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Abstract

This paper gives a fairly elementary account of my proof of the
optimal Moebius band conjecture.

1 Introduction

You make a paper Moebius band by taking a 1 × λ strip of paper, giving
it an odd number of twists, and then joining the length-1 ends together.
The question is: How small can you make λ and still do this? This is an
old problem, discussed in the introduction of the 1962 paper [W] of W.
Wunderlich. (See [T] for an english translation of Wunderlich’s paper.) The
question seems implicit in the 1930 paper [Sa] of M. Sadowski. (See [HF] for
an english translation of Sadowski’s paper.) I guess that the question might
go back even further than that. It might occur to anyone after they make a
bunch of paper Moebius bands.

The question is treated in more detail in the 1977 paper of Benjamin
Halpern and Charles Weaver. Halpern and Weaver conjecture in their paper
that λ must be greater than

√
3. Sadowski’s paper gives examples showing

that you can take any λ >
√

3 and actually make a paper Moebius band, so
the Halpern-Weaver Conjecture, if correct, really solves the whole problem.

I first learned about this optimal paper Moebius conjecture from the beau-
tiful expository article written by Dmitry Fuchs and Sergei Tabachnikov,
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[FT, Chapter 14]. This is a chapter in their book, The Mathematical Om-
nibus . I recommend this work as an excellent introduction to the problem.

My paper [S] solves the optimal paper Moebius band conjecture. This is
probably the first paper I have written that would be of interest to people
even in high school. Scientific American [C], Popular Mechanics [O], Quanta
Magazine [Ha], and a handful of other popular venues have covered the result.
There are also some accounts on TikTok, Instagram, and Youtube. These
popular accounts do not delve into the proof however.

The conjecture and its answer are pretty easy to state, so I thought it
would be nice if someone without an extensive math background could follow
the proof. The material here parallels the material in [S], but here I present
things in a way that keeps the needed background to a minimum. I’ll suggest
a handful of experiments along the way. If you do the experiments you will
get more out of this paper.

1.1 The Triangular Moebius Band

There is an experiment you can do that might lead you to the conclusion
that

√
3 is the right bound.

Experiment 0: Make a paper Moebius band by starting with a long rectan-
gular strip. Bring the ends together but don’t tape them. Now slide the ends
past each other, which in effect simulates making a shorter paper Moebius
band. If you do this as much as possible, you will see a kind of triangular
structure emerge.

Figure 1.1 shows the idealized limit of this procedure. The construction
is based on a 1×

√
3 rectangle.

foldfold
1

3

fold

Figure 1.1: The triangular Moebius band

The strip in Figure 1.1 is lightly shaded on one side and darkly shaded
on the other. You first fold in the flaps to make a rhombus, and then you
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fold the rhombus in half like a wallet. This cleverly joins the ends together.
The dotted segment on the right runs through the middle of the triangular
Moebius band and indicates where the ends are joined together. The bold
segment on the right indicates the wallet fold. The dotted and bold segments
together make what we will later call a T pattern.

Figure 1.2 shows a different view of the triangular Moebius band. This
time we start with a symmetric trapezoid and fold the left and right sides
over and under. This move brings the ends together at the top. This time
the bold segment on the right indicates where the ends are brought together
and the dotted segment again runs through the middle.

fold under

3

2

fold over

3

2

1

3

1

3

1

Figure 1.2: The triangular Moebius band: another view

The pinstriping in both figures indicates a collection of line segments,
disjoint except at the endpoints, which remain straight during the folding
process. This collection of line segments will play an important role in our
definition of a paper Moebius band.

One thing strange about the triangular Moebius band is that you can-
not make it exactly. If you made it exactly then the whole thing would fit
exactly into an equilateral triangle. If you use a piece of paper that is very
slightly longer, then you can make a Moebius band as intended. One part
of our definition for what counts as a paper Moebius band is that it must
be embedded . That is, the different parts of it cannot be completely pressed
together.

Experiment 1: Make a triangular Moebius band for yourself. Draw the
pinstriping on it. Find the T-pattern. Convince yourself that if you have a
physical model, in which the sheets do not coincide, then actually you must
have λ >

√
3.
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1.2 The Moebius Accordion

Before giving our definition of a paper Moebius band, let’s explore a wierd
example that will not count. If you are just interested in folding a piece of
paper up into a Moebius band, then you can actually do this for any λ > 0.
Let me illustrate this with the case λ = 1. You start with a square piece of
paper and fold it into a thin strip, like an accordion, using a zigzag pattern.
You want to make an even number of folds, so that the strip is sectioned into
an odd number of pieces.

Figure 1.3: The Moebius accordion with 5 sections.

After making the thin strip, you then twist that thing into a Moebius
band and join the ends together. The odd number of sections guarantees
that the two pieces will fit together perfectly. This example really does make
a Moebius band in space (rather than just a triangle) but it is still not em-
bedded. The thin sections are all pressed exactly on top of each other.

Experiment 2: Make a Moebius accordion out of a 1 × 2 rectangle and
then (using the other pair of opposite sides) out of a 2 × 1 rectangle. Con-
vince yourself that you can do this for any rectangle you like.

The approximation you make will not quite lie flat. To really make this
thing you will have to introduce small stretches or tears. The Moebius ac-
cordion not only fails to be an embedded paper Moebius band, but if you
try to make approximations it is not possible to make it out of (theoretical)
paper. Also, if you allow a monster like the Moebius accordion into the game
then the question about the smallest λ is meaningless: Any λ will work.
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1.3 Paper Moebius Bands

To formulate a meaningful question – and in particular to describe the
Halpern-Weaver Conjecture – we need a definition of what a paper Moebius
band actually is. The definition I give here is different than the traditional
one given in [S], but what I call as a (smooth, embedded) paper Moebius band
in [S] is covered under the definition given here. The translation between the
definition given here and the traditional one goes back to the papers [CL]
and [HL] in the 1950s.

Experiment 3: Make a paper Moebius band and examine it carefully. No-
tice that through each point you can draw a straight line segment that stays
on the surface. Try to draw these line segments on the surface with a marker
of some kind. Notice how the line segments cut across the Moebius band and
have their endpoints in the boundary. Notice that the line sequence sweep
through the paper Moebius band, making a kind of circle of line segments.
The Moebius band bends around these line segments, and we will call them
the bends

We denote the circle by S1. A circle of bends is a loop of line segments in
space. That is, for each angle θ ∈ S1, we have a line segment Lθ. Technically
the segments should vary continuously with the parameter θ and also every
two of them should be disjoint from each other. Again, we will call these
line segments bends . Imagine you are in a dark room and you have a circular
dial on the wall. The dial selects a bend which is glowing in the dark like a
glