. Otherwise, the segment of L lying between these two tiles would be
the accumulation point of infinitely many tiles. Here we are using the density
of ∆. For the same reason, the bottom edge of τ1 must lie in b and the top
edge of τn must lie in ℓ.

Since L leaves τi and enters τi+1 at the same point, τi and τi+1 must share
an edge, and this shared edge contains a point of L. In particular, if L leaves
τi through a horizontal edge, then L enters τi+1 through a horizontal edge.
Since L is a vertical line, and the tiles of ∆ are semi-regular octagons with
sides parallel to the 8th roots of unity, L enters τi through a horizontal edge
if and only if L leaves τi through a horizontal edge.

We know that L enters τ1 through a horizontal edge. Using the properties
above, we see that L leaves τn through a horizontal edge. But the top edge of
τn, which is contained in ℓ, is not horizontal. This is a contradiction. Hence
L does intersect Λ.

Suppose we project onto a line parallel to a different 8th root of unity, ω.
Unless ω = ±i, we can find lines perpendicular to ω which intersect both a
horizontal and a diagonal edge of X. Once we have such lines, the argument
we gave for ω = ±1 works in this new context.

We just have to worry about the case ω = ±i. In this case, we observe
that some edge of the trivial tile in ∆ is vertical. Thus, there are horizontal
lines connecting ℓ to this vertical edge. Now we run the same argument again,
interchanging the roles played by the horizontal and vertical directions. ♠
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Corollary 16.6 When s is irrational, dim(Λs) ≥ 1.

Proof: It follows immediately from the definition of Hausdorff dimension
that dim(S1) ≥ dim(S2) provided that there is a distance non-increasing
map from S1 onto S2. In particular, dim(S1) ≥ 1 if S1 projects onto a line
segment S2. Therefore dim(Λs) ≥ 1 when s is irrational. ♠

Here is a stronger result. Let Λ∗
s denote the set of points of Λs contained

in the interior of Xs.

Corollary 16.7 When s is irrational, the projection of Λ∗
s onto a vertical

line contains a line segment. In particular. dim(Λ∗
s) ≥ 1.

Proof: It suffices to consider the case s < 1/2. Suppose this result is false.
Let π be projection onto a vertical line. Note that Λ∗

s is a closed subset of
the interior of Xs. For this reason, π(Λ

∗
s) either contains a segment or else is

nowhere dense. So, by assumption π(Λ∗
s) is nowhere dense.

Let L denote the left edge of Xs. Let L′ denote the right edge of the
central tile of ∆s. Note that both L and L′ have end points in the top and
bottom of Xs. Hence π(L) = π(L′). Our argument in Lemma 16.5 shows
that

π(Λ0
s) = Π(Xs) = π(L).

Since π(Λ∗
s) is nowhere dense, we must have

π(Λ0
s ∩ L) = π(L).

Since Λ0
s ∩ L is closed, we must have L ⊂ Λ0

s. But this is absurd. By the
Main Theorem, at least one tile of ∆0

s has an edge contained in L. ♠

Remarks:
(i) Our argument for Lemma 16.5 breaks down in the rational case, because
of the existence of triangular tiles.
(ii) We will see in Part 4 of the monograph that Λs is a Cantor set for
almost all s ∈ (0, 1). Nonetheless, these Cantor sets always project onto line
segments in certain directions.

143



16.4 Finite Unions of Lines

Now we prove that Λs cannot be contained in a finite union of lines, when s
is irrational. This is Statement 3 of Theorem 1.5.

Suppose that Λs is contained in a finite union of lines. By Corollary 16.7,
one of these lines L must be such that L∩Λs contains a line segment S that
is disjoint from all the other lines in our finite list. By the Covering Lemma,
we can find a finite union of patches which cover S and which have diameter
much smaller than the distance from S to any other line. This implies that
there exists another irrational parameter t, and a symmetric piece Kt, such
that Kt∩Λt is contained in a single line segment Σ. Inspecting Lemmas 14.5
and 14.6, we see that, without loss of generality, we can assume that Kt 6= Pt

if t < 1/2. The point is that Pt contains patches of other types in these cases.

Σ
Σ

Figure 16.1: Good lines which avoid Σ.

Say that a line is good if it travels in the direction of some 8th root of
unity. Suppose first that Kt is an isosceles triangle. The same argument
as in Lemma 16.5 implies every good line connecting a short edge of Kt

to the hypotenuse much intersect Σ. But this is only possible is Σ is the
hypotenuse and moreover every point of Σ has a neighborhood in Kt which
contains infinitely many tiles. This contradicts Lemma 15.2.

The other possibility is that Kt is a pentagon. Since Kt 6= Pt, we must
have Kt = At. In this case, Kt is similar to the kind of pentagon shown on
the right hand side of Figure 16.1. The only way out of the contradiction
above is that Σ is the line segment shown and moreover Σ ⊂ Λ. However,
we can apply the reflection RD in the line of diagonal symmetry for Pt. The
line Σ crosses Dt and hence RD(Σ∩Pt) is contained in Λt and intersects the
interior of At. This is a contradiction.
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16.5 Existence of Aperiodic Points

Here we prove that Λ′
s is dense in Λs when s is irrational. This is Statement

4 of Theorem 1.5.

Lemma 16.8 Let s be any irrational parameter and Let p ∈ Λs be some
point and let D be any disk centered at p. Then D ∩ Λs is not contained in
a finite union of lines.

Proof: If this lemma is false, then we can further shrink D so that Λs∩D is
contained in a single line. (This uses the fact that Λs has no isolated points,
so we can “focus our attention” away from the intersections of the lines.) But
then we can find a small patch (Ku, ψ, u) such that K ′ = ψ(Ku) is contained
in D. But then K ′ ∩ Λs is contained in a line segment. This gives us the
same contradiction as in the previous section. ♠

Lemma 16.9 Let s be any irrational parameter. Given any p ∈ Λs and any
N > 0 and any ǫ > 0 there is a point q ∈ Λs such that ‖p − q‖ < ǫ and the
first N iterates (forward and backward) of fs are defined on q.

Proof: Let D denote the disk of radius ǫ about p. The set of points of D,
for which fN

s is not defined, is contained in a finite union of lines. Now we
apply the previous result. ♠

Now we prove that Λ′
s is dense in Λ. Choose p ∈ Λs and let ǫ > 0 be

given. We set ǫ1 = ǫ/4 and let q1 ∈ Λs be some point such that ‖p− q1‖ < ǫ1
and f±1

s is defined on q1. Assume that qk ∈ Λs has been chosen in such a
way that f±k

s is defined on pk. There is some ǫ′k > 0 so that f±k
s is defined

on all points within ǫ′k of qk. Let Uk denote the ǫ′k-neighborhood of qk.
We choose

ǫk+1 = min(ǫ1, ..., ǫk, ǫ
′
k)/4. (166)

By Lemma 16.9 we can choose qk+1 ∈ Λs so that ‖qk+1 − qk‖ < ǫk+1 and

f
±(k+1)
s is defined on qk+1. By construction {qk} is a Cauchy sequence. The
limit q = lim qk is within ǫ/2 of p and lies in Uk for all k. Hence fk

s is defined
on q for all k ∈ Z. Note that q ∈ Λs because Λs is closed. Hence q ∈ Λ′

s.
Since ǫ is arbitrary, we see that Λ′

s is dense in Λs.
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16.6 Hyperbolic Symmetry

In this section, we prove Theorem 1.10, which says that (Xs, fs) and (Xt, ft)
are locally equivalent when s and t are in the same orbit of the (2, 4,∞)
triangle group Γ.

Let i =
√
−1, as usual. Let Γ′ denote the group of maps of C ∪ ∞

generated by the following maps.

z → z, z → −z, z → z − 1, z → 1/(2z). (167)

Let Γ ⊂ Γ′ be the index 2 subgroup of Γ′ which preserves H2.

Lemma 16.10 If s and t lie in the same Γ′ orbit, then (Xs, fs) and (Xt, ft)
are locally equivalent.

Proof: Local equivalence is an equivalence relation, so we just have to check
this result on the generators of Γ′. Complex conjugation fixes R pointwise.
So, for this generator there is nothing to prove. If t = −s then the two
systems are identical, by definition. The case t = 1/2s is the Inversion
Lemma.

The one nontrivial case is when t = s − 1. By symmetry, it suffices to
consider the case when s > 0. There are several cases to consider. When
s > 2, the result follows from the Insertion Lemma. Suppose that s ∈ (1, 2).
Let s′ = 1/(2s). Then t = R(s′). Combining the Covering Lemma and the
Inversion Lemma, we see that X0

s is covered by finitely many patches of the
form (Kt, ψ, t). The local equivalence follows immediately from this fact. To
make it work, we need to throw out the finitely many lines containing the
boundaries of the patch images.

Suppose s ∈ (1/2, 1) and t′ = s − 1. Then t′ < 0 and we can switch to
t = −t′ = 1− s. Now we apply the Covering Lemma, just as in the previous
case. Finally, suppose s ∈ (0, 1/2). Again, we consider t = 1 − s ∈ (1/2, 1).
Switching the roles of s and t we reduce to the previous case. ♠

It just remains to recognize Γ. The elements

z → −z, z → 1− z, z → 1/2z (168)

all belong to Γ, and are the hyperbolic reflections in the 3 sides of the (2, 4,∞)
triangle with vertices i

√
2, (1+i)/2 and ∞. We omit the proof that these ele-

ments generate Γ, since what we have done already gives a proof of Theorem
1.10.
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17 Hausdorff Convergence

17.1 Results about Patches

In this chapter we prove Theorem 1.9 and a related result, which will help
establish Theorem 1.6.

There are two natural sequences which arise in connection with any irra-
tional parameter s.

• λ1, λ2, ... is the set of scale factors of the maps which arise in Theorem
12.1.

• The proof of the Covering Lemma yields constants ǫ1, ǫ2, ... such that
all the periodic tiles in the patch covering corresponding to λk have
diameter at least ǫk.

Lemma 17.1 Suppose Ks is a symmetric piece. If s is irrational, then Λs

contains two vertices of Ks. If s is rational, then Ks contains two triangles
τ1 and τ2 which abut non-adjacent edges of Ks.

Proof: This has the same proof as Lemma 16.2. ♠

Our discussion now refers to the Covering Lemma of §14. Given any
parameter s and any set D ⊂ Xs (typically a disk) we define the patch
spectrum Π(D, s) ⊂ R to be the set of ǫ such that there is a symmetric
ǫ-patch (K,ψ, u) such that ψ(K) ⊂ D.

Lemma 17.2 Let s ∈ (0, 1) be arbitrary. Suppose that D1 and D2 are con-
centric disks, having radius ρ and 2ρ respectively. Suppose that D1 contains
a tile of diameter less than ǫk. Then λk ∈ Π(D2, s) provided that 2λk < ρ.

Proof: It follows right from the definition of the sequence {ǫk} that the
λk covering must have a patch whose image intersects D1. But the radius
condition guarantees that the entire patch must be contained in D2. ♠
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17.2 Convergence

In this section we prove Theorem 1.9. Recall that Ξs = Λs when s is an
irrational parameter and Ξs is the union of unstable orbits when s is a rational
parameter. Our argument works in either case.

Suppose that {sn} is a sequence of parameters converging to an irrational
parameter s. We first note a continuity property. The sequences {λsn,k} and
{ǫsn,k} (which are either infinite sequences or finite sequences of growing
length) converge pointwise to the sequences {λs,k} and {ǫs,k} as n → ∞.
This is a consequence of the convergence of all the relevant sets involved in
the Covering Lemma. We call this convergence stabilization.

Let Λ = Ξs. Let LΛ be the set of limits of sequences of the form {pn}
where pn ∈ Ξsn . It follows from compactness that LΛ is the Hausdorff limit
of {Ξsn}. So, to finish the proof of Theorem 1.9, we just need to prove that
LΛ = Λ.

Lemma 17.3 LΛ is disjoint from the interiors of the tiles of ∆.

Proof: Let p = lim pn with pn ∈ Λn. Suppose that p lies in the interior of a
tile P of ∆. Then there is some tile Pn of ∆n such that Pn → P as n→ ∞.
There is some disk centered at p which is contained in Pn for all n large. But
then pn ∈ Pn for n large, and this is a contradiction. ♠

Lemma 17.4 LΛ is disjoint from the interiors of edges which are common
to two tiles of ∆.

Proof: Let p = lim pn with pn ∈ Λn. Suppose p lies in the interior of the
edges of two tiles P and P ∗ of ∆. Let Pn and P ∗

n be the two tiles of ∆n

converging to P and P ∗ respectively. By Lemma 8.11, the union Pn ∪ P ∗
n

eventually contains a uniformly large neighborhood of p. But then we get
the same contradiction as in the previous case. ♠

Lemma 17.5 LΛ has no isolated points.

Proof: Let p ∈ LΛ. Let D2 be a closed disk centered at p. Let D1 be the
concentric disk having half the radius. Let δn be the infimal diameter of a
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tile in ∆n∩D1. When n is sufficiently large, D1 contains a tile of Ξsn . Hence
δn → 0 as n→ ∞.

Consider the patch spectra Π(D2, sn). By the stabilization property and
Lemma 17.2, there is some δ > 0 so that

Π(D2, sn) ∩ [δ, 1] 6= ∅

for all n sufficiently large.
By 17.1, there are two elements (either points or unstable tiles) of Ξsn ,

uniformly separated from each other and contained in D2. Hence LΛ ∩ D2

contains at least 2 points. But the size of D2 is arbitrary. Hence, in the
irrational case, there cannot be any isolated points. ♠

Lemma 17.6 LΛ = Λ.

Proof: Suppose p ∈ LΛ − Λ. From the results we have proved above, p
must be the vertex of a tile of ∆, and moreover, some neighborhood of p
intersects only finitely many tiles. But then p is an isolated point of LΛ, and
this contradicts the previous result. Hence LΛ ⊂ Λ.

To show that Λ ⊂ LΛ we choose a point p ∈ Λ and run exactly the
same argument as in the proof of Lemma 17.5. What we get is that every
disk D2 centered at p contains an element of Ξsn for all sufficiently large n. ♠

Corollary 17.7 Let {sn} be an irrational sequence converging to an irra-
tional parameter s. The limit sets Λsn → Λs in the Hausdorff topology.

Proof: Let Λ = Λs and Λn = Λsn . For any ǫ > 0 there is some n such that Λn

is contained in the ǫ tubular neighborhood of Λ once n is large. Otherwise,
we could find a sequence {pn} which avoided the ǫ tubular neighborhood.
But then we could extract a convergent subsequence and produce a point of
LΛ− Λ.

Conversely, suppose that Λ is not contained in the ǫ tubular neighbor-
hood of Λn no matter how large n is. Then some sequence {pn} of Λ is such
that pn avoids the ǫ-tubular neighborhood of Λn. Any subsequential limit of
this sequence belongs to Λ− LΛ. ♠
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17.3 Covering

In this section we prove a result which is a precursor to Theorem 1.6. We
call σ a nice rational if σ 6= 1/2n for n = 1, 2, 3, ... To avoid annoying special
cases, we will only work with nice rationals.

We described in §11.5 what it means to say that σ → s when σ, s < 1/2.
Essentially it means that the even expansion of s is a continuation of the
even expansion of σ, except perhaps that the last two digits of σ need to be
altered. Here we extend this definition to σ, s ∈ (1/2, 1). We write σ → s in
this case if and only if R(σ) → R(s) in the sense of §11.5. Here R(s) = 1− s
and R(σ) = 1−σ. With this definition, the Diophantine estimate in Lemma
11.5 applies immediately to all σ, s ∈ (0, 1) such that σ → s.

Given a polygon P , let CP denote the polygon obtained from P by dilat-
ing P by a factor of C about the center of mass of P . Given any K, standing
for one of the symmetric pieces {A,B, P,Q}, we define

Ξ(σ,K,C) =
⋃

τ∈Ξσ∩Kσ

Cτ. (169)

We are taking the union of inflated versions of the triangular tiles in Kσ. We
define Ξ(σ, C) in a similar way, except that we inflate all the tiles of Ξσ.

Theorem 17.8 Suppose σ is a nice rational and σ → s. Then there is some
constant C such that Ξ(s,K, 0) ⊂ Ξ(σ,K,C) for each symmetric piece K.
The constant C does not depend on the parameters or on the symmetric piece.

Corollary 17.9 Suppose σ is a nice rational and σ → s. Then there is some
constant C such that Ξs ⊂ Ξ(σ, C) The constant C does not depend on the
parameters or on the symmetric piece.

We prove Theorem 17.8 though a series of smaller lemmas.

Lemma 17.10 Theorem 17.8 holds when σ = (k − 1)/k for k = 2, 4, 6, ....

Proof: Here σ has even expansion (1, k). For any particular choice of k,
the result follows just because there is a uniform lower bound to the size of
the tiles of ∆σ. We just have to understand what happens when k → ∞.
The situation here is the same one depicted in the proof of the Area Lemma.
Figure 17.1 illustrates the situation for the symmetric piece P . The other
cases are similar.
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Figure 17.1: Pσ (white/dark) and Ξ(σ, P, 0) (dark)

Figure 17.2 shows Ξ(s,Q, 0) for s = 29/32 and s = 17/19. The even ex-
pansion in the first case is (1, 10, 2, 2). In the second case, the even expansion
is (1, 9, 1, 4). The color scheme is the same as in Figure 17.1.

Figure 17.2: ∆0
s for s = 29/32 and s = 17/19.

We will make a general argument but we will refer to the figures above
for visual guidance. We will give our proof for the symmetric piece Ps, which
is colored yellow and blue in the figures. The proofs for the other cases are
similar. We note the following.

• Ps is within C/k2 of Pσ. This follows from Lemma 11.5 and from the
definitions of these sets.

• Ξ(s, P, 0) is contained in the 4/k tubular neighborhood of the diagonal
edge of Ps. This follows from Lemma 15.8 and Lemma 11.5.

• The diagonal edge of Pσ is covered by edges of tiles of Ξσ, and each
such tile has short side length 1/k.

From these properties, the set Ξ(σ, P, 100) covers the 4/k tubular neigh-
borhood of the diagonal edge of Ps. Hence Ξ(s, P, 0) ⊂ Ξ(σ, P, 100). ♠
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Lemma 17.11 Theorem 17.8 holds when σ = (k − 1)/k or σ = (k − 1)/2k
for k = 2, 3, 4, ....

Proof: The cases not covered by the preceding result are covered by essen-
tially the same argument as in the preceding result. The proof boils down to
Lemmas 11.5 and 15.8. ♠

The rest of our proof is an induction argument. Let λ(σ) denote the length
of the even expansion of σ. The cases λ(σ) = 1 correspond to σ = 1/2k, and
we have excluded these from consideration. Lemma 17.11 takes care of all
the cases when λ(σ) = 2. We say that a constant Cm is m-good if Theorem
17.8 holds for all σ, with the constant Cm, provided that λ(σ) ≤ m. We have
already shown the existence of a 2-good constant C2.

Lemma 17.12 If Cm is an m-good constant, then

Cm+1 = Cm +
Ω√
2
m

is an (m+ 1)-good constant. Here Ω is independent of m.

Proof: For ease of notation we give the proof for the symmetric piece As.
Let t = R(t) and τ = R(σ). Here R is as in the Main Theorem. The map R
just cuts off the first digit of the even expansions, so we have τ → t. Let Ks

be some symmetric piece. We want to show Ξ(s, A, 0) ⊂ Ξ(σ,A,Cm+1).
Since λ(τ) = m, we have

Ξ(t,K, 0) ⊂ Ξ(τ,K,Cm), ∀ K ∈ {A,B, P,Q}. (170)

By the Covering Lemma, we know that

Ξ(s, A, 0) =
n⋃

k=1

Fk,s(Ξ(t,Kk, 0)). (171)

The constant n depends on the equations used when we proved the Covering
Lemma. The map Fk,s is a patch map and Kk,s is a symmetric piece whose
type depends on the index k. Combining the last two equations, we get

Ξ(s, A, 0) ⊂
n⋃

k=1

Fk,s

(
Ξ(τ,Kk, Cm)

)
. (172)
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Since λ(σ) ≥ 3, the first two terms in the even expansion of σ are the
same as the first two terms in the even expansion of s. Hence σ and s fall in
the same case of our proof of the Covering Lemma, and they have the same
layering constant. For this reason, the patch covering of As has the same
combinatorics as the patch covering of Aσ. Hence, for any constant C,

Ξ(σ,Kσ, C) =
n⋃

k=1

Fk,σ

(
Ξ(τ,Kk, C)

)
. (173)

Here the maps Fk,s and Fk,σ have the same combinatorial structure. They
are compositions of the map φ from the Main Theorem, the map T j from
the Filling Lemma, and one or more of the fundamental symmetries. For
example,

F1,s = RD ◦ T 2
s ◦ φs ⇐⇒ F1,σ = RD ◦ T 2

σ ◦ φσ.

Let Dτ denote the denominator of τ . Given the identical combinatorial
structure, it follows from Lemma 11.5 and elementary geometry that

‖Fk,s(p)− Fk,σ(p)‖ ≤ Ω′

(denominator(τ))2
, (174)

for all points p contained in (say) the disk of radius 100 centered at the origin.
Here Ω′ is some constant that does not depend on any of the parameters. The
point is that the relevant polygons in the domain are O(D−2

σ ) apart in the
Hausdorff metric, and the corresponding polygons in the range are O(D−2

τ )
apart, and the maps in question are 1-lipschitz.

Finally, the short side length of each tile θ of Uτ is exactly 1/Dτ . Hence

Fk,s

(
Ξ(τ,Kk, Cm)

)
⊂ Fk,σ

(
Ξ(τ,Kk, Cm + 100Ω′/Dτ )

)
, (175)

We have added the factor of 100 to avoid tedious Euclidean geometry. The
estimate Dτ ≥ (

√
2)m. This gives

Fk,s

(
Ξ(τ,Kk, Cm)

)
⊂ Fk,σ

(
Ξ(τ,Kk, Cm+1)

)
. (176)

Equations 172, 173, and 176 combine to finish the proof, provided we set
Ω = 100Ω′. ♠

The constant

C = C2 +
∞∑

m=2

Ω√
2
m (177)

works in Theorem 17.8. This completes the proof of Theorem 17.8.
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18 Recurrence Relations

Now we revisit the proof of the Covering Lemma to deduce some recurrence
relations for the period N(s) of the unstable orbits at parameter s. We found
these rules experimentally and below we will give proofs.

We set N(0) = 0. By inspection, N(1/2) = 1. By the Insertion Lemma,
we have N(1/2k) = 1 for k = 1, 2, 3, .... Let t = R(s) and u = R(t). The
notation (a, b) → (c, d) has the following meaning. If (a, b, ...) is the even
expansion of s then

N(s) = cN(t) + dN(u) (178)

We will establish the following rules.

1. (a, b) → (b, 1) for a and b even.

2. (a, 1) → (1, 1) for a > 1 odd.

3. (1, b) → (b− 3, 3) for b > 1 odd.

4. (1, b) → (b− 1, 1) for b even

5. (a, b) → (b− 2, 3) for a even and b > 1 odd.

These rules allow one to compute N(s) recursively for any rational s. Here
is an example. 7/18 has even expansion (2, 3, 1, 4). Let [2, 3, 1, 4] denote
N(7/18), etc. We have

• [2, 3, 1, 4] = [3, 1, 4] + 3[1, 4] by Rule 5.

• [3, 1, 4] = [1, 4] + [4] by Rule 2.

• [1, 4] = 3[4] by Rule 4.

Hence N(7/18) = [2, 3, 1, 4] = 13[4] = 13(N(1/4)) = 13.
The proofs of all the rules boil down to inspecting the decompositions

we used when proving the Covering Lemma – and occasionally improvising
some new related ones.

Let N(As) denote the number of triangular tiles in As∩∆s, etc. We have

2N(s) = N(As) +N(Bs) = N(Ps) +N(Qs) (179)

Equation 179 holds for any parameter.
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Lemma 18.1 If s, t < 1/2 and N(At) = N(Bt), then N(As) = N(Bs).

Proof: Figures 14.3 and 14.8 illustrate the partition

As = RD(Bs −Qs) ∪RV φs(At) ∪ squares (180)

It follows from this partition that

N(As)−N(Bs) = N(At)−N(Qs). (181)

But Qs = φs(Bt) by Lemma 14.5, Equation 4. Hence

N(As)−N(Bs) = N(At)−N(Bt). (182)

The lemma follows immediately from this last equation. ♠

Lemma 18.2 If s > 1/2 and N(At) = N(Bt), then

N(Ps)−N(Qs) = 2N(As).

Proof: Lemmas 14.3 and 14.4 imply that

N(As) = N(Bt). (183)

As illustrated in Figures 14.1, 14.2, 14.6, and 14.7, we have the partition

Ps = RV (Qs) ∪RD(Ψ
0
s). (184)

Here RV and RD are reflections in two of the fundamental lines of symmetry.
Equation 184 gives us

N(Ps)−N(Qs) = N(Ψ0
s) = N(At) +N(Bt) = 2N(Bt) = 2N(As). (185)

The last equality comes Equation 183. ♠

Our proof of the recurrence relations follows from the decompositions
given in the proof of the Covering Lemma and the following result.
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Lemma 18.3 Let s ∈ (0, 1) be a rational parameter.

• If s ≤ 1/2, then N(As) = N(Bs).

• If s > 1/2 then N(Ps)−N(Qs) = 2N(As).

Proof: By Lemma 18.2, Statement 1 of Lemma 18.3 implies Statement 2 of
Lemma 18.3. So, we will prove Statement 1.

We check that N(As) = N(Bs) = 1 when s = 1/2. The same result holds
for s = 1/2n by the Insertion Lemma. Let t = R(s). Our proof goes by
induction in the integer k such that Rk(s) = 0. If Lemma 18.3 fails, we can
choose a minimal counterexample s. Let t = R(s). It follows from Lemma
18.1 and minimality that t > 1/2.

Examining the equations given in the proof of Lemma 14.6, we see that

N(As) = 2N(At) +N(Qt), N(Bs) = N(Pt). (186)

Therefore
N(Bs)−N(As) = N(Pt)−N(Qt)− 2N(At). (187)

Applying Lemma 18.2 to the parameter t > 1/2 and using the minimality of
s, we see that the right hand side of Equation 187 vanishes. ♠

Proof of Rule 1: In this case a and b are even, and we want to prove
that N(s) = bN(t) +N(u). By the Filling Lemma from §13, and symmetry,
the number of triangular tiles in Ψk

s is 2N(t) for k = 0, ..., (℧ − 1). Here
℧ = ℧(s) = b/2 is the layering constant. By Lemma 18.3, we have

N(s) = N(As) = N(Bs). (188)

Statement 2 of Lemma 14.5 gives us the identity

N(Bs) = 2℧N(t) +N(Qt) = bN(t) +N(Qt). (189)

Since a and b are even, t also satisfies the hypotheses of Lemma 14.5. Hence,
by Equation 4 of Lemma 14.5,

N(Qt) = N(Bu). (190)

These equations together imply Rule 1. ♠
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Proof of Rule 2: Suppose a > 1 is odd and b = 1. We prove that N(s) =
N(t) +N(u). Here s, t < 1/2 and ℧(s) = 1.

Equations 1 and 2 of Lemma 14.6 combine with Equation 179 to give

2N(s) = N(As)+N(Bs) = (2N(At)+N(Qt))+N(Pt) = 2N(t)+2N(At). (191)

Equation 1 of either Lemma 14.3 or 14.4, as applied to the parameter t, gives
us

2N(At) = 2N(Bu) =
∗ N(Au) +N(Bu) = 2N(u). (192)

The starred equality comes from Lemma 18.3. Rule 2 follows from the Equa-
tions 191 and 192. ♠

Proof of Rule 3: In this case, a = 1 and b > 1 is odd. We show N(s) =
(b− 3)N(t) + 3N(u). We have s > 1/2 and ℧(s) = (b− 1)/2. In particular
2(℧(s)− 1) = b− 3.

Since s > 1/2, Statement 2 of Lemma 18.3 implies

2N(s) = N(Ps) +N(Qs) = 2N(As) + 2N(Qs).

In short,
N(s) = N(As) +N(Qs). (193)

Statement 4 of either Lemma 14.3 or 14.4 gives

N(Qs) = (b− 3)N(t) +N(Qt), N(As) = N(Bt). (194)

Note that t < 1/2 and ℧(t) = 1. Equations 2 and 4 of Lemma 14.5, applied
to the parameter t, give

N(Bt) = N(Pu), N(Qt) = N(Bu). (195)

Combining these equations, we get

N(s) = (b− 3)N(t) +N(Pu) +N(Bu). (196)

Combining this information with Equation 179, we get

N(Bu) +N(Pu) = (2N(u)−N(Au)) + (2N(u)−N(Qu)) = 3N(u). (197)

Rule 3 follows from Equations 196 and 197. ♠
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Proof of Rule 4: In this case, a = 1 and b > 1 is even. We show N(s) =
(b − 1)N(t) + N(u). We have ℧(s) = b/2 and s > 1/2. Since b is even,
t < 1/2 and u < 1/2.

Equation 4 of Lemma 14.3 or Lemma 14.4 combines with Equation 193
to give

N(s) = (b− 2)N(t) +N(Bt) +N(Qt). (198)

Since t < 1/2, Lemma 18.3 gives

N(Bt) = N(t). (199)

Hence
N(s) = (b− 1)N(t) +N(Qt). (200)

Statement 4 of Lemma 14.5 or 14.6, applied to the parameter t, gives

N(Qt) = N(Bu) = N(u). (201)

Rule 4 follows from the last two equations. ♠

Proof of Rule 5: We have a even and b > 1 odd. We show N(s) =
(b − 2)N(t) + 3N(u). Here s < 1/2 and t < 1/2 and u > 1/2. Here
℧(s) = (b + 1)/2. We get the same decomposition as what we had for Rule
2, except that the sum only goes up to ℧− 2. This gives us the equation

N(s) = (b− 1)N(t) +N(Qt). (202)

℧(t) = 1, so Equation 4 of Lemma 14.6 gives

N(Qt) = N(Bu). (203)

Hence

N(s) = (b− 1)N(t) +N(Bu) = (b− 2)N(t) +N(At) +N(Bu). (204)

The second equality comes from Lemma 18.3. Equation 1 of Lemma 14.6
gives

N(At) = 2N(Au) +N(Qu). (205)

Putting everything together, we get

N(s) = (b− 2)N(t) + 2N(Au) +N(Qu) +N(Bu) =

(b− 2)N(t) + 2N(u) +N(Au) +N(Qu) = (b− 2)N(t) + 3N(u). (206)

The last equality comes from Equation 193 applied to u > 1/2. ♠
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19 Hausdorff Dimension Bounds

19.1 The Upper Bound Formula

Our goal in this chapter is to prove Theorem 1.6. We adopt the notation
σ → s in the sense of Theorem 17.8. This means that σ approximates s in
the sense of the even expansions. We first formulate and prove a more precise
version of the first statement of Theorem 1.6.

Lemma 19.1 Let s ∈ (0, 1) be irrational. Suppose that {σn} is a sequence
of rationals such that σn → s in the sense of Theorem 17.8. Then

dim(Λs) ≤ lim sup
logN(σn)

logD(σn)
. (207)

Here N(σn) is the common period of the unstable orbits associated to the
parameter σn and D(σn) is the denominator of σn.

Proof: By Theorem 17.8, we have

Λs ⊂ Ξ(σn, C
′) ∀n (208)

for some constant C ′. Set C = 2C ′.
Let D be the quantity on the right hand side of Equation 207. We fix

n for the moment. Let m = qn and Nn = N(σn). Here Nn is the number
of polygons in the cover associated to σn. The sets in Ξ(σn, C) are triangles
having diameter at most C/m. For any given ǫ > 0 we can choose n large
enough so that

log(Nm) < (D + ǫ) log(m). (209)

But then
Nm < mD+ǫ. (210)

By Lemma 2.9, we have dim(Λs) ≤ D + ǫ. Since ǫ is arbitrary, we get
dim(Λs) ≤ D. ♠

The rest of the proof of Theorem 1.6 has nothing specifically to do with
the octagonal PETs. We just make some estimates on the right hand side of
Equation 207.
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19.2 A Formula in the Oddly Even Case

In this section we derive the following result from Rule 1 listed in §18.

Theorem 19.2 Suppose that s is rational and has tweaked continued frac-
tion expansion (0, a1, , ...an), as in §11.3, where ak is even for all odd k and
there are at least 2 nonzero terms. Then N(s) is the denominator of the
fraction with continued fraction expansion (0, 2a2, a3, 2a4, a5, 2a6, a7...) with
n− 1 nonzero terms.

Proof: We claim that Theorem 19.2 holds when s = 1/m for m = 2, 3, 4, ...
We check that N(1/m) = 1 and N(1/m) = 2 when m = 2 and m = 3
respectively. It follows from the Insertion Lemma that N(1/m) = 1 if m is
even and N(1/m) = 2 if m is odd. When m is even, the even expansion
has only 1 term, and our result does not apply. When m s odd, the tweaked
C.F.E. of 1/m is (0,m − 1, 1). The C.F.E. predicted by our result is (0, 2),
and this is the C.F.E. for 1/2. So, the result works in this case.

Now suppose that s 6= 1/k is an oddly even rational. Let (0, a1, a2, ...) be
the continued fraction expansion of s. By Lemma 11.4, the even expansion
of s is (a1, 2a2, a3, 2a4, ...).

Now, let sm = Rm(s) for m = 0, 1, 2, ... Applying Rule 1 from §18 repeat-
edly, we have

• N(s0) = 2a2N(s1) +N(s2),

• N(s1) = a3N(s2) +N(s3),

• N(s2) = 2a4N(s3) +N(s4),

and so on. As we discussed in §2.7, these recurrence relations imply that
N(s0) is the denominator of the fraction whose continued fraction expansion
is (0, 2a2, a3, 2a4, ...). ♠

Remark: There is probably a version of Theorem 19.2 which works for
all parameters, which involves some kind of generalized continued fraction
expansion.
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19.3 One Dimensional Examples

Now we prove that dim(Λs) = 1 when limn→∞Rn(s) = 1. Given the in-
variance of the dimension under the action of the renormalization map R, it
suffices to consider the case when s is oddly even. Suppose that s has C.F.E.
(0, a1, a2, ...). Let σ be the approximating rational with continued fraction
(0, a1, ..., an). We take n odd so that σ → s in the sense of Theorem 17.9.
We have the easy bound

D(σ) >
n∏

i=1

ai. (211)

N(σ) is the denominator of the fraction with C.F.E.

(0, 2a2, a3, 2a4, ..., 2an−1, an). (212)

We have the easy bound

N(σ) <
n∏

i=1

4ai. (213)

But then

logN(σ)

logD(σ)
<
n log 4 +

∑n
i=1 log ai∑n

i=1 log ai
= 1 + log 4

( 1
1
n

∑n
i=1 log(ai)

)
. (214)

Since an → ∞, the term on the right tends to 1 as n→ ∞.
It now follows from Equation 8 that dim(λs) ≤ 1. We already know from

Theorem 1.10 that dim(Λs) ≥ 1, so we must have dim(Λs) = 1.

Remark: Our result in this section does not interact well with Theorem
1.5, because Theorem 1.5 requires the sequence {Rn(s)} to have a sub-
sequential limit contained in (0, 1). To produce a parameter s such that
dim(Λ′

s) = dim(Λs) = 1, one could modify our construction in the follow-
ing way. One can start with a fast-growing sequence of even numbers and
occasionally insert the fragment ...3, 1.... If this fragment is inserted very oc-
casionally, the resulting parameter s will still satisfy the condition D(s) = 1,
but the orbit Rn(s) will lie in (1/4, 1/3) infinitely often, so that Theorem 1.5
applies to s. We leave the details of this to the interested reader.
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19.4 A Warm-Up Case

Our remaining goal in this chapter is to prove that dim(Λs) ≤ 1+(log 8/ log 9)
in general. As a warm-up, we will consider the case when s is oddly even,
and we will get a slightly better bound.

Suppose that s is oddly even. Let {σn} be as in the previous section. The
continued fraction for σ2n+1 is

(0, 2a1, a2, 2a3, a4, ..., a2n, 2a2n+1).

We set σ2n+1 = p/q, and we want to get a bound on D(σ) = q.
We have q = q0 > q1 and

q1 = 2a2q2 + q3 = 2a2(2a3q3 + q4) + q5 ≥ (2a2a3 + 1)q3.

Similarly q3 ≥ (2a4a5 + 1)q5, and so on. Hence

D(σ2n+1) >
n∏

k=1

(2a2ka2k+1 + 1). (215)

Let r = N(sigma2n+1) be the denominator of the fraction whose contin-
ued fraction expansion is

(0, 2a2, 2a3, 2a4, ..., 2a2n, 2a2n+1). (216)

We introduce the numbers r = r1, r2, r3, ... which obey the basic recurrence
relation with respect to the new continued fraction. We have

r1 = (4a1a2 + 2a1)r3 + r4 ≤ (4a1a2 + 2a1 + 1)r3.

A similar bound holds when all the indices are shifted by 2, 4, 6, .... Hence

N(σ2n+1) <
n∏

k=1

(4a2ka2k+1 + 2a2k + 1). (217)

A bit of calculus shows that

sup
a≥1,b≥1

log(4ab+ 2a+ 1)

log(2ab+ 1)
= log(7)/ log(3). (218)

The maximum is attained at (a, b) = (1, 1). Combining Equation 207 with
Equations 215, 217, and 218, we see that dim(Λs) ≤ log(7)/ log(3) when s is
oddly even.
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19.5 Most of The General Bound

In this section, we prove that dim(Λs) ≤ 1 + (log 8/ log 9) for many kinds of
parameters. We clean up the remaining tricky cases in the next section. By
the Main Theorem, it suffices to prove our bound for s < 1/2. Our method
is like what we did in the last section, only more complicated.

Let σ = p/q be a rational approximation of s. When we consider the
even expansion of σ, we distinguish the following kinds of sub-strings.

• Type 0, 0: 2c, 2d.

• Type 1, 1: 2c+ 1, 1, 2d+ 1, 1.

• Type 1, 0: 2c+ 1, 1, 2d.

• Type 0, 1: 2c, 2d+ 1, 1.

Here c and d are both natural numbers, and will be throughout the section.
We call these sub-strings chunks .

We want to estimate the quantity

∆(σ) =
logN(σ)

logD(σ)
. (219)

from above. We restrict the length of the even expansion of σ so that it is
divided into a finite union of chunks. For instance

3, 1, 2, 4, 6, 5, 1, 3, 1, 2, 4

divides into
(3, 1, 2)(4, 6)(5, 1, 3, 1)(2, 4).

We call these chunks χ1, ..., χk. We define pj/qj as the rational number whose
even expansion is χj, ..., χk. We need to take some care to align the indices
propertly, due to the (generalization of the) fact that the continued fraction
expansion in Equation 216 is missing the a1 term. To make the relevant
numbers line up exactly, we introduce a trick.

Let p′j/q
′
j denote the rational whose even expansion is

last(χj−1), χj, ..., χk. (220)
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Here last(χj−1) denotes the last digit of χj−1. The chunk χ0 is not defined,
so we set last(χ0) = 2. Let

rj = N(p′j/q
′
j) (221)

From our recurrence rules, we have

∆(σ) <
log r1
log q1

. (222)

To recast the argument in the previous section in the language here, we
proved the following lemma.

Lemma 19.3 Suppose that χj = (2c, 2d) has type 0, 0. Then

qj ≥ Q(c, d)qj+1, rj ≤ R(c, d)rj+1,

where
Q(c, d) = 2cb+ 1, R(c, d) = 4cd+ 2c+ 1.

Moreover
logR(c, d)

logQ(c, d)
≤ log 7

log 3
.

Repeated applications of Lemma 19.3 establish the special case of Statement
2 proved in the previous section.

Remark: What is crucial in this lemma is that the first digit of the se-
quence defining rj does not enter into the recurrence relation for rj. In the
remaining cases, the first digit does enter into the recurrence relation, but
only in a mild way: Only the parity matters.

Now we consider the remaining cases. Here is the type 1, 1 case.

Lemma 19.4 Suppose that χj = (2c+ 1, 1, 2d+ 1, 1). Then

qj ≥ Q(c, d)qj+1, rj ≤ R(c, d)rj+1,

where

Q(c, d) = 2cd+ 2d− 1, R(c, d) = 8cd+ 8d− 2c− 8.

Moreover,
logR(c, d)

logQ(c, d)
≤ log 6

log 3
.
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Proof: We will consider the case of χ1 first. The relevant string here is
(2, 2c+ 1, 1, 2d+ 1, 1). The signed C.F.E. associated to this string is

(2c+ 2, d+ 1). (223)

This leads to the relation

• q1 = (2c+ 2)θ1 − q2

• θ = (d+ 1)q2 − θ2.

Here θ1 and θ2 are dummy variables. Eliminating θ1, we get

q1 = Q(c, d)q2 − (2 + 2c)θ2. (224)

Here Q(c, d) is as in the statement of the lemma. Since θ2 ≥ 0, we have
q1 ≥ Q(c, d)q2, as claimed.

To compute r1, the relevant string is (2, 2c+ 1, 1, 2d+ 1, 1). We have the
following recurrence relations.

• r1 = (2c− 1)ρ1 + 3ρ2 (Rule 5)

• ρ1 = ρ2 + ρ3 (Rule 2)

• ρ2 = (2d− 2)ρ3 + 3ρ4 (Rule 3)

• ρ3 = r2 + ρ4 (Rule 2)

Simplifying, we get

r1 = (4cd+ 4d− 3)r2 + (4cd+ 4d− 2c− 5)ρ4 ≤∗

(4cd+ 4d− 3)r2 + (4cd+ 4d− 2c− 5)r2 = R(c, d)r2. (225)

For the starred inequality, we used the fact that ρ4 ≤ r2, and that the
coefficient of ρ4 is positive for any choice of c, d ≥ 1.

Were we to consider χj instead of χ1, the digit last(χj−1) might be odd.
We would then get the same recurrence, except that Rule 3 would be used
in place of Rule 5 in the first step, and we would get a smaller polynomial.
Thus, the even case gives an upper bound which works for both cases.

A bit of calculus establishes the last assertion of the lemma. ♠
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Lemma 19.5 Suppose that χj = (2c, 2d+ 1, 1). Then

qj ≥ Q(c, d)qj+1, rj ≤ R(c, d)rj+1,

where Q(c, d) = 2cd+ 1 and R(c, d) = 8cd+ 2c+ 2. Moreover

logR(c, d)

logQ(c, d)
≤ log 12

log 3
, c+ d ≥ 4 =⇒ logR(c, d)

logQ(c, d)
≤ log 32

log 7

Proof: The proof is just like the previous case, but with the following
changes. The derivation of Q(c, d) yields the recurrence relation

q1 = (2cd+ 2c+ 1)q2 − 2cθ2 ≥ Q(c, d)q2.

This time we are using the fact that θ2 ≤ q2. The derivation of R(c, d) yields

r1 = (4cd+ 4c+ 1)r2 + (4cd− 2c+ 1)ρ3 ≤ R(c, d)r2.

Here again we use that ρ3 ≤ r2.
An easy calculus argument establishes the stated bounds. ♠

Lemma 19.6 Suppose that χj = (2c+ 1, 1, 2d). Then

qj ≥ Q(c, d)qj+1, rj ≤ R(c, d)rj+1,

where Q(c, d) = 2cd+ 2d− 1 and R(c, d) = 4cd+ 2c+ 4d− 1. Moreover

logR(c, d)

logQ(c, d)
≤ 2, c+ d ≥ 3 =⇒ logR(c, d)

logQ(c, d)
≤ log 15

log 5
.

Proof: The proof is essentially the same as in the previous case. We omit
the details. ♠

We call a chunk good if it does not have the form (2, 3, 1) or (2, 5, 1)
or (4, 3, 1) or (2, 1, 3). Otherwise we call the chunk good . Of the bounds
associated to good chunks, log(32)/ log(7) ≈ 1.78 is the largest. The lemmas
above immediately combine to prove

Corollary 19.7 Suppose that the even expansion of s can be decomposed
into good chunks. Then

dim(Λs) ≤
log 32

log 7
.
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19.6 Dealing with the Exceptions

For the exceptional cases, we consider the chunks two at a time. For reference,
we gather together the polynomials discussed in the previous chapter.

• Q00(c, d) = 2cd+ 1 and R00(c, d) = 4cd+ 2c+ 1.

• Q11(c, d) = 2cd+ 2d− 1 and R11(c, d) = 8cd+ 8d− 2c− 8.

• Q01(c, d) = 2cd+ 1 and R01(c, d) = 8cd+ 2c+ 2.

• Q10(c, d) = 2cd+ 2d− 1 and R10(c, d) = 4cd+ 2c+ 4d− 1.

Now we consider rationals whose even expansion has the form χ1, ..., χ2n,
where each χj is a chunk. We break the even expansion into pairs of chunks,
namely (χ1, χ2)(χ3, χ4).... To each chunk χj we have a polynomials Q(χj)
and R(χj). Given a pair of chunks, (χj, χj+1), we define

Ω(χj, χj+1) =
log(R(χj)R(χj+1))

log(Q(χj)Q(χj+1))
. (226)

Lemma 19.8

Ω(χj, χj+1) ≤
log 72

log 9
(227)

except possibly when all the numbers in the patches are less than 6.

Proof: We make explicit calculations for all pairs of chunks where the max-
imum term is less than 20. For the other cases, this is just a long exercise
in calculus. For example, consider the case when χj has type (0, 0) and χj+1

has type (0, 1). We are interested in the expression

f(c1, d1, c2, d2) =
log(4c1d1 + 2c1 + 1)

log(2c1d1 + 1)
⊕ log(8c2d2 + 2c2 + 1)

log(2c2d2 + 1)
. (228)

Here ⊕ denotes Farey addition:

u1
v1

⊕ u2
v2

=
u1 + u2
v1 + v2

. (229)

When max(c1, d1) ≥ 9, each of the Farey summands in Equation 228 is easily
seen to be less than log 72/ log 9, and hence so is the Farey sum. The other
cases are similar. ♠
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Lemma 19.9 Suppose that all the numbers in the chunks χj and χj+1 are
less than 6. Then there are constants Q and R (depending on the case) such
that qj ≥ Qqj+2 and rj ≤ Rrj+2 and log(Q)/ log(R) ≤ log(80)/ log(11).

Proof: This is a computer calculation. The routines for the calculation are
contained in the Mathematica directory in the source code for OctaPET.
We work out one case of Lemma 19.9 by hand, to explain how the calculation
works in general. Suppose χj = (2, 2) and χj+1 = (2, 3, 1). The signed C.F.E.
corresponding to the sequence (2, 2, 2, 3, 1) is (2, 1, 2, e). This gives us the
recurrence relations

• q1 = 2θ1 + q2.

• θ1 = q2 + θ2

• q2 = 2θ2 + q3.

• θ2 = 2q3 − θ3.

This leads to q1 = 19q3 − 8θ3 ≥ 11q3.
For recurrence relation for r1 is

• r1 = 2ρ1 + r2 (Rule 1)

• ρ1 = 2r2 + ρ2 (Rule 1)

• r2 = 2ρ2 + ρ3 (Rule 1)

• ρ2 = ρ3 + 3r3 (Rule 5)

• ρ3 = r3 + ρ4 (Rule 2)

This leads to r1 = 53r3 + 17ρ4 ≤ 70r3. ♠

Note that log(80)/ log(11) < log(72)/ log(9). Hence, Lemmas 19.8 and
19.9 combine to give us the general estimate.

log rj
log pj

≤ log 72

log 9
⊕ log rj+2

log qj+2

. (230)

This fact combines with Equation 207 to finish the proof of Theorem 1.6.
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Part IV

Topological Properties
Here is an overview of this part of the monograph.

• In §20 we prove several topological results which help us prove State-
ment 1 of Theorem 1.7. At the end of §20 we use these results to deduce
some structural results about the unstable orbits for oddly even rational
parameters.

• In §21 we combine the Shield Lemma and the Pinching Lemma to prove
Statement 1 of Theorem 1.7, that Λs is a curve when s is oddly even.

• In §22 we prove some technical symmetry results which will help us
prove Statements 2 and 3 of Theorem 1.7.

• In the short §23 we prove Statement 2 of Theorem 1.7, that Λs is a
finite forest provided that Rn(s) is eventually oddly even.

• In §24 we prove Statement 3 of Theorem 1.7, that Λs is a Cantor
set when s is such that Rn(s) > 1/2 infinitely often. The proof is a
bootstrap argument. The basic idea is that renormalization tends to
make connected components of Λs larger, and eventually they get so
large that we can rule them out.

• In §25 we prove Theorem 1.8, which explains the action of the PET fs
on the limit set Λs when s is oddly even. Along the way, we prove the
analogous result for oddly even rational parameters.
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20 Controlling the Limit Set

20.1 The Shield Lemma

In this chapter we prove three results which help us control the topology of
the limit set. The first result works just for oddly even parameters and the
other two results work in general.

Let As be the symmetric piece from §9.

Lemma 20.1 (Shield) Let s be irrational and oddly even. Every point of
∂As, except the 2 vertices having obtuse angles, is contained in the edge of
square. Those points which belong to the boundaries of more than one tile
are the vertices of pairs of adjacent squares.

Figure 20.1 illustrates the Shield Lemma. When s is rational, there are
2 small triangles touching the obtuse vertices of As. These triangles vanish
in the irrational limit. The reason for the name of the lemma is that the
structure shields Λs from the boundary of As, except at the two obtuse
corners.

Figure 20.1: As for s = 26/71.

We define the shield Σs to be the union of the top left edge of As and
the left half of the top edge. Σs is the union of two line segments. The top
left vertex νs of Xs (and As) is the place where the two line segments join.
By symmetry, it suffices to prove the Shield Lemma for the points of ∂As
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contained in the shield. We analyze the picture in the rational case and then
take limits. In this section we work out how ∆s sits in As when s is rational
and oddly even.

We say that a square of ∆s abuts Σs if an edge of the tile is contained
in Σs. We call this segment the contact between the square and the shield.
The radius of T is the distance from the center of T to a corner of T . We
call a radius ρ realized , if a square of ∆s having radius ρ abuts the shield.

Lemma 20.2 Let s be an oddly even rational. The following is true.

1. Exactly one triangle of ∆s abuts Σs and the segment of contact contains
νs as an endpoint.

2. The squares which abut Σs occur in monotone decreasing size, largest
to smallest, as one moves from an endpoint of Σs to νs.

3. The number of squares of each size is determined by the even expansion
of s.

4. Let ρ be a realized radius. Some square of radius ρ, which abuts Σs,
has a vertex within ρ of νs.

Let us assume Lemma 20.2 for now, and finish the proof of the Shield
Lemma. Let {rn} be a sequence of oddly even rationals which converges to
s. Given the convergence of tilings described above, we see that the union
of square tiles abutting Σs is the Hausdorff limit of the union of square tiles
abutting Σrn , as n→ ∞. The size of the single triangle in the picture for the
rational parameters tends to 0. Hence, every point of Σs − νs is contained
in a segment of contact for some square. The main point to worry about is
that somehow there is a point p ∈ Σs − νs, with the following property: As
n tends to ∞, the square whose segment of contact contains p tends to 0 in
size. This unfortunate situation cannot occur because it would violate Item
4 of Lemma 20.2.

Proof of Lemma 20.2: The proof goes by induction on the length of the
orbit {Rn(s)}. When s = 1/2 or s = 1/3, the result holds by inspection. The
case s = 1/n follows from the Insertion Lemma. For s 6= 1/n, let t = R(s).
By induction, all the properties of the lemma hold for ∆t.
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C C

δ

Figure 20.2: Inherited structure

Let t = R(s). Let φs be the map from the Main Theorem. Let RD denote
the reflection in the diagonal line Ds of symmetry. The shading in Figure
20.2 is designed to help track the action of the map f = RD ◦ φs. The top of
Figure 20.2 shows some tiles of ∆t and the bottom shows some tiles of ∆s.
The top shaded region is As and the shaded bottom region is f(As). The
diamond δ at the top left is the central tile of Ψ0

t , the subset of ∆t defined
relative to the pair (t, R(t)). The box f(δt) abuts the leftmost central square
of ∆s. The pattern of tiles abutting the shield Σs is the same as the pattern
of squares abutting the shield Σt, except that the the tiles marked C, which
are central tiles of ∆s, have been appended. The number of these extra tiles
is determined by the first number n0 in the even expansion of s. All the
points in our lemma follow from this structure. ♠

Corollary 20.3 Let Ss denote the left half of Λ̂s. There exists a convex set
D2 such that Ss ∩ interior(As) ⊂ D2 and D2 intersects ∂As only at the two
obtuse vertices.

Proof: We simply slice off from As suitably chosen neighborhoods of the
square tiles which abut the edges of As. With a little care (i.e., by making
these neighborhoods shrink very rapidly as we approach the vertices) we can
make the resulting set convex. ♠
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20.2 Another Version of the Shield Lemma

Here we prove a variant of the Shield Lemma. We say that two tiles σ and
τ of ∆s are specially related if σ and τ intersect along a segment, and both
tiles have at least one an edge in ∂Xs. We say that a special cycle is a finite,
cyclically ordered collection of tiles of ∆s, such that every two consecutive
ones are specially related. Figure 20.3 shows a special cycle of length 6.

Figure 20.3: A special cycle for s = 9/25.

Lemma 20.4 (Shield II) Let s < 1/2 be any parameter with the property
that Rn(s) > 1/2 for some n > 0. Then ∆s has a special cycle which separates
the horizontal edges of As from each other and from the diagonal edges of As.

Proof: Let ps,± denote the upper and lower left vertices of the symmetric
piece As, respectively. Note that ps,+ is also the top left vertex of X0

s . Let
ps,0 denote the leftmost vertex of As. When s > 1/2, the two points ps,± are
vertices of Os.

Consider first the case when n = 1. This means that s < 1/2 and
t = R(s) > 1/2. In this case, by the Main Theorem, both ps,+ and ps,− are
vertices of φs(Ot). This tile abuts the leftmost central tile of ∆s. In this case,
the cycle has the form

τ1, ..., τk, φs(Ot), τk, ..., τ2.

Here τ1, ..., τk are the central tiles of ∆s, starting from the middle one and
moving to the left. Figure 20.4 shows this situation for s = 5/18. Here k = 1
and the cycle has length 2. Evidently, the cycle has the claimed separation
properties.
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Figure 20.4: A special cycle for s = 5/18.

Suppose that n > 1, so that s < 1/2 and t = R(s) < 1/2. Let Cs and
Ct respectively denote the middle central tiles of ∆s and ∆t. These are the
two tiles on which the PET map is the identity. It follows from induction
on n that ps,± is the vertex of an octagonal tile Os,± of ∆s. By the Main
Theorem, the tile Ds = φs(Ct) has ps,0 as a vertex. Here we are choosing the
left branch of the extension of φt in order to define Dt.

The same inductive argument as in the proof of Lemma 20.2 establishes
two things at the same time.

• There is a finite sequence Cs = σ0, ..., σk = Os,+ of specially related
tiles, all having edges in the top edge of X0

s .

• There is a finite sequence Ds = τ0, ..., τℓ = Os,+ of specially related
tiles, all having edges in the left edge of X0

s .

The same statements hold with respect to Os,−, by symmetry. When we
concatenate the 4 sequences in the correct order, we get a special chain with
the claimed separation properties. ♠

Corollary 20.5 Suppose that s < 1/2 is irrational and Rn(s) > 1/2 for
some n > 0. Then a connected component of Λs cannot contain points on
both horizontal edges of As, or points on a horizontal edge and a diagonal edge
of As, or points on both horizontal edges of X0

s . In particular, a connected
component of Λs which contains a point in the interior of a bottom edge of
As must lie entirely in As.

Proof: The only case that is not immediate is that statement that a con-
nected subset of Λs cannot contain points on both horizontal edges of X0

s .
Such a subset would necessarily contain a smaller connected subset having
points on the top edge of As and the diagonal edge of slope −1. ♠
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20.3 The Pinching Lemma

This result in this section refers to the lines H, V,Ds, Es considered in §9.
(The lines H and V do not depend on s.) In order to save words, we will
talk about the lines of symmetry when we really mean to speak about the
line segments of symmetry which are contained inside the set X0

s .

Lemma 20.6 (Pinching) At most one point of Λ0
s lies on each line of sym-

metry.

We will assume the Pinching Lemma is false and derive a contradiction.
The argument we give here is a prototype for similar arguments we give
several times in later chapters.

Say that a counterexample is a quadruple Θ = (L, p1, p2, s), where L = Ls

is a fundamental line of symmetry and p1 6= p2 ∈ L ∩ Λ0
s. We call s the

parameter of the counterexample. We define

λ(Θ) =
‖p1 − p2‖
diam(X0

s )
(231)

We let M denote the supremum over all counterexamples.
Let Zs be the set from the Main Theorem. Let Z0

s be the left half of Zs.
We define

♥s =
diam(X0

s )

diam(Z0
s )

(232)

1. ♥s > 1 for all s ∈ (0, 1).

2. ♥s is uniformly bounded away from 1 when s < 1/2.

The second property follows from compactness. The point is that ♥s does
not tend to 1 as s→ 1/2.

The strategy of our proof is to start with a counterexample Θs, associated
to the parameter s, and then produce a new counterexample Θt associated
to t = R(s), such that

λ(Θt) = ♥sλ(Θs).

When s < 1/2 this leads to a contradiction if we take λ(Θs) > M/♥s. When
s > 1/2 this reduces us back to the case s < 1/2.
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20.3.1 Case 1

Suppose that Θs is a counterexample and s < 1/2 and t = R(s) > 1/2. By
the Insertion Lemma, it suffices to consider s ∈ (1/4, 1/3).

Let Os = φs(Ct), where Ct is the central tile of ∆t. See Figure 20.5.

Figure 20.5: Os (dark) and Z
0
s (lightly shaded) for s = 5/17.

We observe the following.

• Es ⊂ Z0
s

• V ⊂ Z0
s

• H −Os ⊂ Z0
s

• RDRH(Ds −Os) ⊂ Z0
s .

Suppose first that Θs involves one of Es, V,H. Because Os separates Z0
s

from the rest of X0
s , we have Θs ⊂ Λs ⊓ Zs, and the intersections of Θs

with the relevant line of symmetry must occur on one of the listed segments.
Hence

Θt = φ−1
s (Θs) ⊂ Λt. (233)

The map φ−1
s carries each Es, V,H − Os to the lines of symmetry V,Dt, Et.

Hence, Θt is a counterexample associated to the parameter t.
Since Y 0

t = X0
t for t > 1/2, we have

λ(Θt) =
‖φ−1

s (p)− φ−1
s (q)‖

diam(Y 0
t )

=
‖p− q‖

diam(φs(Y 0
t ))

=

‖p− q‖
diam(Z0

s )
= λ(Θs)

diam(X0
s )

diam(Z0
s )

= ♥sλ(Θt). (234)

This gives the contradiction mentioned above.
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If Θs involves the line Ds, we let

Θt = φ−1
s RDRH(Θs) ⊂ Λt. (235)

This time, Θt is a counterexample with respect to the parameter t and the
line H. Now we proceed as above.

20.3.2 Case 2

Suppose that Θs is a counterexample and s < 1/2 and t = R(s) < 1/2. This
puts s ∈ (1/3, 1/2).

The argument is very similar to what we just did. This time, we let Os

be the pyramid from Lemma 15.8. The region Os is darkly shaded in Figure
20.6. The lightly shaded regions show the locatons of the 4 lines of symmetry.

Figure 20.6: ∆s for s = 12/29 and ∆t for t = R(s) = 5/24.

Referring to the notation of the Filling Lemma, and working counter-
clockwise around the pyramid, we have the containments

• Es ⊂ Z0
s .

• V −Os ⊂ Zj
s .

• Ds −Os ⊂ RDRHφs(At).

• H −Os ⊂ RDZ
k
s .

Here j, k ∈ {1, ...,℧− 1} are suitably chosen indices.
We can pull back by the relevant map, as in Case 1, and we get the same

contradiction.
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20.3.3 Case 3

Suppose that Θs is a counterexample and s > 1/2. By the Inversion Lemma,
is suffices to take s ∈ (1/2,

√
2/2]. Referring to the Covering Lemma, this

puts is in the case of Lemma 14.4.
We have the following containments:

• Ds ⊂ Zs.

• Es ⊂ Zs.

• V ⊂ Zs.

• H ⊂ RDφs(At).

When s > 1/2, the map φs is an isometry. When we pull back by the relevant
map, we get a counterexample Θt such that λ(Θt) = ♥sλ(Θs). This does not
give an immediate contradiction, but we still have λ(Θt) > λ(Θs). So, we
replace Θs by Θt and then we are back in Case 1 or Case 2.

This completes the proof of the Pinching Lemma.

20.4 Rational Oddly Even Parameters

Let s be an oddly even parameter. Let Ξs denote the union of the unstable
tiles. Let Ls denote the union of the long sides of each triangle in Ξs. We
call each individual triangle edge a segment of Ls. As usual L0

s denotes the
left half of Ls, etc.

As a warmup to our proof of Statement 1 of Theorem 1.7, we consider
what happens for oddly even rational parameters. Figure 20.7 shows Ξ0

s for
two parameters. The goal of this section is to establish in general some of
the features of Ls which are suggested by these pictures.

Figure 20.7: Ξ0
s for s = 5/12 and s = 7/17.
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Lemma 20.7 Ξ0
s intersects a line of symmetry either in a single vertex, or

in a short edge common to two adjacent triangles, or in an edge of symmetry
of one of the triangles. Hence L0

s intersects a line of symmetry either in a
single point. This point is either an endpoint or the midpoint of a segment.
When L0

s meets a line of symmetry in a vertex, the segments of L0
s incident

to this vertex meet the line of symmetry at an angle of π/4.

Proof: We check the case s = 1/2 directly and then the case s = 1/2n
follows by the Insertion Lemma. The general case follows from induction,
exactly along the lines that we proved the Pinching Lemma. ♠

Lemma 20.8 L0
s intersects the shield in a single point, namely the top left

vertex of Xs. The segment of L0
s incident to this vertex is perpendicular to

the segment of L0
s incidendent to the bottom left corner of Xs.

Proof: The first statement is an immediate corollary of Lemma 20.2. The
second statement holds for s = 1/2 by inspection and then for s = 1/2n by
the Insertion. The general case follows from the Main Theorem and induc-
tion on the length of the even expansion of s. ♠

Lemma 20.9 Let s be oddly even and rational. L0
s is a polygonal arc con-

necting the two left vertices of Xs. The first and last sides of L0
s are perpen-

dicular, and L0
s makes a right-angled turn after each segment.

Proof: We check the result for s = 1/2 directly, and then the result follows
for the case s = 1/2n by the Insertion Lemma. The rest of the proof goes
by induction on the length of the even expansion of s. Let ℧ be the layering
constant for s. It follows from the Main Theorem and induction that Ls∩Ψ0

s

is a polygonal arc connecting the two bottom vertices of Ψ0
s. By the Filling

Lemma,
Ls ∩Ψj

s = T j(Ls ∩Ψ0
s), j = 0, ..., (℧− 1) (236)

Here T is the map from Equation 156. By construction, the two arcs Ls∩Ψi
s

and Ls ∩ Ψj
s are disjoint when |i− j| ≥ 2. By Lemma 20.8, these arcs meet

at a single point when |i− j| = 1. Finally, the last segment of Ls ∩Ψi
s meets

the first segment of Ls ∩ Ψi+1
s at a right angle, by induction and Lemma

20.8. Hence, the whole polygonal arc makes a right-angled turn after each
segment.
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D

Figure 20.8: concatenation of arcs. Here ℧ = 2.

Consider the subset α of Ls ∩Ψ℧

s which lies beneath the diagonal line D
of symmetry. This arc is the initial portion of T℧(Ls∩Ψ0

s). Thus, α is an arc
which connects the bottom right vertex of Ψ℧

s to D. But Ls only intersects
D once, by Lemma 20.8. Hence, the subset of Ls beneath D is a polygonal
arc connecting the bottom left vertex of Xs to a point of D.

The reflection RD maps the subset of Ls above D to a subset of the por-
tion of L0

s below D. Hence, some initial segment of L0
s above D connects a

point of D to the upper left vertex of Xs. But then Lemma 20.8 implies that
this initial segment is all of L0

s above D. ♠
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21 The Arc Case

21.1 The Easy Direction

Let s ∈ (0, 1) be irrational. Our goal is to prove that Λs is a disjoint union
of two arcs if and only if s is oddly even. By symmetry, the result we want
is equivalent to the statement that Λ0

s is an arc if and only if s is oddly even.

Lemma 21.1 For each integer k such that Rk(s) > 1/2, there is an octagon
Ok having one edge in the left side of Xs and one edge in the bottom side
of Xs. If there are two istinct indices k and ℓ with this property, then the
octagons Ok and Oℓ are distinct.

Proof: Say that an octagon is wedged in a parallelogram if if one edge of
the octagon lies in the left edge of the parallelogram and another edge lies
in the bottom edge, as in Figure 21.1.

Figure 21.1: Octagons wedged in a parallelogram.

Let s0 = s and sk = Rk(s). For ease of notation, we set φk = φsk and
∆k = ∆sk , etc. When sk > 1/2, the central tile Ck of ∆k is an octagon
wedged into Xk. By the Main Theorem, the octagon φk−1(Ck) is a tile of
∆0

k−1, and is wedged into Xk−1.
Iterating the Main Theorem, we see that

Ok = φ0 ◦ ... ◦ φk−1(Ck) (237)

is wedged into X0.
Suppose that ℓ > k is another index such that sℓ > 1/2. Then the two

octagons Ck and φk ◦ ... ◦ φℓ−1(Cℓ) are distinct because one octagon is the
central tile of ∆k and the other one is not. But then Ok and Oℓ are the
images of the above octagons under the same similarity. Hence, they are
distinct. ♠
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Corollary 21.2 If Rn(s) > 1/2 for at least K different positive indices, then
Λ0

s has at least K + 1 connected components.

Proof: The K octagons guaranteed by Lemma 21.1 are all distinct. Call
these octagons O1, ..., OK . Each of these octagons is wedged into Xs, and so
the union of these octagons separates X0

s into K +1 connected components.
We just need to see that Λ0

s intersects each component.
Each octagon Oj has two vertices in the bottom edge of Xs. At each of

these vertices, the adjacent edge of Oj makes an acute angle with the bottom
edge of Xs. (The angle is π/4.) Since the ∆s consists of an open dense (in
fact full measure) set of squares and semi-regular octagons, every neighbor-
hood of the two vertices in question must intersect infinitely many tiles of
∆s. Hence, the two bottom vertices of Oj lie in Λ0

s. This proves what we
want. ♠

What we have shown is that Λ0
s is not an arc if Rn(s) > 1/2 for some

n > 0.

Lemma 21.3 If s > 1/2, then Λ0
s is not an arc.

Proof: When s > 1/2 the region X0
s, the left side of the central octagon, is

a kite-shaped region with 3 corners having angle π/4 radians. By the same
reasoning as as in Corollary 21.2, all three corners must belong to Λ0

s. But
then Λ0

s cannot be an arc. ♠

Figure 21.2: ∆s for s = 20/29.

We now know that Λ0
s is an arc only if s is oddly even. The rest of the

chapter is devoted to proving that Λ0
s is an arc when s is oddly even.
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21.2 A Criterion for Arcs

To show that Λ0
s is an arc when s is oddly even, we will use the topological

criterion we establish in this section. Some version of this criterion is certainly
well known. Lacking a reference which states precisely what we want, we
prove the result here.

Say that a marked piece is a compact, embedded, convex set with two
distinguished vertices. Say that a chain is a finite union D1, ..., Dn of marked
pieces such that Di ∩ Di+1 is one point, and that this point is one of the
marked points on each of Di and Di+1. We also require that Di ∩Dj = ∅ for
all other indices i 6= j. We define the mesh of the chain to be the maximum
diameter of one of the marked pieces.

Figure 21.3: A chain of length 4.

We say that a compact set S fills a chain D1, ..., Dn if S ⊂ ⋃
Di and S

contains every marked point of the chain. The purpose of this section is to
establish the following criterion.

Lemma 21.4 (Arc Criterion) Let S be compact. Suppose, for every ǫ >
0, that S fills a chain having mesh less than ǫ. Then S is an embedded arc.

We will assume that S satisfies the hypotheses of the lemma, and then
show that S is an arc.

Lemma 21.5 S is connected.

Proof: If S is disconnected, then we can write S = S1 ∪S2 where S1 and S2

are separated by some d > 0. But then S could not fill a chain of mesh size
less than d. ♠
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Lemma 21.6 Suppose that S fills a chain C1, ..., Cm. Then there is some
ǫ > 0 with the following property. If S also fills a chain D1, ..., Dn having
mesh size less than ǫ, then S fills a chain E1, ..., Ep where each Ei has the
form Cj ∩Dk.

Proof: We can choose ǫ so small that each Dj has following properties.

• The diameter of Dj is smaller than the length of any edge of any Ci.

• Dj intersects any Ci in at most 2 edges.

• Dj cannot intersect Ci and Ck if i and k are not consecutive indices.

For each i, there are unique and distinct pieces Dj1 and Dj2 which contain
the two marked points of Ci.

We claim that the pieces between Dj1 and Dj2 have both marked points
inside Ci. If our claim was false, then some Dj, with j1 < j < j2, would have
one marked point in Ci. Note that Dj must have another marked point in
either Ci−1 or Ci+1, because this marked point is a vertex of S. Suppose that
Dj has its other marked point in Ci+1. Then Dj ∩ (Ci∪Ci+1) is disconnected
because Dj does not contain the vertex Ci ∩ Ci+1. Hence

D1 ∪ ... ∪Dj−1 ∪ (Dj ∩ (Ci ∪ Ci+1)) ∪Dj+1 ∪ ... ∪Dn

consists of two disconnected components, each of which intersects S nontriv-
ially. This contradicts the connectivity of S.

Figure 21.4: Disconnected set.
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Now that we know the claim is true, we form the portion of the E-chain
inside Ci by taking the intersections Ci ∩Dj and using the marked points of
Dj for j1 < j < j2. See Figure 21.4 below. The marked points of Ci ∩ Dj1

are the marked points of Ci inside of Dj1 and the marked point of Dj1 inside
Ci. Similarly for Ci ∩Dj2 . We do the same thing for each i and this gives us
the conclusion of the Lemma. ♠

2

1

C2
C3

E1

E E2

C

Figure 21.5: Refining a chain.

If the chain C1, ..., Cm and the chain E1, ..., Ep are related as in the previ-
ous lemma, we say that E1, ..., Ep refines C1, ..., Cm. In view of the previous
result, we can assume that S fills an infinite sequence {Ωi} of chains such
that each one refines the previous one and the mesh size tends to 0.

For each i, we inductively create a partition Pi of [0, 1] into intervals, such
that the number of intervals coincides with the number of marked pieces in
Ωi, in the following manner. Once Pi is created, we distribute the intervals
of Pi+1 according to how Ωi contains Ωi+1. If the kth piece of Ωi contains nk

pieces of Ωi+1, then Pi+1 is created from Pi by subdividing the kth interval
of Pi into nk intervals of equal size. Note that the mesh size of Pi tends to 0
as i tends to ∞.

There is a bijective correspondence between marked pieces in the chains
and intervals in the partition. The correspondence respects the containment
and intersection properties. For instance, two marked pieces intersect if and
only if the corresponding intervals share an endpoint. Each point of S is
contained in an infinite nested intersection of marked pieces, and we map
this point to the corresponding nested intersection of intervals. This map is
clearly a homeomorphism. The inverse map gives a parameterization of S as
an arc in the plane.
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21.3 Elementary Properties of the Limit Set

Let As be the symmetric piece from §9.

Lemma 21.7 Λ0
s contains the two left vertices of Xs and the two obtuse

vertices of As.

Proof: Let v be one of left vertices of Xs. Since the angle of Xs at v is
not a right angle, there must be infinitely many squares contained in every
neighborhood of v.

Note that the top left vertex of X0
s is also the top obtuse vertex of As.

So, Λ0
s contains the top obtuse vertex of As. By symmetry, Λ0

s contains the
bottom obtuse vertex of As. ♠

We know from Statement 3 of Corollary 1.3 that ∆s consists entirely of
squares. These squares are necessarily diamonds or boxes.

Lemma 21.8 Suppose γ ⊂ X0
s is a compact arc which connects a point in a

box to a point in a diamond. Then γ contains a point of Λ0
s.

Proof: Compare our proof of Statement 2 of Theorem 1.5. By compactness,
it suffices to show that arbitrarily small perturbations of γ contain points of
Λ0

s. Hence, we may perturb so that γ does not contain any vertices of any
tiles in ∆s. Suppose γ does not intersect Λ. Then γ only intersects finitely
many tiles, τ1, ..., τn. Moreover, τi and τi+1 must share an edge. Hence, by
induction, τ1 is a box if and only if τn is a box. But τ1 is a box and τn is a
diamond. This is a contradiction. ♠

Lemma 21.9 Each fundamental line of symmetry contains a point of Λ0
s.

Proof: To make the argument cleaner, we attach a large diamond δ to the
picture along the left edge of Xs, and we attach a large box β to the picture
along the bottom edge of Xs. These extra squares are disjoint from Xs except
along the relevant edges. Once we add these two squares, we see that each
of the lines in question connects a diamond to a box. H connects δ to a the
leftmost central tile of ∆s and both V,D,E all connect β to δ. By Lemma
21.8, each of these lines contains a point of Λ0

s. ♠
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21.4 Verifying the Arc Criterion

Our strategy is to show that Λ0
s satisfies the Arc Criterion established in

§21.2. Suppose that Λ0
s fills some chain D1, ..., Dn. We call this chain good if

• Dj is disjoint from the interiors of the edges of ∂As, for j = 1, ..., n.

• The first marked point of D1 is the bottom left vertex of Xs.

• The last marked point of Dn is the top left vertex of Xs.

Here As is the symmetric piece, as above. Some of the Dj will lie in As and
the rest will meet As in at most 1 point.

Lemma 21.10 Λ0
s fills a good chain.

Proof: Our chain has two pieces. We set D1 = Bs, the triangle from §9,
and we let D2 ⊂ As be the set from Corollary 20.3. ♠

Lemma 21.11 Let t = R(s). Suppose St fills a good chain having mesh m.
Then Λ0

s fills a good chain having mesh at most m/
√
2.

Proof: Let Ct be the good chain filled by St. We use the notation from
the Filling Lemma, Equation 156, and the Main Theorem. We make our
construction in 5 steps. Let ℧ be the layering constant for s.

Step 1: For j = 0, ...,℧, we define Cj = T j
s ◦ φs(Ct). Figure 21.6 illus-

trates our construction. The individual chains C0, ..., C℧−1 piece together to
make one long chain because the second disk of Cj touches the common edge
between Ψj

s and Ψj+1
s only at the bottom vertex of this edge.

D

Figure 21.6: Step 1: The chains Cj for j = 0, ...,℧. Here ℧ = 2.
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Step 2: The problem with C℧ is that some of it sticks over the edge of X0
s .

This is the lightly shaded set in Figure 21.6. However, we know from the
Pinching Lemma that Λ0

s intersects the symmetry line Ds in a single point.
All other points of Ds must have neighborhoods contained in finitely many
squares. For this reason, we can make the essentially the same construction
as in Corollary 20.3 to produce a convex disk U ⊂ Ψ℧

s such that Λ0
s∩Ψ℧

s ⊂ U
and U ∩Ds is the single point which belongs to Λ0

s. See Figure 21.7.
We now improve C℧ as follows. We intersect each piece of C℧ with the

set U and throw out all those after the first one which is disjoint from U .

U

D

Figure 21.7: Step 2: Improving C℧.

The result is a chain which joins the bottom vertex of the edge Ψ℧−1
s ∩Ψk

s to
the point Λ0

s∩Ds. Figure 21.7 shows the construction. We call this improved
chain C ′

℧
. Define Υ0 = C0, ..., C℧−1, C

′
℧
. By construction, this chain is filled

by the portion of Λ0
s beneath the line Ds.

Step 3: Define Υ2 = Υ0,Υ1 where Υ1 = RD(Υ0) is the reflected chain.
That is, we continue our chain by reflecting it across the line D. The result-
ing chain contains Λ0

s, by symmetry, but we are not quite done.
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D

X0

Figure 21.8: Step 3: Extending by reflection

Some of the final pieces of Υ1 might not lie in Xs. The problem is that
Xs is not symmetric with respect to RD. The portion below D is larger than
the portion above D.

Step 4: We finish the construction by a method very similar to what we
did in Step 2. We simply intersect all the pieces of Υ1 with X0

s , and let Υ′
1

and omit all those pieces which come after the first one which has trivial
intersection with X0

s . We set Υ3 = Υ0,Υ
′
1. By construction, Υ3 is a chain

filled by Λ0
s. Moreover, since φs contracts distances by some λs < 1/

√
2. we

see that the mesh of Υ3 is less than m/
√
2.

Step 5: The chain Υ3 might not satisfy the first goodness condition. To
remedy this, we shrink the pieces slightly (away from the marked points) so
that they are all disjoint from the interiors of the edges of As. What allows
us to do this is the Shield Lemma combined with compactness. The final
chain has all the desired properties. ♠

Note that if s is oddly even, then so is R(s). The chains in Lemma 21.10
all have mesh size less than 2. It now follows from iterating Lemma 21.11
that Λ0

s fills a good chain having mesh size less than ǫ, for any given ǫ0. Our
Arc Criterion how shows that Λ0

s is an arc. This completes the proof.
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22 Further Symmetries of the Tiling

22.1 Zones

Our constructions refer to the pyramids defined in §15.3. We define a zone
to be a right-angled isosceles triangle ζ having the following structure.

• The long side of ζ lies in the bottom edge of X0
s .

• The apex of ζ is either a center or a corner of a square in Ψs.

• ζ lies beneath the line Zs of bilateral symmetry.

Figure 22.1 shows an example.

Figure 22.1: A zone (dark) of the octagrid, for s = 7/17.

The zone ζ shown in Figure 22.1 is a clean set: The boundary ∂ζ does
not intersect any tile interiors. Note that ζ need not be a clean set in general.
In general, we define ∆s ∩ ζ to be the union of tiles which have an interior
point in ζ. Figure 22.2 shows an example. In this example, the right edge of
ζ is Ds and the apex of ζ is the center of the dark square in Ψs.

Figure 22.2: ∆s ∩ ζ (dark) for s = 7/17.
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22.2 Symmetry of Zones

We think of the zones as playing a role similar to the role played by symmetric
pieces. It appears that the zones always have bilateral symmetry, and this is
what we will prove.

Lemma 22.1 Let Γv be a zone. Then reflection in the vertical axis of Γv is
a symmetry of ∆s ∩ Γv.

Proof: Let V,H,Ds be the vertical, horizontal, and diagonal lines of sym-
metry from §9. Let Bs, As, Ps be the corresponding symmetric pieces. We
consider two special cases first. Suppose first that v ∈ V . In this case
Γv ⊂ Bs and RV is the bilateral symmetry of Γv ∩∆s. If v ∈ RD(H), then
Γv ⊂ Ps, and H is the centerline of RD(Γv), and RD(Γv) ⊂ As. But then
RD(Γv) ∩∆s has bilateral symmetry. But then so does Γv ∩∆s.

If v is the corner of a square in the pyramid, as in Figure 22.1, we have

Γv ⊂
℧⋃

k=0

Ψk
s , (238)

and there is a horizontal translation symmetry T j from Equation 156 so that
T j(v) ∈ V . This map carries Γv ∩∆s to T j(Γv) ∩∆s, and we reduce to the
first case we considered.

If v is the center of a square in the pyramid, then the same argument
as above works, except when v ∈ Ds. Figure 22.2 shows an example of an
exceptional case. In this case, we have

• Γv ⊂ Ps.

• RD(Γv) ⊂ As.

• RHRD(Γv) ⊂ Ps.

The new zone
RDRHRD(Γv)

is one of the zones already considered, and therefore intersects ∆s in a set of
bilateral symmetry. Hence, the same goes for Γv. ♠
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22.3 Intersections with Zones

To further the analogy between zones and symmetric pieces, we prove an
analogue of the Pinching Lemma. Let Λs ⊓ ζ denote those points p ∈ ζ such
that every open neighborhood of p contains infinitely many tiles of ∆ ∩ ζ.
We say that a zone centerline is the vertical line of symmetry the zone.

Lemma 22.2 Let ζ be a zone. Λs ⊓ ζ intersects the centerline of ζ in at
most one point.

Proof: Let ζ be a zone. Let L be the centerline of ζ. The proof of Lemma
22.1 shows that we can find some isometry I such that I(ζ ∩ ∆) ⊂ ∆ and
I(L) ⊂ V , the vertical line of symmetry. By the Pinching Lemma, Λs in-
tersects V in at most one point. Hence Λs ⊓ I(ζ) is at most one point. But
then

I−1(Λs ⊓ I(ζ)) = Λs ⊓ ζ. (239)

Hence Λs ⊓ ζ intersects L at most once. ♠

Corollary 22.3 Suppose that γ is an embedded loop in Λs which lies beneath
the line Ds of symmetry. Then Ls either lies to the left of the leftmost zone
centerline or else lies between two consecutive zone centerlines.

Proof: The portion of ∆s beneath Ds is a union of tiles in the pyramid and
tiles in the zones. If γ does not have the properties advertised in the lemma,
then γ intersects the centerline L of some zone ζ twice. Every point of L
except the apex lies in the interior of ζ. Moreover, the apex of L is either the
middle of a square tile or the corner of a square tile. In the corner case, the
only time γ can intersect the apex is when the apex is on the bottom of the
pyramid, as in Figure 22.1. So, in all case, if γ intersects L twice, so does
Λ ⊓ ζ. This contradicts our previous result. ♠

Now we deduce a result which we will use when proving Statement 2 of
Theorem 1.7. Let Zs be the set from the Main Theorem.

Lemma 22.4 Suppose s < 1/2. Suppose that γ is an embedded loop in
Λs. Then there is some other embedded loop γ′, isometric to γ, contained in
Λs ⊓ Zs.
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Proof: By the Pinching Lemma, γ can only intersect the diagonal line Ds

once. Since γ is an embedded loop, this means that γ either lies above Ds

or below Ds. If γ lies above Ds then γ ⊂ Ps, the symmetric piece for which
Ds is the centerline. Replacing γ by RD(γ) if necessary, we can assume that
γ lies below Ds.

First consider the case when t = R(s) > 1/2. Let Ot be the central
octagonal tile of ∆t. As is illustrated in Figure 20.5, the tile φt(Ot) separates
X0

s into 3 disconnected regions, the biggest of which is Z0
s . If γ does not

already lie in Z0
s , then the isometric loop

γ′ = RDRHRD(γ) (240)

lies in Z0
s . This takes care of the case when t > 1/2.

Now consider the case that t < 1/2. Now we can use the results about
zones. It now follows from the previous result that γ lies between two con-
secutive zone centerlines. If γ does not lie to the left of the leftmost zone
centerline, then there is some zone ζ such that γ ⊂ ζ and γ lies to the right
of the centerline L of ζ. Here we are crucially using the fact that the region
between two zone centerlines and beneath the pyramid lies in a single zone.

Let ρ : ζ → ζ be reflection in L. The new loop ρ(γ) still lies in Λs and
moreover lies to the left of L. Repeating this reflection trick finitely many
times, we finally produce an isometric loop which lies to the left of the left-
most zone centerline L0. Here L0 contains the left corner of the bottom left
square in the pyramid, as shown in Figure 22.3 and 22.4. But the portion to
the left of L0 lies in Zs. ♠

Figure 22.3: Bottom square (dark) and Zs (light) for s = 5/13, 16/39.
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22.4 Folding

Now we prove some results which will be useful when we prove Statement 3
of Theorem 1.7.

First we consider the case of symmetric pieces. Let Ks be a symmetric
piece. We say that S ⊂ Λs ⊓Ks is a tail if S is compact and connected and
intersects the base of Ks. We suppose that the tail has a chosen point on the
base of Ks, and we call this point the anchor . In this case, we define h(S)
to be the maximum distance S rises away from the base.

Lemma 22.5 Suppose that Ks has a tail S with an anchor lying to the left of
the centerline. Then Ks has another tail S

′ lying to the left of the centerline
such that h(S) = h(S ′).

Proof: Let ρ be reflection in the centerline ofKs. Let SL and SR respectively
denote the subsets of S lying to the left and to the right of the centerline.
Then S ′ = SL ∪ ρ(SR) has all the desired properties. ♠

By symmetry, the same result holds with right replacing left . Our last
result in this chapter is an amplification of Lemma 22.5. We say that an
anchored set is a compact connected subset S ⊂ Λ0

s (the left half of Λs)
having some point on the bottom edge of Xs. We define h(S) to be the
maximum distance S rises above the bottom edge of Xs. Let Zs be the set
from the Main Theorem.

Lemma 22.6 Suppose that s < 1/2 and R(s) < 1/2. Suppose S is an
anchored set which does not cross the line Ds. Then there is another anchored
set S ′ which either lies to the left of the leftmost zone centerline or else lies
between between two successive zone centerlines. Moreover h(S) = h(S ′).

Proof: Choose an anchor point p of S. For ease of exposition, we consider
the case when p lies strictly between two consecutive zone centerlines L and
R. The portion of the tiling beneath Ds is a union of tiles in zones and
square tiles in the pyramid. Therefore S lies in a union of zones. There is
a partial ordering on the zones, according to the horizontal position of their
centerlines. The line Ds is the right edge of the rightmost zone.

If S crosses the vertical lineR then there is some zone ζ such that S crosses
the centerline of ζ but S does not cross the right edge of ζ. Let ρ : ζ → ζ
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denote the reflection in the centerline of ζ. Let SL (respectively SR) denote
the portion of S lying to the left (respectively right) of the centerline of ζ. If
we replace S by

SL ∪ ρ(SR) (241)

then we retain the same h-value and the new anchored set does not cross
the centerline of ζ. Repeating this trick finitely many times, we arrange that
S does not cross R. Now we repeat the trick again, finitely many times, to
arrange that S does not cross L. Figure 22.4 illustrates the construction. ♠

Figure 22.4: The folding trick.

Lemma 22.7 Suppose s < 1/2 and S is an anchored set which does not
cross the line Ds. Then there exists an anchored subset S ′ ⊂ Zs such that
h(S) = h(S ′).

Proof: When t = R(s) > 1/2, we proceed as in the proof of Lemma 22.4.
The point here is that the map RHRDRH used in Equation 240 carries an
anchored set to an anchored set. Hence, it suffices to consider the case when
t < 1/2. Again, we can use the results about zones.

Starting with an anchored set S1, we produce a new anchored set S2 which
either lies to the left of the leftmost vertical line in the octagrid or else lies
between two consecutive vertical zone centerlines. Now we proceed as in the
proof of Lemma 22.4. ♠
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23 The Forest Case

23.1 Reduction to the Loops Theorem

In this chapter we prove Statement 2 of Theorem 1.7, that Λs is a finite forest
when s is irrational and Rn(s) > 1/2 only finitely often.

Let As and Bs be the symmetric pieces from §9. As in previous chapters,
we let Λs ⊓As denote those points p ∈ As such that every neighborhood of p
contains infinitely many periodic tiles which belong to As. We define Λs⊓Bs

similarly.

Lemma 23.1 Both Λs ⊓ As and Λs ⊓Bs are finite unions of arcs.

Proof: By the Covering Lemma, Λs ⊓ A is partitioned into finitely many
tiles and finitely many ǫ-patches. If the patches are sufficiently small then the
associated parameters are oddly even. But then the intersection of Λs ⊓ As

with each such patch is a finite union of arcs Hence Λs ⊓As is a finite union
of arcs. The same goes for Λs ⊓Bs. ♠

Letting Λ0
s denote the left half of Λs, we have

Λ0
s = (Λ0

s ⊓ As) ∪ (Λ0
s ⊓ Bs). (242)

Hence Λs is a finite union of arcs.
Now a finite union of arcs with no loops is a finite forest. Hence, the

following result implies Statement 2 of Theorem 1.7.

Theorem 23.2 (Loops) Let s ∈ (0, 1) be any irrational number. Then Λ0
s

contains no embedded loops.

Remark: Statement 3 of Theorem 1.7 makes a much stronger statement
when s is such that Rn(s) > 1/2 infinitely often. So, the Loops Theorem
really only says something new when s is such that Rn(s) > 1/2 for finitely
many n.

The rest of the chapter is devoted to proving the Loops Theorem.
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23.2 Proof of the Loops Theorem

We proceed as in the proof of the Pinching Lemma. Say that a counterex-
ample is a pair Ω = (γ, s) where γ is an embedded loop in Λ0

s. Define

λ(γ) =
diam(γ)

diam(X0
s )
. (243)

Let M denote the supremum, taken over all values λ(γ), where γ is a
counterexample for some loop. We choose a counterexample (γ, s) and we
explain why we get a contradiction if λ(γ) is close to M .

Case 1: Suppose that s < 1/2. By Lemma 22.4, we can assume that
γs ⊂ Λs ⊓ Z0

s . But then γt = φ−1
s (γs) is a loop in Λt with λ(γt) ≥ ♥sλ(γs),

and we get the same contradiction as in the proof of the Pinching Lemma.

Case 2: Suppose s > 1/2. By the Inversion Lemma and the invariance
of the quantity λ(γ) under similarities, it suffices to take s ∈ (1/2,

√
2/2]. In

this case, the reflection RV maps the region to the right of V into Z0
s and the

reflection RD maps the region above Ds into Z0
s . Figure 23.2 shows a fairly

typical example.

Figure 23.1: Z0
s (shaded) for s = 11/17.

By the Pinching Lemma, γ can intersect each of V and Ds at most once.
Hence γ lies to one side or the other of each of these lines. So, by symmetry,
we can assume that γ ⊂ Z0

s . Now we proceed as in Case 1.
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23.3 An Example

One might wonder about the combinatorics of the forests given by Statement
2 of Theorem 1.7. We did not investigate this in a systematic way, but we
at least show that Λs can be a forest which is not just a union of arcs.

The left side of Figure 23.2 shows some of the unstable set Ξs for the
parameter s = 64/207. The even expansion of s is

(3, 1, 2, 3, 1, 2, 2, 2, 2, 2).

Were we to consider the parameter with even expansion (3, 1, 2, 3, 1, 2, 2, 2, ...),
the limit set Λs would have the same combinatorial structure. The right side
of Figure 23.2 shows the combinatorial structure of the portion of Ξs bounded
by the lightly shaded tiles.

Figure 23.2: Ξs (dark) for s = 64/207.

The triple points tend to form at the vertices of the octagonal tiles. One
might say that the octagons serve to splice the limit set together. We don’t
think that Λs can ever be a very complicated forest. As we discuss in §24.5
the octagonal tiles also chop the limit set into disconnected pieces and this
prevents complicated trees from forming.
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24 The Cantor Set Case

We call s ∈ (0, 1) octagonal if Rn(s) > 1/2 infinitely often. In this chapter
we prove Statement 3 of Theorem 1.7, that Λs is a Cantor set when s is
octagonal. We mention again that §24.5 has an informal pictorial explanation
of this result.

24.1 Unlikely Sets

Call s ∈ (0, 1) octagonal if Rn(s) > 1/2 infinitely often. We already know
from §16.1 that To show that Λs is a Cantor set, it suffices to prove that
Λ0

s is totally disconnected. We begin by ruling out a very unlikely kind of
behavior for the set Λs.

Let C be a nontrivial connected subset of Λ0
s. Let K be a patch cover, as

in the Covering Lemma. What we mean is that K is a finite union of patches
and tiles, as in the Covering Lemma. We call C bad with respect to K if C
does not intersect the interiors of the images of any of the patches. That is,
C is disjoint from the interiors of all the sets ψj(Kj).

Call C unlikely if, for every ǫ > 0, there is a patch covering K of scale
less than ǫ, so that C is bad with respect to K. So, C is bad with respect to
an infinite sequence of patch covers, having scale tending to 0.

Lemma 24.1 Unlikely sets do not exist.

Proof: Suppose C ⊂ Λ0
s is an unlikely component. Shrinking C if necessary,

we take C to be one edge of the image of some patch. Lemma 15.2 tells us
that each edge of each patch contains a tile edge. Hence, by Lemma 15.2,
some segment of C lies in a tile boundary. Further shrinking C, we can
assume that C is one edge of some tile τ1.

The midpoint m belongs to Λs. Hence, there is some ǫ-patch (ψ,K, u)
so that m ∈ ψ(K) and τ1 is disjoint from the interior of ψ(K). One edge of
ψ(K) lies in the line containing C. Choosing ǫ small enough, we can assume
that one edge of ψ(K) is contained in C.

Some tile τ2 of ψ(K) ∩∆s has an edge in C, by Lemma 15.2. But then
some point of C is flanked on either side by the adjacent tiles τ1 and τ2 an
hence cannot belong to Λs. This is a contradiction. ♠
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24.2 Tails and Anchored Paths

We defined tails and anchored sets in §22.4.
Lemma 24.2 Suppose Λ0

s is not totally disconnected. Then, for all suffi-
ciently large n, the parameter u = Rn(s) is such that one of the symmetric
pieces Ku has a tail.

Proof: Let α = αs be a nontrivial connected component of Λ0
s. By Lemma

24.1, once n is large enough and u = Rn(s), we can find a patch (K,ψ, u)
such that some point p ∈ α lies in the interior of K∗ = ψ(K) and some point
q of α lies outside of K∗.

Now we “prune” α. Let Un denote the (1/n)-tubular neighborhood of α.
Since Un is open and connected, there is some path βn ⊂ Un which connects
p to q. Evidently βn intersects ∂K∗. Let α′

n denote the initial subpath of βn
which joins p to a point rn ∈ ∂K∗. Passing to a subsequence, we can guar-
antee that {α′

n} converges in the Hausdorff topology to some subset α′, and
that rn converges to some point r ∈ ∂K∗. By construction α′ is a compact
connected subset of both α and Λs ⊓K∗ which joins p to r. The set ψ−1(α′)
is a tail of Ku. ♠

We call a compact connected subset S ⊂ Λ0
s bottom (respectively left)

anchored if S contains a point on the bottom (respectively left) edge of X0
s .

Lemma 24.3 Suppose Λ0
s is not totally disconnected. For all sufficiently

large n, the parameter r = Rn(s) is such that Λ0
u contains an anchored set

Proof: We choose n so large that Ku has a tail. Each symmetric piece
Ku has the following property. Each edge of Ku either lies in ∂X0

u, or else
reflection in the centerline of Ku maps that edge into ∂X0

u. So, once n is
sufficiently large, and u < 1/2. The set Λ0

u contains a continuous path β
having an endpoint p ∈ X0

u.
If p does not lie in an edge of X0

u then p lies on the leftmost edge of the
leftmost central tile of ∆u. But then p ∈ ∂Pu, and some initial portion β′ of
β lies in Pu. But now the reflection RD, the symmetry of Pu ∩∆u, moves β
so that it has an endpoint in ∂X∩∂X0. We replace β by RD(β

′) if necessary.
If β is not yet anchored, it means that the endpoint p lies in the top edge

of X0
u. But then we repeat the same reflection trick, with Au and RH in place

of Pu and RD. The result RH(β
′) is bottom anchored. ♠
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24.3 Acute Crosscuts

Let Ks be a symmetric piece. Recall that Λs ⊓Ks is the set of points p ∈ Ks

such thta every neighborhood of p intersects infinitely many tiles of ∆s∩Ks.
We call S ⊂ Λs ⊓Ks an acute crosscut if S is compact and connected, and
S contains points on two sides of Ks which make an acute angle with each
other. The goal of this section is to prove the following result.

Lemma 24.4 If s is octagonal, then Ks cannot have an acute crosscut.

If some symmetric piece Ks has an acute crosscut, then we can use bi-
lateral symmetry to reduce to the case when Λ0

s has a connected subset C
containing a point on the bottom edge of Xs and a point on the left edge of
Xs. We abbreviate this by saying that the parameter s has an acute crosscut.
We call the acute crosscut small if it is contained in Zs and otherwise big .

Lemma 24.5 If s < 1/2 is octagonal, then s cannot have a big acute cross-
cut.

Proof: Let t = R(s). Let p be point of C contained in the left edge of
Xs. If p ∈ Zs then C must contain points on opposite edges of Zs. That
means that some connected component of Λs⊓Z contains points on opposite
diagonal sides of Zs. But then a connected component of Λt contains points
on opposite horizontal sides of Xt. When t < 1/2 we immediately contradict
Corollary 20.5. When t > 1/2 we observe that the opposite horizontal sides
of Xt −Ot are separated by Ot. Here Ot is the central octagon.

The other case to consider is when p 6∈ Zs. In this case t < 1/2 and
C contains points on opposite sides RDφs(At). But then there is some con-
nected subset C ′ ⊂ C such that RD(C

′) ⊂ Λs contains points on opposite
sides of Zs, as in the previous case, a contradiction ♠

Figure 24.1: The set RDφs(At) for s = 5/13 and t = 3/10.
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Lemma 24.6 If s ∈ (3/4, 1) is octagonal, then s does not have big acute
crosscut.

Proof: Let C be a crosscut which supposedly is not contained in Zs. For s
in this range, we make 3 observations.

• Zs ⊂ Bs. Since Zs ⊂ Bs, the symmetry RV acts on Zs. Hence, the set
Z∗

s = Zs ∪RV (Zs) is well-defined and is contained in Bs.

• C must contain points on the tops and bottoms of Z∗
s . The point here

is that any path from the bottom edge of Xs to the left edge of Xs

must first rise above the line extending the top edge of Z∗
s .

• The tile φs(Ot) separates Zs from RV (Zs) in the sense that any path
connecting these two sets must cross the line extending the top of the
tile.

Figure 24.10 illustrates this for a representative parameter.
All these observations imply that there is some smaller connected subset

C ′ ⊂ C ′ ⊂ Z∗
s

having points on both the top and the bottom of Z − s∗. Applying RV if
necessary, we can assume that C ′ ⊂ Zs. But then φt(C

′) connects opposite
horizontal sides of Xt and lies in Λt. This contradicts Corollary 20.5. ♠

Figure 24.2: Z∗
s (medium/dark) and Bs (shaded) for s = 7/9.
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Lemma 24.7 If s ∈ (2/3, 3/4) is octagonal, then s does not have a big acute
crosscut.

Proof: For parameters in this range, the tile Lt to the left of the central tile
in ∆t is an octagon and φs(Lt) separates X

0
s into three regions. This is the

darkly shaded octagon in Figure 24.3.
If our crosscut Zs does not lie in Zs, is must contain the point

p = Os ∩ φs(Lt). (244)

Here Os is the central tile of ∆s. Hence p lies in a nontrivial connected com-
ponent of Λs ⊓Qs. But then RE(p) lies in a nontrivial connected component
of Λs ⊓ Qs. But then RDRE(p) lies in a nontrivial connected component of
Λs. But this last point is the bottom left vertex of Xs. The same argument
as in Lemma 21.1, in the octagonal case, contradicts this: There are infinitely
many octagonal tiles wedged into this corner. ♠

Figure 24.3: φs(Lt) (dark) and Os (light) for s = 7/10 and t = 3/10.

Lemma 24.8 If s ∈ (1/2, 2/3) then s does not have a big acute crosscut.

Proof: Let σ = 1/(2s) ∈ (3/4, 1). Let ρ be the similarity from the Inversion
Lemma, so that ρ(Xσ) = Xs. We know that σ does not have any big acute
crosscuts. Therefore, an acute crosscut for s is contained in ρ(Zσ). But But
ρ(Zσ ⊂ for s ∈ (1/2, 2/3). Figures 24.4 and 24.5 show some examples.
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Figure 24.4: ρ(Zσ) (dark) and Zs (shaded for s = 11/20.

Figure 24.5: ρ(Zσ) (dark) and Zs for s = 19/30.

The following lemma contradicts the previous ones, unless no octagonal
parameter has an acute crosscut.

Lemma 24.9 If an octagonal parameter s has a crosscut, then some other
octagonal parameter has a big acute crosscut.

Proof: If s has an acute crosscut contained in Zs and t = R(s) also has an
acute crosscut. If the acute crosscut for t lies in Zt we can repeat the pro-
cedure. Every one or two steps of the procedure, the distance between the
endpoints of the crosscut increases by a factor of at least

√
2. So, eventually

we reach a stage where the crosscut is not contained in Z. ♠
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24.4 The Main Argument

Suppose that there is some octagonal parameter s such that Λs is not totally
disconnected. Then we can find some new octagonal parameter u < 1/2
where Λu contains an anchored set. For any bottom anchored set α, we
define h(α) to be the maximum distance α rises above the bottom edge of
Xs. This is exactly as in the previous chapter. When α is left anchored, we
define h(α) to be the maximum distance α moves away from the left edge of
Xs. Similar to what we did in previous chapters, we define

λ(α) =
h(α)

diam(X0
s )
. (245)

We let M denote the supremum value taken over λ(α), where α ranges over
all bottom or bottom anchored sets α in Λs, for s ∈ (0, 1).

For each anchored set, we choose some point in the relevant edge of Xs. If
there are several choices, we choose arbitrarily. We call this point the anchor
point . We divide the argument into 4 cases which exhaust the possibilities.

Let Ds, Es, H, V denote the lines of symmetry from §9.

24.4.1 Case 1

Suppose that

• s < 1/2.

• αs is bottom anchored.

• αs lies beneath Ds.

By Lemma 22.7, we can assume that αs ⊂ Z0
s . Pruning αs as in the proof of

Lemma 24.2, we can assume that αs ⊂ Λs⊓Z0
s . But then αt = φ−1

s (αs) is a left
anchored set in Λt, and λ(αt) = ♥sλ(αs). Here we get the same contradiction
as in the proofs of the Pinching Lemma and the Loops Theorem.

24.4.2 Case 2

Suppose that s satisfies the same conditions as in Case 1, except that S
crosses Ds. Since Bs lies entirely beneath Ds, and the left edge of Bs lies in
∂Xs, we see that αs contains a point on the right edge of Bs. Pruning αs
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as in the proof of Lemma 24.2, we produce an acute crosscut for Bs. This
contradicts Lemma 24.4. Hence the anchor of αs lies in As.

By Corollary 20.5, we have αs ⊂ As. For s in the range here, we have
As ⊂ Ps. Since RH is the symmetry of As ∩∆s and RD is the symmetry of
Ps ∩ ∆s, the containments above imply that βs = RDRHRD(βs) ⊂ Λs is a
bottom anchored set such that h(βs) = h(αs). By construction, the anchor
point of βs lies in Bs. But the contradicts the preceding paragraph.

24.4.3 Case 3

Suppose that

• s < 1/2.

• αs is left anchored.

When t = R(s) > 1/2, the octagonal tile φs(Ot), shown in Figure 5.1,
forces a left anchored set to lie entirely in Zs. Figure 24.1 shows a typical
picture. Now we proceed as in Case 1.

Figure 24.1: Zs (light) and φs(Ot) (dark) for s = 13/42.

On the other hand, suppose t < 1/2. We claim that αs ⊂ Z0
s . Otherwise,

αs contains points on the opposite diagonal edges of Z0
s . Pruning αs as

in the proof of Lemma 24.2, we see that there is a left-anchored subset
α′
s ⊂ Λs ⊓ Z0

s which contains points on the two diagonal edges of Z0
s . But

then αs = φ−1
s (αs) is a compact connected set in Λt which contains points on

both the top and the bottom edges of X0
t . This contradicts Corollary 20.5.
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24.4.4 Case 4

Suppose that s > 1/2. Using the Inversion Lemma, it suffices to consider
the case when αs is bottom anchored. Note that the bottom edge of X0

s is
contained in Bs. So, the anchor point of αs lies in Bs. If αs exits Bs, we
contradict Lemma 24.4, as in Case 2. Hence, αs does not exit Bs.

By Lemma 22.5, we can assume that αs lies to the left of V , the vertical
line of symmetry of Bs, without changing h(αs). But then αs is anchored in
Z0

s and αs can only exit Z0
s through the top edge. If αs ⊂ Z0

s , then we proceed
as in Case 1, and we produce a new anchored set αt with λ(αt) > λ(αs). This
reduces to Cases 1-3.

If αs exits Z
0
s through the top edge, then we prune αs as in the proof of

Lemma 24.2, and find an anchored set α′
s ⊂ Λs⊓Z0

s which contains points on
both horizontal edges of Z0

s . But then φ
−1
s (α′

s) ⊂ Λt is a compact connected
subset of Λt which contains points on both horizontal edges of X0

t . This
contradicts Corollary 20.5.

24.5 Pictorial Explanation

Our proof above somewhat clouds the intuitive reason why Λs is a Cantor
set when s is an octagonal parameter. Here we give an informal and intuitive
pictorial explanation.

Figure 24.6: ∆0
s for s = 401/1092.
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We show two pictures for the parameter s = 401/1092. (This is kind of
a rational approximation to an octagonal parameter.) The parameter s has
even expansion

(2, 2, 2, 3, 1, 2, 2, 2, 3, 1, 4).

In the rational setting we work with Ξs, the union of triangular tiles of ∆s.
As predicted by Theorem 12.1, there are octagonal tiles of two different

sizes. The larger octagonal tiles are lightly shaded in Figure 24.6.
These octagonal tiles attach on one side to a union of boxes, and on the

other to a union of diamonds. The union of boxes, diamonds, and large
octagons chops up X0

s into a large number of small regions which are dis-
connected from each other. Ξ0

s must lie in the union of these regions. This
forces the connected components of Ξ0

s to be pretty small.
Figure 24.7 shows a closeup of one of the small regions. This time, the

small dark octagonal tiles run through the small region, attaching themselves
to diamonds and big octagons on one side and boxes on the other. The union
of these tiles chops up each small region into a number of tiny regions, each
disconnected from each. Ξ0

s is forced to lie in these tiny regions.

Figure 24.7: ∆0
s for s = 401/1092.

Were s an octagonal parameter, this kind of pattern would continue for-
ever, and in a recursive way, completely chopping up Λs into a Cantor set.
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25 Dynamics in the Arc Case

25.1 The Main Result

Let s ∈ (0, 1) be an oddly even parameter. We will take s to be irrational,
but the reader should bear in mind that we will also consider the rational
case below.

Let (k0, k1, k2, ...) be the even expansion of s. By the Insertion Lemma,
the value of the first digit k0 ∈ {2, 4, 6, ...} has no influence on the system.
When we take k0 = 2 we have s ∈ [1/2, 1/3). We define

as =
1

k1 +
1

k2...

, bs = 1− 2as. (246)

That is, the continued fraction of as is (0, k1, k2, ...). The reason that as < 1/2
is that k1 > 1.

The set E of oddly even parameters has the form C − C ′, where C is a
Cantor set and C ′ is a countable set. The maps a → as and s → bs are
continuous functions on E , and they both map E into R−Q.

Remark: When the continued fraction of s is [0, c1, c2, c3, ...] the even ex-
pansion of s satisfies kj = cj for j odd and kj = 2cj when j is even.

Figure 25.1 shows a 10-interval IET, defined in a union of two intervals,
each having length 2. The top half shows the first partition and the second
half shows the bottom partition. The top labellings of each half label the
intervals in a combinatorial sense and the bottom labellings of each half give
the lengths of the intervals. In the figure, we have set a = as and b = bs. We
call this IET Is.

10

6 7 8 9 10

a+b a ab a

a a a ba+b
6 2 89 5

1 2 3 4 5

a+b a ab a

a a a ba+b
1 7 34

Figure 25.1: The IET Is.
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We will prove the following result in this chapter.

Theorem 25.1 For any oddly even parameter s, the restriction of fs to Λs

is a 10-interval IET which is is conjugate to Is via a homeomorphism.

The IET in Figure 25.1 commutes with swapping the two intervals. Thus,
there is a quotient IET, Is defined on an interval of length 2. Figure 25.2
shows the picture.

5

1 2 3 4 5

a+b a ab a

a a a ba+b
1 2 34

Figure 25.2: The IET Is.

The map Is is just an irrational rotation with rotation number as. Thus,
Is is a Z/2 extension of the rotation Is which has rotation number as. Taking
into account our remark above, we see that, in terms of continued fraction
expansions,

s = [0, c1, c2, c3, ...] =⇒ as = [0, 2c2, c3, 2c4, c5, 2c6, c7, ...]. (247)

Thus, Theorem 1.8 is an immediate corollary of Theorem 25.1.
The rest of the chapter is devoted to proving Theorem 25.1. We will

first establish the combinatorics of the restriction fs|Λs, and then we will use
counting and rational approximation ideas to pin down the geometry.
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25.2 Intersection with the Partitions

For each parameter s, the parallelogram Xs has two partitions Ps and P∗
s

which define the PET fs : Xs → Xs. When s is oddly even, and the first
term in the even expansion is 2, we have s ∈ (1/3, 1/2).

In this section we show that Λs intersects each piece of Ps in an arc. The
reader should bear in mind that the same proof works, in therr rational case,
for the union Ls of long sides of the unstable triangles.

Since fs preserves Λs and maps the pieces of Ps to P∗
s, we get the same

result for P∗
s. Since everything in sight commutes with reflection in the origin,

it suffices to prove our result for the 5 pieces P 1
s , ..., P

5
s of Ps which lie in the

left half of Xs. The pieces in the picture are ordered according to the order
they are visited by Ls, starting from the lower left corner. Thus P1 is the
light trapezoid, P2 is the small dark triangle, P3 is the medium pentagon, P4

is the light triangle, and P5 is the dark pentagon.

Figure 25.3: The left half of the partition for s = 7/17.

We consider the arc Λ0
s, the portion of Λs lying to the left of the origin.

One endpoint of Λ0
s is the bottom left vertex of Xs, and the other endpoint

if the top left vertex of Xs. We orient Λ0
s from the bottom to the top.

We say that Λ0
s crosses a polygon Q if there are 3 points p1, p2, p3 ∈ Λ0

s,
coming in the order of the parameterization, such that p1, p3 ∈ Q and p2 6∈ Q.
In other words, Λ0

s exits Q and then re-enters Q at a later time. If Λ0
s does

not cross Q, then Λ0
s ∩Q is an arc.
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Lemma 25.2 Λ0
s crosses neither P 1

s ∪ P 2
s nor P 3

s ∪ P 4
s ∪ P 5

s .

Proof: We check by direct inspection of the polyhedra involved, and listed
in Part IV, that As = P 1

s ∪ P 2
s and Bs = P 3

s ∪ P 4
s ∪ P 5

s . Figure 25.2 shows
the picture for a typical parameter. It follows from the Shield Lemma that
Λ0

s does not cross As. Note that ∂Bs − ∂Xs ⊂ ∂As, and the final point of Λ0
s

lies in As. Hence, if Λ
0
s crosses Bs then Λ0

s also crosses As. ♠

Lemma 25.3 Λ0
s crosses neither P 1

s nor P 2
s .

Proof: It suffices to prove that Λ0
s does not cross P

2
s . Referring to the Main

Theorem, we have P 2
s = RV ◦φs(Bt). Here t = R(s). If Λ0

s crosses P
2
s then Λ0

s

also crosses φs(Bt). But then the arc Λ0
t crosses Bt. This does not happen,

by the arguments given in the proof of Lemma 25.2. Since Λ0
t does not cross

Bt, we see that Λ0
s does not cross P 2

s . ♠

Lemma 25.4 Λ0
s does not cross P 5

s .

Proof: Referring to the Main Theorem, and to §9, we have

P 5
s = Q ∪RD ◦ φs(At),

where RD is reflection in the diagonal fundamental line of symmetry and Q
is a finite union of square periodic tiles. If Λ0

s crosses P
5
s then Λ0

s also crosses
φs(At). But then Λ0

t crosses At. This does not happen. ♠

Lemma 25.5 Λ0
s crosses neither P 3

s nor P 4
s .

Proof: We compute P 4
s = RDRH(P

2
s ). Since Λs does not cross P 2

s , it does
not cross P 4

s either. Since Λs does not cross 4 out of the 5 pieces, it does not
cross the 5th piece either. ♠

Now we know that Λ0
s also intersects the each of P 6

s , ..., P
10
s in an arc.

The upshot of the discussion is that the restriction fs|Λs is a 10-interval IET
for all oddly even parameters s, and the combinatorics of the IET does not
depend on the parameter. The combinatorics can be gleaned by looking at
a single parameter, and one gets the combinatorics shown in Figure 25.1.
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25.3 The Rational Case

The results from the previous section hold when s is rational and Ls replaces
Λs. We first prove 25.1 in the rational case. Let s be an oddly even rational
parameter. Euclidean arc length gives a measure µs on Ls. We normalize so
that µs(Ls) = 4. Let As and Bs be the symmetric pieces from §9.
Lemma 25.6 µs(As ∩ Ls) = µs(Bs ∩ Ls) = 1.

Proof: This is one case of Lemma 18.3. ♠

The pieces P 1
s , ..., P

10
s refer to the partition for fs.

Lemma 25.7 µs(P
2
s ∩ Ls) = µs(P

4
s ∩ Ls) = µ(P 5

s ∩ Ls).

Proof: Referring to the reflections from §9 we have

RH ◦RD(P
2
s ∩ Ls) = P 4

s ∩ Ls, (248)

and acts in such a way as to preserve µs. This proves the first of the identities,
For the second identity, we use the Main Theorem. We have

µs(Ls ∩ P 5
s ) = λµt(Lt ∩ At), (249)

and
µs(Ls ∩ P 2

s ) = λµt(Lt ∩ Bt). (250)

Here λ depends on s but is the same in both equations. Our result now
follows from Equations 249 and 250, and the previous lemma. ♠

At this point, we set

as = µs(P
2
s ∩ Ls), bs = µs(P

3
s ∩ Ls). (251)

Lemma 25.8 µs(P
1
s ∩ Ls) = as + bs.

Proof: We also know that

As = P 1
s ∪ P 2

s , Bs = P 3
s + P 4

s + P 5
s .

Combining the results we have already proved, we get

µs(P
1
s ∩ Ls) + as = µs(As ∩ Ls) = µ(Bs ∩ Ls) = as + as + bs.

To complete the proof, we solve for the first term. ♠
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Lemma 25.9 bs = 1− 2as

Proof: We have 4 = µs(Ls) = 4as + 2bs. ♠

All in all, we get the labels in Figure 25.1. It only remains to work out
as as a function of s. Let âs be the number of unstable tiles in P 2

s ∩ ∆s.

Likewise define b̂s. Let
ĉs = 2âs + b̂s. (252)

Let t = R(s) and u = R(t). (When u = 0 we set to zero all quantities
associated to u.)

Lemma 25.10 âs = ĉt.

Proof: It follows from symmetry and the Main Theorem that

RD(∆s ∩ P 5
s ) = φs(∆t ∩ At).

The number of unstable tiles in the set on the left is âs and the number of
unstable tiles on the right is the number of unstable tiles is ĉt. ♠

Suppose now that s has even expansion 2, k1, k2, .... Rule 1 from §18 gives
us

ĉs = k1ĉt + ĉu. (253)

Since 2as + bs = 1, we have

as =
âs
ĉs

(254)

This gives us the recurrence relation

as =
ĉt
ĉs

=
ĉt

k1ĉs + ĉu
=

1

k1 + (ĉu/ĉt)
=

1

k1 + at
.

In short

as =
1

k1 + at
. (255)

We check the formula for Theorem 25.1 when s = 1/2. The result then
follows for s = 1/2n by the Insertion Lemma. The general rational case now
follows from induction on the length of the R-orbit of s and Equation 255.

This completes the proof of Theorem 25.1 in the rational case.
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25.4 Measures of Symmetric Pieces

Before we turn to the proof of Theorem 25.1 in the irrational case, we we
record the formulas

• µ(As ∩ Ls) = 2as + bs.

• µ(Bs ∩ Ls) = 2as + bs.

• µ(Ps ∩ Ls) = 3as + 2bs.

• µ(Qs ∩ Ls) = as.

The formula for Qs comes from the fact that RV carries Qs to the piece
P 2
s in our partition. The formula for Ps then follows from the fact that
Ps ∪Qs = As ∪ Bs.

For any two symmetric pieces Ks and K
′
s,

µ(Ks ∩ Ls) ≥ λsµ(K
′
s ∩ Ls), λs =

as
3as + 2bs

. (256)

In other words, the measure of one symmetric piece controls the measure of
them all.

Lemma 25.11 Let u = Rk(s). Let Nu denote the total number of patches in
the patch covering of L0

s associated to the parameter u. Then, for any patch
image K ′, µs(K

′ ∩ Ls) ∈ [ǫ1, ǫ2], where

ǫ1(k, s) =
2λu
Nu

, ǫ2(k, s) =
2

λuNu

.

Proof: This is an immediate consequence of Equation 256 and the definition
of a patch. The point is that µs assigns a value to each patch image which
is at least λu, and at most λ−1

u of the value it assigns to any other patch. ♠

The important point for is as follows. If {sn} is a sequence of rational pa-
rameters converging to s, then the sequence {ǫj(k, sn)} converges to ǫj(k, n).
In particular, the quantities in the sequence are uniformly bounded away
from 0 and uniformly bounded away from ∞.
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25.5 Controlling the Measures

It only remains to prove Theorem 25.1 in the irrational case. Let {sn} be a
sequence of oddly even rational parameters converging to s. Let Λ = Λs and
Ln = Lsn . Likewise define f and fn. Let µn = µsn be the measure considered
above. The following lemma provides the control we need in order to take a
limit of these measures.

Lemma 25.12 Let {Jn} be a sequence of arcs such that Jn ⊂ Ln. Then
µn(Jn) → 0 if and only if diam(Jn) → 0.

Proof: Suppose that the diameter of Jn does not tend to 0. Trimming Jn if
necessary, we can assume that there is a patch (Kn, ψn, un) such that

Jn = Λn ∩ ψn(Kn), un = Rkn(sn). (257)

The lower bound on the diameter of Jn forces an upper bound on the sequence
{kn}. So, we can pass to a subsequence so that kn = k for all n. But

µn(Jn) ≥ ǫ1(k, sn). (258)

As we remarked at the end of the last section, the quantity on the right is
uniformly bounded away from 0.

On the other hand, suppose that diam(Jn) → 0. Given the shapes of the
symmetric pieces, they cannot pack too closely together. If we fix k, then Jn
can only be contained in, say, 8 patch images of the patch cover associated
to Rk(sn) once n is sufficiently large. But then

µn(Jn) ≤ 8ǫ2(k, sn), n > nk. (259)

Hence
lim sup
n→∞

µn(Jn) ≤ 8ǫ2(k, s). (260)

But k is arbitrary. Letting k → ∞ we see that µn(Jn) → 0. ♠

Actually, we will not take the limit of the measures (though we could).
Rather, we will work with the homeomorphisms defined by these measures.
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25.6 The End of the Proof

We already know Theorem 25.1 in the rational case. Let hn : Ln → I1 ∪ I2
be the homeomorphism obtained by integrating the measure µn. By the
rational case of Theorem 25.1, we have {hnfnh−1

n } = In. Given the fact
that the continued fractions describing the lengths converge, we see that
hnfnh

−1
n → I. To finish the proof of Theorem 25.1, we just have to prove

that {hn} converges uniformly to a homeomorphism h : Λ → I1 ∪ I2 on a
subsequence. Given this convergence, we have hfh−1 = I, as desired.

Pick some point x0 ∈ Λ. On a subsequence {hn(x0)} converges. We
choose some subsequential limit and define this to be h(x0). Suppose we
make the same definition for another point x1.

Lemma 25.13 h(x0) 6= h(x1).

Proof: Let Jn be an arc of Ln chosen so the endpoints of Jn converge to x0
and x1. The condition h(x0) = h(x1) implies that µ(Jn) → 0. This contra-
dicts Lemma 25.12. ♠

Lemma 25.14 Given any ǫ > 0 there is some δ > 0 so that ‖x0 − x1‖ < δ
implies that |h(x0)− h(x1)| < ǫ.

Proof: If this result is false, then we can find a sequence {Jn} of arcs, as in
the previous result, such that diam(Jn) → 0 but µn(Jn) > ǫ for all n. This
contradicts Lemma 25.12. ♠

Now, we choose a dense sequence {xm} of Λ and pass to a subsequence so
that {hn(xm)} converges for all m. We define h(xm) = limn→∞ hn(xm). The
lemmas above imply that h maps this dense set injectively to another dense
set. Moreover, h preserves the ordering of these points. Hence h extends to
a homeomorphism from Λ to I1 ∪ I2, and hn → h uniformly. But this is all
we need to finish the proof of Theorem 25.1 in the irrational case.
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Part V

Computational Details
Here is an overview of this part of the monograph.

• In §26 we describe the general computational methods we use for our
calculations. The basic idea is to reduce everything to integer linear
algebra calculations in R3.

• In §27 we describe Calculations 1-12 in detail. Calculations 1-8 can
be launched from our program OctaPET and Calculations 9-12 can be
launched from our program BonePET.

• In §28 we list the raw data used in our calculations. All the data is
also listed in the files for our programs, OctaPET and BonePET. At
the beginning of §28 we describe where the data resides.
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26 Computational Methods

26.1 The Fiber Bundle Picture

Our strategy is to reduce all our calculatons to statements about convex
lattice polyhedra. In this section, we explain the main idea behind this
reduction, for Calculations 1-8. We take the parameter in the interval [1/4, 2],
though sometimes we will take subintervals of [1/4, 2].

In our standard normalization, Xs be the parallelogram with vertices

(ǫ1 + ǫ2s, ǫ2s), ǫ1, ǫ2 ∈ {−1, 1}. (261)

We define
X = {(x, y, s)| (x, y) ∈ Xs)} ⊂ R2 × [1/4, 2] (262)

The space X is both a convex lattice polyhedron and a fiber bundle over
[1/4, 2] such that the fiber above s is the parallelogram Xs. See §28.2 for
the list of vertices of X . The maps fs : Xs → Xs piece together to give a
fiber-preserving map F : X → X .

Lemma 26.1 The map F is a piecewise affine map.

Proof: Consider some point p ∈ Xs. There is some vector

Vs = (A+ Bs,C +Ds)

Here A,B,C,D are integers such that fs(p) = p+ Vs. If we perturb both V
and s, the integers A,B,C,D do not change. So, in a neighborhood of p in
X , the map F has the form

(F (x, y, s) = (x+ Bs, y +Ds, s) + (A,C, 0).

This is a locally affine map of R3. ♠

Let X (S) be the subset of our fiber bundle lying over a set S ⊂ [1/4, 2].
Given the nature of the map, we find it useful to split our fiber bundle into
3 pieces, namely

X = X [1/4, 1/2] ∪ X [1/2, 1] ∪ X [1, 2]. (263)

A maximal domain of X (S) is a maximal subset on which F is entirely
defined and continuous. The map F acts as an affine map on each maxi-
mal subset. In §26.4 we explain how we verify the following experimentally
discovered facts.
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• X [1/4, 1/2] is partitioned into 19 maximal domains, each of which is a
convex rational polytope. The vertices in the partition of X are of the
form (a/q, b/q, p/q) where a, b, p, q ∈ Z and

(p, q) ∈ {(1, 4), (2, 7), (3, 10), (1, 3), (1, 2)}.

These polyhedra are permuted by the map ι1(x, y, s) = (−x,−y, s).
Note that p/q never lies in (1/3, 1/2).

• X [1/2, 1] is partitioned into 13 maximal domains, each of which is a
convex rational polytope. The vertices in the partition of X [1/2, 1] are
of the form (a/q, b/q, p/q) where a, b, p, q ∈ Z and

(p, q) ∈ {(1, 2), (2, 3), (3, 4), (1, 1)}.

These polyhedra are permuted by ι1.

• The 19 polyhedra in the partition of X [1, 2] are all images of the poly-
hedra in the partition of X [1/4, 1/2] under the map ι2 ◦ F , where

ι2(x, y, s) → ((x+ y)/2s, (x− y)/2s, 1/2s).

These polyhedra are permuted by ι1. This is a consequence of the
Inversion Lemma from §7.6.

In §28.7 we will explain the action of the map F on each polyhedron. We
scale all the polyhedra by a factor of 420 = 10× 7× 6 so that we can make
all our calculations using integer arithmetic, One can think of this rescaling
as a way of clearing all denominators in advance of the calculations.

We will list the 420-scaled polyhedra in §28.6. For now, call them

α0, ..., α18, β0, ..., β12, γ0, ..., γ18.

We have labeled so that list these so that

αi ⊂ X [105, 210], βi ⊂ X [210, 420], γi ⊂ X [420, 840]. (264)

X [105, 210] is our name for the 420-scaled version of X [1/4, 1/2], etc. When
we want to discuss these polyhedra all at once, we call them P0, ..., P50.
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26.2 Avoiding Computational Error

The only operations we perform on vectors are vector addition and subtrac-
tion, the dot and cross product, scaling a vector by an integer, and dividing
a vector by d ∈ Z provided d divides all the coordinates. These operations
in turn only use plus, minus, and times, and integer division.

64-bit integer arithmetic: For Calculations 1-8, we we represent integers
as longs , a 64 bit integer data type. One can represent any integer strictly
between −2−63 and 263. (The extra bit gives the sign of the number.) There
are two possible sources of error: overflow error and division errors.

Overflow: We subject all our calculations to an overflow checker, to make
sure that the computer never attempts a basic operation (plus, minus, times)
in with either the inputs or the output is out of range. To give an example,
if we want to take the cross product V1 × V2, we first check that all entries
in V1 and V2 are less than 230 in size. This guarantees that all intermediate
answers, as well as the final answer, will be in the legal range for longs. The
code is written so that the overflow checker halts the program (by throwing
an exception) if some long is too large. This never happens when we actually
run the calculations.

Division: We also check our division operations. Before we compute n/d,
we make sure that n ≡ 0 mod d. The java operation n%d does this. Once
we know that n%d = 0, we know that the computer correctly computes the
integer n/d.

BigIntegers: As we will discuss below, one part of Calculation 12 requires
integers that overflow 64-bit arithmetic. For these calculations, we use the
BigInteger class in Java. With the BigInteger class, one can perform addi-
tion, subtraction on integers of arbitrary length. (We never need to perform
division in these calculations.) Here “arbitrary” means “subject to the lim-
itations of the computer”, but in practice one can use integers that have
thousands of digits. Our calculations come nowhere near these limits.
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26.3 Dealing with Polyhedra

Here we explain the methods we use when dealing with polyhedra.

No Collinearities: Given a polyhedron P , let P1, ..., Pn denote the ver-
tices. We first check that

(Pk − Pi)× (Pj − Pi) 6= 0, ∀ i < j < k ∈ {1, ..., n}. (265)

This guarantees that no three points in our vertex list of P are collinear. We
found the polyhedra of interest to us in an experimental way, and initially
they had many such collinearities. We detected collinearities by the failure
of Equation 265, and then removed all the redundant points.

Face Lists: For each of our polyhedra P , we find and then store the list of
faces of the polyhedron. To do this, we consider each subset S = {S1, ..., Sm}
having at least 3 members. We check for three things.

1. S lies in a single plane. We compute a normal N = (S2−S1)×(S3−S1)
and then check that N · Si is independent of i. Assuming this holds,
let D = N · Si.

2. S lies on ∂P . To check this, we compute the normal N as above, and
then check that either maxN · Pi ≤ D or minN · Pi ≥ D.

3. We check that S is maximal with respect to sets satisfying the first two
properties.

Improved Normals: We noticed computationally that all of the normals
to all of the polyhedron faces can be scaled so that they have the following
form: At least two of the three coordinates lie in {−1, 0, 1} and the third
coordinate lies in {−8, ..., 8}. When we use the normals in practice, we make
this scaling. This is one more safeguard against overflow error.

No Face Redundancies: Once we have the face list, we check that each
vertex of each polyhedron lies in exactly 3 faces. In particular, all the vertices
of our polyhedra are genuine vertices.

Containment Algorithm: Suppose we want to check if a vector V lies
in a polyhedron P . For each face S of P , we let N be the (scaled) normal to
S. we set D = N · S0, and then we verify the following.
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• If maxN · Pi ≤ D then V ·N ≤ D.

• If minN · Pi ≥ D then V ·N ≥ D.

If this always holds then V lies on the same side of S as does P , for all faces S.
In this case, we know that V ∈ P . If we want to check that V ∈ interior(P ),
we make the same tests, except that we require strict inequalities.

Disjointness Algorithm: Let Z10 = {−10, ..., 10}. To prove that two
polyhedra P and Q have disjoint interiors, we produce (after doing a search)
an integer vector W ∈ Z3

10 such that

maxW · Pi ≤ minW ·Qj. (266)

Volumes: For many of the lattice polytopes P we consider, we compute
6 volume(P ) ∈ Z. To compute this volume, we decompose P into prisms by
choosing a vertex of v ∈ P and then computing

∑

f∈P

6volume([v, f ]). (267)

The sum is taken over all faces f of P and [v, f ] denotes the prism obtained
by taking the convex hull of v ∪ f .

We arrange things so that [v, f ] is either is a tetrahedron or a pyramid
with quadrilateral base. In the tetrahedron case,

6 vol([v, f ] = det(M(v, f)), (268)

where m is the matrix of vectors pointing from v to vertices of f . In the
pyramid case,

6 vol([v, f ]) =
1

2

4∑

i=1

det(M(v, fi) (269)

where fi is obtained from f by omitting the ith vertex.

Remark: In Calculation 12, we will compute volumes with BigIntegers.
We will compute 12 vol([v, f ]) instead, because we don’t want to divide by
1/2.
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26.4 Verifying the Partition

Now we explain how we verify that the polyhedra we work with are really
correct. Let RX denote the polytope obtained from X by rotating 90 de-
grees. We have F = (F ′)2, where F ′ is the original PET which swaps X and
RX .

Pairwise Disjointness: Using the Disjointness Algorithm, we check that
Pi and Pj have disjoint interiors for all i 6= j ∈ {0, ..., 50}. We check the
same thing for F (Pi) and F (Pj).

Containment: Using the Containment Algorithm, we check that

• Pi ⊂ X for i = 0, ..., 50.

• F (Pi) ⊂ X for i = 0, ..., 50.

• F ′(Pi) ⊂ RX for i = 0, ..., 50.

We also see, by inspection, that F has a different action on Pi and Pj when-
ever Pi and Pj share a (non-horizontal) face. These checks show that each
Pi is a maximal domain for the action of F

Filling: It remains to check we check that X is partitioned into P0, ..., P50.
We check that

50∑

i=0

volume(Pi) = volume(X ). (270)

The same equation shows that X is also partitioned into F (P0), ..., F (P50).

26.5 Verifying Outer Billiards Orbits

So far, we have been discussing the methods for Calculations 1-8. We use
similar ideas for Calculations 9-12. Here we describe the main techniques.

For Calculations 9-12, the parameter interval is [1/2, 1]. Define

Y = R2 × [1/2, 1], Yy = R2 × {s} (271)

Let P ⊂ Y be a closed convex polyhedron. Let Ps denote the interior
of P ∩ Ys. We call P an N -good polyhedron if the first N iterates of the
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outer billiards map relative to any s ∈ (1/2, 1) is defined and continuous on
each slice Ps. In this section we explain how to verify that a polyhedron is
N -good.

Figure 26.1 shows the partition for the outer billiards map ψ′. Let v1, ..., v8
be the vertices of Os. We label the unbounded sectors S1, ..., S8 in such a
way that vj is the apex of Sj.

v1

S1

S2

v2

Figure 26.1: The partition for outer billiards.

Let Sj ⊂ Y denote the union of points of the form (p, s) where p ∈ Sj at
the parameter s. We again call Sj a sector.

Lemma 26.2 The sectors are all closed convex subsets.

Proof: Consider S1. At the parameter s, the sector S1 lies to to the right of
the line x = s and below the line x+y = 1. As s varies, these lines sweep out
strips – i.e. subsets of planes – in Y . The same goes for the other sectors. ♠

The outer billiards map acts fiberwise on Y . When restricted to the
interior of each sector Sj, the map is an affine involution which fixes the line
segment swept out by the vertex vj. Let Θ denote the outer billiards map as
it acts on Y . To say that a polyhedron P is N -good is to say that the first
N iterates of Θ are defined on all points in the interior of P .
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Lemma 26.3 Suppose that P is a closed convex polyhedron in Y and the
vertices of P lie in the closed sector Sj. Suppose also that P is not contained
in a single plane. Then Θ is defined on all points in the interior of P .

Proof: All points in the interior of P lie in the interior of Sj, and Θ is
defined on the interior of Sj. ♠

The restriction of Θ to the interior of each sector Sj extends to the bound-
ary, because the map in question is just the restriction of an affine map. We
denote this extension by Θj. Note that Θ is not defined on points on the
boundary of Sj because such points also belong to the boundaries of other
sectors.

We say that the sequence {j} is a feasible sequence for a polyhedron P0

if all the vertices of P0 lie in Sj. In this case, we may define P1 = Θj(P0).
Inductively, we say that the length n + 1 sequence {j0, ..., jn} is a feasible
sequence for P0 if {j1, ..., jn} is a length n feasubility sequence for the image
P1 = Θj0(P0).

Lemma 26.4 Suppose that P ⊂ Y is a closed convex polyhedron,not con-
tained in a single plane. If P has a length N feasible sequence then P is
N -good. Moreover, the feasible sequence describes the successive sectors vis-
ited by the orbit in the interior of any point of P .

Proof: This is an immediate consequence of Lemma 26.3 and induction. ♠

Remark: For the purposes of rigorous verification, it doesn’t matter how
we find the feasible sequences for the polyhedra we consider. In practice,
however, we simply look at the orbit of a randomly chosen point in the
interior. Once we have the candidate sequence, we verify that it works.

26.6 A Planar Approach

It might appear, from the form of Lemma 26.4. that somehow we will be
doing 3-dimensional calculations. This is not true. We really just need to
make a planar calculation for each vertex of the polyhedron.

Suppose that s is some fixed parameter and p ∈ R2 − Os is some point.
We define feasible sequences for p just as we did in 3-dimensions. To say that
the polyhedron P has a feasible sequence of length N is to say that there is
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one sequence σ of length N such that, for each vertex p = (x, y, s) of P , the
sequence σ is a feasible sequence for (x, y) at the parameter s.

Now we are going to explain how to do all the calculations using integer
arithmetic. In a word, we rescale. We define a map Tm which simultaneously
acts on R2 and on R3. We define Tm by the action

Tm(x, y) = (mx,my), Tm(x, y, s) = (mx,my, s). (272)

When s ∈ [1/2, 1), the vertices of Os are not integers, and also the vertices
of the polyhedra we test might not be integers. Since we want to make integer
calculations, we will replace P and Os by Tm(P ) and Tm(Os), where m is
chosen so that the first two coordinates of all the vertices of Tm(P ) are
integers and the coordinates of the vertices of Tm(Os) are integers. Once we
have scaled this way, the check that some sequence is a feasible sequence for
some point is an integer calculation.

It would nice if we could, as above, take m = 420 for all our calculations,
but unfortunately we need to take much larger scale factors sometimes. The
reason is that Calculations 11 and 12 involve the square of the octagonal
PET, and so we need to work with the partition A2 rather than the simpler
partition A1. Indeed, for Calculation 12, we will need to consider a few pieces
from the partition A4. The vertices of the polyhedra in these partitions have
rational coordinates with large denominators, and we need to rescale by fairly
large integers to kill those denominators.

For the most part, these large integer scale factors are not a problem
for us. However, there is one place in Calculation 12 where we need to
compute the volumes of some of the scaled copies of our polyhedra coming
from A4. For these volumes, the integers get slightly too large for te 64-bit
arithmetic offered by the longs . So, for all the volume calculations associated
to Calculations 9-12, whether they need it or not, we use the BigInteger class
in java, which allows for integer calculations involving thousands of digits.

There is one more remark about volume we need to make. It turns out
that our method of computing 6 times the volume, described above, involves
dividing some even integers by 2. We never get division errors when we do
such calculations with longs but with the Big Integers we would prefer to
stay away from division altogether. So, we compute 12 times the volume
instead.
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26.7 Generating the Partitions

As we mentioned in the last section, Calculations 11 and 12 involve some
polyhedra in the partitions A2 and A4. Once again, from the point of view
of rigorous calculation, it doesn’t matter how we produce these partitions.
However, it seems worthwhile to say what we do.

For the parameter interval [1/2, 1], there are 13 pieces in the partition A1,
namely (unscaled copies of) β0, ..., β12 listed above. For each pair of indices
(i, j) we compute the intersection

Tm(f(βi)) ∩ Tm(βj). (273)

where m is chosen so large that all the intersection points are integers.
To intersect two polyhedra P and Q, we consider the following 4 collec-

tions of vertices.

• All the vertices of P which are contained in Q.

• All the vertices of Q which are contained in P .

• All intersections of the form A1 ∩ A2 ∩ B, where A1 and A2 are faces
of P and B is a face of Q.

• All intersections of the form B1 ∩ B2 ∩ A, where B1 and B2 are faces
of P and A is a face of Q.

We then weed out redundant vertices – i.e. those which are not extreme
points of the convex hull. All these operations are done using integer linear
algebra.

We do something similar to get the few pieces of A4 that we need in
Calculation 12.

We list all the vertices of all the polyhedra we use in the files for our
program BonePet. We also have written the code which generates these
polyhedra, and the reader can regenerate the data files directly from BonePet.

228



27 The Calculations

27.1 Calculation 1

Recall that F is the octagonal PET map acting on X [1/4, 1]. Let P0, ..., P31

be the polyhedra in the partition for F . Let H = F−1. Then the polyhedra
F (P0), ..., F (P31) give a partition H for the map H. We rename the members
of H as H0, ..., H31.

Recall that we have the partition

X0 = A ∪ B, (274)

where A and B are the symmetric pieces. Just for this calculation, we find
it convenient to introduce the new symmetric piece

A∗ = A ∪ central tiles ∪ ι(A). (275)

Here A∗ is a hexagon which, like A, is symmetric under the reflection in the
x-axis. We have a partition of X into 3 symmetric pieces

X = A∗ ∪ B ∪ C, C = ι(B). (276)

Figure 27.1: A∗ (white) and B (light) and C (dark) for s = 4/13.

Let A be the polyhedron in calX[1/4, 1] which intersects the s-fiber in
the set A∗

s. Likewise define B and C.
We have the partition

X [1/4, 1] = A[1/4, 1] ∪ B[1/4, 1] ∪ C[1/4, 1] (277)

Here A is such that the fiber of A over s is the hexagon As. The polyhedron
B has the same definition relative to the triangle βs. The polyhedron C is
obtained from B by reflecting in the line x = y = 0.
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The map µ from Calculation 1 acts on each of A and B and C as a
reflection. We verify that each polyhedron αi and βi is a subset of one of
these 3 big pieces. Thus, µ acts on each polyhedron as a reflection. The new
partition

X [1/4, 1] =
18⋃

i=0

µ(αi) ∪
12⋃

i=0

µ(βi) (278)

is the partition for the map

G = µ ◦ f ◦ µ−1. (279)

We call this partition G, and we rename its members G0, ..., G31.
So, in summary, G is the partition for G and H is the partition for H.

Next, we find a list of 48 pairs i, j so that

interior(Gi) ∩ interior(Hj) 6= ∅

only if (i, j) lies on our list. More precisely, we use the Separation Algorithm
to show that all other pairs have disjoint interiors.

Finally, we consider the grid

Γ = {(20i, 20k, 105 + 10k) i = −42, ..., 42, j = −21, ..., 21, k = 0, ..., 31}.
(280)

We check the identity G = H on each point of Γ and we also check that at
least one point of Γ is contained in each intersection Gi ∩Hj for each of our
48 pairs. This suffices to establish the identity on all of X [1/4, 1].

27.2 Calculation 2

Calculation 2 follows the same scheme as Calculation 1. Here we just explain
the differences in the calculation.

• We set H = F and G = νF−1ν.

• H is the partition consisting of α0, ..., α18.

• X [1/4, 1/2] is partitioned into 5 smaller polyhedra, coming from Ps,
Qs, the central tile, ι(Ps) and ι(Qs). the map ν acts as a reflection on
each piece. For i = 0, ..., 18, the polyhedron F (αi) is contained in one
of the 5 pieces, so that ν acts isometrically on F (αi).
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• G be the partition of X [1/4, 1/2] by the polyhedra

ν ◦ F (α0), ..., ν ◦ F (α18).

• We find a list of 27 pairs (i, j) such that Gi and Hj do not have disjoint
interiors.

The rest of the calculation is the same.

27.3 Calculation 3

Let s ∈ [5/4, 2] and let t = s − 1 ∈ [1/4, 1]. We want to show that φs

conjugates ft|Yt to fs|Zs and that every orbit of fs intersects Zs, except the
following orbits.

• Those in the trivial tile (α0 ∪ β0)s of ∆s.

• Those in the set
τs = φs

(
(α0 ∪ β0)t

)
.

Once we are done, we will know that τs is in fact a tile of ∆s, and that τs
has period 2.

For this section we set X = X [5/4, 2]. Let Y denote the subset of X whose
fiber over s is the set Ys. Define Z in a similar way. The maps φs : Yt → Zs

piece together to give an isometry φ : Y → Z. The map is given by

φ(x, y, z) = (x± 1, y ± 1, z − 1) (281)

Whether we add or subtract 1 to the first two coordinates depends on whether
the point (x, y, z) lies in the left half of Y or in the right half.

For what we describe next, we always refer to open polyhedra, and our
equalities are meant to hold up to sets of codimension 1, namely the bound-
aries of our polyhedra.

We have
Y = α1 ∪ ... ∪ α18 ∪ β1 ∪ ... ∪ β12. (282)

For each i = 1, ..., 18 we check computationally that there is some k = ki
with the following three properties.
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1. The first ki +1 iterates of F−1 are defined on φ ◦F (αi). This amounts
to checking that

Pij = F−i ◦ φ ◦ F (αi) (283)

is contained in some αa or βb for suitable indices a and b, and for all
i = 0, ..., ki.

2.
Pij ∩ Z = ∅, j = 1, ..., ki. (284)

Equation 284 shows that

F |Pi0 = F ki

That is, on Pi0, the map F returns to Z as F ki . To establish Equation
284, we use the Separation Algorithm so show that

Pij ∩ φ(αa) = ∅, Pij ∩ φ(βb) = ∅

for all a = 1, ..., 18 and b = 1, ..., 12, and all relevant indices i and j.
This suffices because Z is partitioned into the polyhedra

Z = φ(α∞) ∪ ... ∪ φ(α∞∀) ∪ φ(β∞) ∪ ... ∪ φ(β∞∈).

3. Pi,ki+1 = φ(αi).

We make all the same calculations for β1, ..., β12, finding an integer ℓi which
works for βi. We define Qij with respect to βi just as we defined Pij with
respect to αi.

Our calculations above show that φ conjugates F |Y to F |Z. Also, by
construction, the boundary of Z is contained in the union of the boundaries
of the polyhedra φ(αi) ∪ φ(βj). Hence, Zs is a clean set for all s ∈ [5/4, 2].

We still want to see that all orbits except those of period 1 and 2 actually
intersect Z. We check the following.

1. F is entirely defined on φ(α0) and has order 2.

2. Both φ(α0) and F ◦ φ(α0) are disjoint from Z. We use the same trick
with the Separation Algorithm to do this.
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We claim that the open polyhedra in the following union are pairwise
disjoint.

18⋃

i=1

ki⋃

j=0

Pij ∪
12⋃

i=1

ℓi⋃

i=0

Qij ∪
1⋃

j=0

F j ◦ φ(α0) ∪
1⋃

j=0

F j ◦ φ(β0) ∪ α0 ∪ β0. (285)

Suppose, for instance, that Pab and Pcd were not disjoint. Then Pa,b+e and
Pc,d+f would not be disjoint for e > 0 and f > 0 such that b+ e = ka+1 and
c+f = kb+1. But we know that these last polyhedra are disjoint because they
respectively equal the disjoint polyhedra φ(αa) and φ(αc). Similar arguments
work for the other cases.

Similar to Equation 270, we compute the sum of the volumes of the
polyhedra in Equation 285 and see that it coincides with the volume of X .
Thus, X is partitioned into the polyhedra in Equation 285. This fact implies
the all orbits except those of period 1 and 2 actually intersect Z.

Finally, we see by process of elimination that τs really is a tile of ∆s. All
other points not in the interior of τs either have undefined orbits, or lie in
the trivial tile, or have orbits which intersect Z. Thus fs cannot be defined
on any point of the boundary of τs. Since fs is defined, and has period 2, on
the interior of τs, we see that τs is a tile of ∆s having period 2.

27.4 Calculation 4

Calculation 4 follows the same scheme as Calculation 3. Here we will describe
the differences between the two calculations.

• We consider the behavior of polyhedra on the interval s ∈ [1/2, 3/4]
rather than on [5/4, 1]. Here t = 1− s ∈ [1/4, 1/2].

• The map φ is not an isometry here, but rather a volume preserving
affine map. The formula is

φ(x, y, z) = (x± (1− 2z), y ± (1− 2z), 1− z). (286)

The choice of plus or minus again depends on whether (x, y, z) lies in
the left of the right half of Y .

• Y is partitioned into the tiles α1, ..., α18. The B-tiles are not needed
here.
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• The tiles τ and ι(τ) already belong to Z. The work in Calculation 3
shows that τs and ιs are indeed period 2 tiles of ∆s. This time, τ and
ι(τ) are amongst the images of α1, ..., α18 under φ.

• Using the notation from the previous section, the partition in Equation
285 becomes

18⋃

i=1

ki⋃

j=0

Pij ∪ α0 (287)

The rest of the calculation is the same.

27.5 Calculation 5

Calculation 5 follows the same scheme as Calculation 3, except that we don’t
need to keep track of the volumes. Let T and ω be as in Calculation 5. Let
s ∈ (1, 4/3] and let t = T (s) ∈ (1, 2].

We define W and Y as the global versions ofWs and Yu, as in Calculation
3. We are interested in Y [1, 2] and W [1, 4/3]. Similar to Calculation 3, we
have a global map ω : Y → W . We have the formula

ω(x, y, z) = (ωs(x, y), s), s = T−1(z). (288)

We want to see that ω conjugates F |Y to F |W .
We have

Y = γ1 ∪ ... ∪ γ18. (289)

By the same methods used in Calculation 3, we check, for each i = 1, ..., 18,
that there is some k = ki with the following three properties.

1. The first ki + 1 iterates of F−1 are defined on ω ◦ F (γi). Define

Pij = F−i ◦ ω ◦ F (γi) (290)

2.
Pij ∩W = ∅, j = 1, ..., ki. (291)

3. Pi,ki+1 = ω(αi).

These facts imply that ω conjugates F |Y to F |W .
Finally, the set Zs is clean for each s for the following reasons.
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• The top edge of Z0
s and the bottom edge of ι(Z0

s ) are contained in the
union of slices of the sets ω ◦ F (∂γi).

• The vertical edges of Zs are contained in the set ∂τs ∪ ι(∂τs).

• The remaining edges of Zs lie in the ∂Xs.

27.6 Calculation 6

As we mentioned in §5, Calculation 6 practically amounts to inspecting the
partition. For Statement 1, we let τ be the polyhedron which restricts to τs
for s ∈ [1, 3/2]. We list this polyhedron in §28.2. We check that F is entirely
defined on (the interior of) τ and that F 2(τ) = τ .

For each polyhedron P , let Ps denote the intersection of P with the
horizontal plane of height s.

For Statement 2, let Z be the polyhedron which restricts to Z0
s for s ∈

[1, 5/4]. We compute that
Z ⊂ F (γ13). (292)

We also try a single point (x, y, s) ∈ F (γ13) and check that f−1
s (p) = p+ δs.

Since F (γ13) is a domain of continuity for F−1, the same result holds for all
points in F (γ13), including all the points in Z. This proves Statement 2.

For Statement 3, let K be the union of two polyhedra which intersect the
fiber Xs in Xs − Zs −Ws, for s = (1, 5/4]. We see by inspection that

K = F (γ2)∪F (γ8)∪F (γ11)∪F (γ17); γj ⊂ Z, j = 2, 8, 11, 17. (293)

This proves Statement 3.

Remark: We could have made an explicit computation to establish Equa-
tion 293, but this is something that is obvious from a glance at just 2 planar
pictures. We just have to check Equation 293 at the parameters s = 1 and
s = 3/2 because every polyhedron P in sight, when restricted to the fibers
above [1, 5/4], is the convex hull of P1 ∪ P5/4.

27.7 Calculation 7

Calculation 7 follows the same scheme as Calculation 5. Here are the differ-
ences.
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• Here we are interested in Y [1/2, 1] and W [3/4, 1].

• Here we use the formula from 142 to define tha map ω in Equation 288.

• Here we have
Y = β1 ∪ ... ∪ β12. (294)

The rest of the calculation is the same.

27.8 Calculation 8

Calculation 8 works essentially the same was as Calculation 6. For Statement
1, we let τ be the polyhedron which restricts to τs for s ∈ [3/4, 1]. We list
this polyhedron in §28.2. We check that F is entirely defined on (the interior
of) τ and that F 2(τ) = τ .

For Statement 2, we let Z∗ be the polyhedron which intersects Xs in
(Z0

s )
∗ for s ∈ [3/4, 1). We compute that

Z∗ ⊂ β7 (295)

and we finish the proof of Statement 2 just as in Calcultion 6.
For Statement 3, we define K as in Calculation 6 and we see by inspection

that

K = β2 ∪ β6 ∪ β8 ∪ β12, F (βj) ⊂ Z, j = 2, 6, 8, 12. (296)

This proves Statement 3.

27.9 Calculations 9

Calculation 10 contains Calculation 9, so we will only describe Calculation
10.

27.10 Calculation 10

Consider the polyhedron O having vertices

(±1/2,±1/2, 1/2), (±1, 0, 1), (0,±1, 1). (297)

O has the property that O ∩ Ys = Os, the central octagon.
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We want to verify that the translate Os +(n, 0) is a periodic tile, at least
in case n = 2, 4, 6, 8, 10. We consider the polyhedra

O(n) = O + (n, 0, 0), n = 2, 4, 6, 8, 10. (298)

We want to show that the octagon O(n) has period 8n. For each O(n) we
compute a feasibility sequence of length 8n and then verify that it is indeed
a feasibility sequence. We then apply Lemma 26.4 in each of the 5 cases.
Here are the 5 feasible sequences.

• 14725036

• 1504736251403726

• 151404737262515040373626

• 15150404737362625151404037372626

• 1515140404737372626251515040403737362626

Remark: Our calculation actually proves the weaker statement that the
octagons of interest to us are contained in periodic tiles. However, the top of
each octagon is contained in the boundary of one of the strips mentioned in
§5.1. Hence, the top edge of each octagon is really a boundary of a periodic
tile. The same goes for the bottom edge. Following the orbit around, we see
that the same is true of all the edges. Hence, the octagons really are periodic
tiles.

27.11 Calculation 11

For the purposes of this calculation, we think of the dogboneD as the domain
for the octagonal PET map f . Let A2 be the partition for f 2, the square of
the octagonal PET. So, A2 is a partition ofD. As we discussed in the previous
chapter, we rescale all these polyhedra so that the first two coordinates of
every vertex of every polyhedron in the partition is an integer. The scale
factor is 840 (just twice what we needed for Calculations 1-8.)

A2 has 40 polyhedra, P0, ..., P39. We list these in §28.8. For each such
polyhedron Pj, we consider the translates

Pjn = Pj + (n, 0), n = 2, 4, 6, 8. (299)
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We first check that {Pjn} for j = 0, ..., 39 forms a partition of the dogbone
D0

n. Really, we just have to check this for n = 2. The remaining cases follow
from symmetry. Also, this check is somewhat redundant, on account of the
way we created the partition A2. Nonetheless, we make the check by showing
that the polyhedra are pairwise disjoint and that the sum of the volumes is
as expected.

Next, we associate to Pjn a sequence σjn and also a number ǫjn ∈ {0, 1}.
The sequence is supposed to encode the orbit of Pjn until it returns to Dn as
Ψ(Pjn). The number ǫ = ǫjn is supposed to be such that

Ψ(Pjn) ⊂ Dǫ
n. (300)

We verify that σjn is a feasible sequence for Pjn and then we compute the
image P ′

jn under the corresponding power of the outer billiards map Θ. We
then verify that

• f 2(v)− v = v′n − vn if ǫjn = 0.

• f 2(v)− v = ι(v′n)− vn if ǫjn = 1.

holds on all the vertices v of Pj. These symbols have the following meaning.

• vn = v + (n, 0) is the vertex on Pjn corresponding to v.

• v′n is the vertex on P ′
jn corresponding to vn.

• ι : Dn → Dn is the involution which swaps the dogbones D0
n and D1

n.

Our calculations show that there is some exponent α = αjn so that Υα

and f 2 agree on Pjn. In other words, we do not explicitly rule out the
possibility that σjn describes some power of Ψ acting on Pjn. However,
based on the length of σjn and the description of how the pieces circulate
around the central octagon, we can see that σjn isn’t long enough to describe
the second return map, let along a higher power. One can also see this by
directly inspecting the sequences. So Υ and f 2 agree on Pjn for each pair of
indices (j, n).

27.12 Calculation 12

For this last calculation, we are trying to show that the map p → p + (2, 0)
conjugates Ψ|E1 to Ψ|E3.
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For starters, we note that we do not need to prove this result for all
s ∈ [1/2, 1]. The two octahedra Os and Ot are isometric when s = 1/(2t).
For this reason, it suffices to prove our result for t ∈ [

√
2/2, 1]. In fact, we use

the parameter interval [2/3, 1]. We did not set out to make this restriction;
we just found by trial and error that we could use simpler partitions if we
restricted the parameter interval this way.

We produce partitions on E1 and E3 so that

• For polyhedron P1 in the partition of E1 there is a corresponding poly-
hedron P3 in the partition of E3 so that P3 = P1 + (2, 0).

• The first return map to E1 (of the square of the outer billiards map) is
defined on each polyhedron in the partition of E1.

• The first return map to E3 (of the square of the outer billiards map) is
defined on each polyhedron in the partition of E3.

• Let P1 and P3 be corresponding polyhedra. Let P ′
1 and P ′

3 be the
corresponding images under the first return map. We check that

v′1 − v1 = v′3 − v3 (301)

for all vertices v1 of P1. Here v3 = v1 + (0, 2, 0). Also vj is the vertex
of P ′

j corresponding to vj.

Once we have the partitions, we verify all the statements in the same vertex-
by-vertex way we do for Calculation 11.

We will describe the partition of E1. The partition of E3 is just obtained
by translating each polyhedron. The partition is built in 3 steps.

Start with What We have: We start with the partition P2 consisting
of polyhedra

Pj + (0, 2), j = 0, ..., 39. (302)

These are the 40 polyhedra from A2 used in Calculation 11.

Extend by Symmetry: Next, there is a translation up (respectively dn)
which maps the bottom (respectively top) half of D into the top (respectively
bottom) quarter of E1. See Figure 27.2 for the actions of these maps.
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up dn

Figure 27.2: The action of j1.

We pull back the relevant 20 pieces of P2 by j1 and j2 to get a partition
P3 consisting of 80 pieces. This is a partition of E1.

Subdivide When Necessary: It would be nice to simply say that we
use the partition P3 for our calculation. However, it turns out (even restrict-
ing to the interval [2/3, 1]) that 4 out of 80 of the pieces fail the feasibility
test. What is going is that the map Ψ|E1 is not entirely defined on these
pieces. In our listing the bad pieces are Pj + (2, 0) for j = 0, 28, 58, 67.

We replace each bad piece Pj + (2, 0) by the finite union of pieces

Pjk + (0, 2),

where the collection {Pjk} is the portion of the partition A4 that is contained
in Pj. It turns out that we are replacing 4 polyhedra with 25 polyhedra. So,
the final partition P4 has 101 polyhedra in it. Our calculations work for this
partition.

Remarks:
(i) A more robust method would be just to use translates of A4 in the first
place, but this seemed to involve a massive calculation that would frequently
overflow 64 bit arithmetic and require extensive use of the BigInteger class.
(ii) We might have tried to use polyhedra from the simpler partition A3 but
we felt that probably it would not work. The even powers of the octagonal
PET are well-related to the outer billiards systems we have been considering,
but the odd ones do not seem well related.
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28 The Raw Data

28.1 A Guide to the Files

In this chapter, we will list enough data to that a very interested reader
could reconstruct all our calculations from what is written here. However,
our computer files also contain the same data, and more. All the computer
files are contained in the two directories OctaPET and BonePET. We did
not try to merge these two directories because the notation is not completely
consistent. OctaPET involves the calculations (Calculations 1-8) related to
properties of the octagonal PET, and BonePET involves the calculations
(Calculations 9-12) involving outer billiards. Here is a guide to the files.

• The file OctaPET/DataPartition.java contains the listing of the
polyhedra in our partition for the octagonal PET map.

• The file OctaPET/DataPartitionExtra.java contains the listing of
the remaining polyhedra used in Calculations 1-8, such as those corre-
sponding to the symmetric pieces A,B, P,Q.

• The file BonePET/DataPartition1Raw.java contains the listing of
the polyhedra in our partition A1 for the octagonal PET defined on
the dogbone D discussed in §5 and in §27.11. As we explain in §28.8,
the 13 polyhedra listed here are just translates of 13 of the polyhedra
listed in OctaPET/DataPartition.java.

• The file BonePET/DataPartition2Raw.java contains the listing of
the polyhedra in the partitions A2 and A3 discussed in §27.12.

• The file BonePET/DataPartition4Raw.java contains the listing of
the polyhedra in the partitions A4. §27.12.

Unless otherwise mentioned, all polyhedra are scaled by 420.

28.2 The Main Domain

Here is X [1/4, 2]. This is the big polyhedron which contains all the others.



−525
−105
105






315
−105
105





−315
105
105





525
105
105





−1260
−840
840





−420
−840
840





420
840
840





1260
840
840



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28.3 The Symmetric Pieces

Here are the polyhedra corresponding to the symmetric pieces used in Cal-
culations 1 and 2.

Here is A[1/4, 1]. Note that this piece is based on A∗ rather than A. See
§27.1.


315
105
105





−315
105
105





−315
−105
105






315
−105
105





420
0
105





−420
0

105






0
420
420





420
0
420





−420
0
420






0
−420
420




Here is B[1/4, 1].


−315
−105
105





−420
0

105





−525
−105
105





−840
−420
420





−420
0
420






0
−420
420




Here is P [1/4, 1/2].



−315
−105
105





−105
−105
105





−105
105
105





−315
105
105





−630
−210
210





−210
−210
210





−210
210
210




Here is Q[1/4, 1/2].



−525
−105
105





−315
−105
105





−315
105
105





−630
−210
210




28.4 Period Two Tiles

Here is the period 2 tile τ [1, 5/4] from Calculation 6.


−525
−315
315





−315
−315
315





−315
−105
315





−525
−105
315





−420
−420
420




Here is the period 2 tile τ [3/4, 1] from Calculation 8.


−420
−420
420





−210
−630
630





−210
−210
630





−630
−210
630





−630
−630
630



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28.5 The Domains from the Main Theorem

Here is the domain Z[1, 5/4] from Calculation 6.


−420
−420
420





−840
−420
420





−945
−525
525





−525
−525
525





−525
−315
525





−735
−315
525




Here is the domain Z[3/4, 1] from Calculation 8.


−420
−420
420





−840
−420
420





−945
−525
525





−525
−525
525





−525
−315
525





−735
−315
525




28.6 The Polyhedra in the Partition

Define

ι1(x, y, s) = (−x,−y, s), ι2(x, y, s) =
(x+ y

2s
,
x− y

2s
,
1

2s

)
. (303)

The partition of X [1/4, 1/2] consists of the 19 polyhedra.

α0, α1, ..., α9, ι1(α1), ..., ι1(α9). (304)

The partition of X [1/2, 1] consists of the 13 polyhedra

β0, β1, ..., β6, ι1(β1), ..., ι1(β6). (305)

The partition of X [1, 2] consists of the 19 polyhedra

ι2 ◦ F (αi), i = 0, ..., 18. (306)

Here α0, ..., α18 are the polyhedra from Equation 304.

A0 =



105
105
105





−105
105
105





−105
−105
105






105
−105
105





210
210
210





−210
210
210





−210
−210
210






210
−210
210




A1 =



420
0
105





525
105
105





315
105
105





280
140
140




243



A2 =



105
105
105





280
140
140





140
140
140






210
−210
210




A3 =



280
140
140





140
140
140





210
210
210






210
−210
210





420
0
210




A4 =



525
105
105





420
0
140





420
0
210





630
210
210





210
210
210




A5 =




315
−105
105





420
0

105





315
105
105





420
0

120





378
−42
126




A6 =



420
0
120





462
42
126





420
0
140





420
140
140





280
140
140





210
210
210




A7 =



315
105
105





420
0
120





378
−42
126





420
0

140




A8 =




315
−105
105





315
105
105





105
105
105






105
−105
105





420
0
140





280
140
140






210
−210
210





420
0

210




A9 =



420
0
105





525
105
105





420
0
120





462
42
126





420
140
140





280
140
140




B0 =



105
105
105





−105
105
105





−105
−105
105






105
−105
105





210
210
210





−210
210
210





−210
−210
210






210
−210
210




B1 =



420
0

105





525
105
105





315
105
105





280
140
140



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B2 =



105
105
105





280
140
140





140
140
140






210
−210
210




B3 =



280
140
140





140
140
140





210
210
210






210
−210
210





420
0

210




B4 =



525
105
105





420
0

140





420
0
210





630
210
210





210
210
210




B5 =




315
−105
105





420
0
105





315
105
105





420
0
120





378
−42
126




B6 =



420
0

120





462
42
126





420
0

140





420
140
140





280
140
140





210
210
210




28.7 The Action of the Map

In this section we explain the action of the map on each of the polyhedra
listed above. To each polyhedron we associate a 4-tuple of integers. The list
V = (u1, v1, u2, v2) tells us that

FV



x
y
s


 =



1 0 2v1 − 2v2
0 1 2v1 + 2v2
0 0 1





x
y
s


+



−2u1
2u2
0


 . (307)

Remark; Equation 307 gives the equation for the action on the unscaled
polyhedra. When we acts on the scaled polyhedra listed above, we need to
scale the translation part of the map by 420. That is, −2u1 and 2u2 need to
be replaced by −840u1 and 840u2.
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The polyhedra α0 and β0 correspond to the trivial tiles. The vectors
associated to these are a0 = b0 = (0, 0, 0, 0). Below we will list the vectors
a1, ..., a9, b1, ..., b6. We have the relations

a9+i = −ai, b6+i = −bi. (308)

The vector ci associated to ι2 ◦ F (αi) is given by the following rule:

ai = (u1, v1, u2, v2) =⇒ ci = (−v2,−u2,−v1,−u1). (309)

Recall that the map F is really the composition (F ′)2, where F ′ maps
the bundle X [1/4, 2] to the polyhedron obtained by rotating X [1/4, 2] by 90
degrees about the z-axis. To get the action of F ′ we simply replace each
vector V = a1, a2, ... by V

′, where

V = (u1, v1, u2, v2) =⇒ V ′ = (u1, v1, 0, 0). (310)

Here are the vectors.

a1 = (1, 2, 0,−2), a2 = (0,−1,−1,−2) a3 = (0,−1,−1,−1).

a4 = (1, 1, 0,−1), a5 = (0,−2,−1,−2) a6 = (1, 2, 1, 1).

a7 = (0,−2,−1,−1), a8 = (0,−1, 0, 1) a9 = (1, 2, 1, 2).

b1 = (1, 0,−1,−1), b2 = (1, 1, 0,−1) b3 = (1, 1, 1, 0).

b4 = (0,−1,−1, 0), b5 = (0,−1,−1,−1) b6 = (1, 1, 1, 1).

28.8 The Partition for Calculation 11

For the parameter interval [1/2, 1], the parallelogram F1 is partitioned by
the polyhedra B0, ..., B12. For Calculations 11 and 12, it is more convenient
to work with a partition of the dogbone D. Recall that Dis obtained from
the domain F1 by deleting the central tile F1 ∩ F2 and shifting the lower
component of F1 − F2 by the vector (2, 0). See Figure 5.1. Accordingly,
we define B′

j to be the translate of Bj which lies in D. Either B′
j = Bj or

B′
j = Bj + (2, 0), depending on which component of F1 − F2 contains Bj.
The partition A2 mentioned in §27.11 consists of 40 polyhedra P0, ..., P39.

Each of these polyhedra has the form

P (i, j) = f(B′
i) ∩ B′

j. (311)
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To illustrate our notation by way of example, the symbol P1(10, 2) means
that the polyhedron P (10, 2) is listed as P10 in our program. We only list
P0, ..., P19. We have

Pj+20 = ρ(Pj), ρ(x, y, z) = (2− x,−y, z). (312)

This time, we scale all the polyhedra by a factor of 840.

P0(12, 1) =





840
−840
840









1680
−840
840









1050
−630
630









1120
−280
560









1050
−210
630





P1(10, 2) =





1260
−420
420









840
0

560









1050
210
630









840
0

630









1120
−280
560





P2(10, 3) =





840
0

840









840
0

672









1050
−210
630









980
140
700





P3(12, 4) =





840
−560
560









630
−630
630









560
−280
560









560
−560
560









525
−315
525









672
−168
504





P4(12, 5) =





420
−420
420









840
0

420









840
−560
560









672
−168
504









560
−560
560









525
−315
525





P5(10, 6) =





1050
210
630









840
0

672









1050
−210
630









840
0

630









1120
−280
560









980
140
700





P6(12, 6) =





840
0

420









840
−560
560









1050
−630
630









840
−840
840









840
0

560









630
−210
630









630
−630
630









1050
−210
630









1120
−280
560









560
−280
560





P7(7, 7) =





840
−840
840









0
−840
840









840
0

840









210
−630
630





P8(8, 7) =





1680
−840
840









420
−420
420









1120
−280
560









1470
−630
630




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P9(8, 8) =





840
0

420









420
−420
420









1260
−420
420









1400
−560
560





P10(9, 8) =





1680
−840
840









840
0

560









630
−210
630









840
0

630





P11(11, 8) =





840
0

420









1260
−420
420









840
0

560









1050
210
630









1120
280
560





P12(7, 9) =





280
−560
560









210
−630
630









840
0

840









840
−840
840









630
−630
630





P13(9, 9) =





840
0

840









840
−840
840









1680
−840
840









840
0

672









700
−140
700





P14(7, 10) =





280
−560
560









630
−210
630









840
0

840









630
−630
630









560
−560
560





P15(11, 10) =





1260
−420
420









1120
280
560









1155
315
525









1008
168
504





P16(7, 11) =





420
−420
420









280
−560
560









630
−210
630









560
−560
560





P17(11, 11) =





1260
−420
420









1260
420
420









840
0

420









1008
168
504









1155
315
525





P18(8, 12) =





840
0

420









420
−420
420









1470
−630
630









1400
−560
560









1120
−280
560





P19(9, 12) =





840
−840
840









1680
−840
840









630
−210
630









840
0

672









840
0

630









700
−140
700




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28.9 The First Partition for Calculation 12

The calculation A3 is obtained by adding another 40 polyhedra to the 40
already contained in A2. Let ρ be the map from Equation 312. Here are the
equations for the maps discussed in §27.12.

• up(x, y, z) = (x+ 2z − 2, y + 2z, z).

• dn(x, y, z) = (x+ 2z − 2, y − 2z, z)

The pieces P40, ..., P59 have the form

P40+j = up(Pj), j = 0, ..., 19. (313)

The pieces P60, ..., P79 have a more ad hoc description. As in Equation
312, let ρ(x, y, z) = (2− x,−y, z). It is tempting to define

P60+j = dn ◦ ρ(Pj),

but this gives us pieces which cover the wrong region. To get exactly the
right pieces, we define

• ρ′(p) = ρ(p) unless p ∈ Pj for j ∈ 1, 2, 5, 11, 15, 17.

• ρ(p) = p when p ∈ Pj for j ∈ 1, 2, 5, 11, 15, 17.

Then we define

P60+j = dn ◦ ρ′(Pj), j = 0, ..., 19. (314)

This gives us a covering of the bottom component of E1 −D, as desired.

28.10 The Second Partition for Calculation 12

The partition A4 uses 76 polyhedra from A3, and replaces the 4 missing
polyhedra with 25 new ones. The omitted 4 polyhedra are

Pj , j = 0, 28, 58, 67. (315)

Here are the 25 new polyhedra. The scale factor is 83160 = 840× 99.

Q0 =





103950

−62370

62370









124740

−41580

62370









118800

−35640

59400









106920

−23760

59400









108108

−24948

58212




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Q1 =





103950

−20790

62370









116424

−66528

66528









99792

−66528

66528









97020

−69300

69300





Q2 =





103950

−62370

62370









103950

−20790

62370









116424

−66528

66528









124740

−41580

62370









106920

−23760

59400









99792

−66528

66528





Q3 =





83160

−83160

83160









166320

−83160

83160









142560

−59400

71280









135135

−51975

72765









135135

−72765

72765





Q4 =





103950

−20790

62370









124740

−41580

62370









116424

−33264

66528









97020

−41580

69300









99792

−49896

66528





Q5 =





103950

−62370

62370









110880

−27720

55440









118800

−35640

59400









108108

−24948

58212





Q6 =





83160

−83160

83160









142560

−59400

71280









138600

−55440

69300









124740

−41580

69300









135135

−51975

72765









135135

−72765

72765









130680

−71280

71280









114345

−72765

72765





Q7 =





133056

−49896

66528









138600

−55440

69300









124740

−41580

69300









124740

−69300

69300









130680

−71280

71280









114345

−72765

72765





Q8 =





83160

−83160

83160









116424

−66528

66528









124740

−41580

62370









124740

−69300

69300









133056

−49896

66528









116424

−33264

66528









124740

−41580

69300









97020

−41580

69300









97020

−69300

69300









99792

−49896

66528





Q9 =





83160

−166320

83160









116424

−66528

66528









97020

−97020

69300









99792

−66528

66528









97020

−69300

69300





Q10 =





103950

−62370

62370









116424

−66528

66528









97020

−97020

69300









99792

−66528

66528





Q11 =





83160

−83160

83160









166320

−83160

83160









83160

−166320

83160









135135

−72765

72765





Q12 =





83160

−83160

83160









83160

−166320

83160









135135

−72765

72765









130680

−71280

71280









114345

−72765

72765




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Q13 =





83160

−83160

83160









83160

−166320

83160









116424

−66528

66528









124740

−69300

69300









97020

−69300

69300





Q14 =





83160

−166320

83160









124740

−69300

69300









130680

−71280

71280









114345

−72765

72765





Q15 =





83160

55440

55440









41580

41580

62370









35640

47520

59400









41580

41580

58212









41580

58212

58212









55440

55440

55440









47520

35640

59400









47520

59400

59400





Q16 =





20790

62370

62370









41580

41580

62370









35640

47520

59400









41580

58212

58212









47520

59400

59400





Q17 =





0

83160

83160









10395

72765

72765









23760

59400

71280









41580

69300

69300





Q18 =





20790

62370

62370









83160

55440

55440









62370

62370

62370









41580

41580

62370









16632

66528

66528





Q19 =





55440

27720

55440









83160

55440

55440









41580

41580

58212









55440

55440

55440









47520

35640

59400




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



13860
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41580
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Q22 =
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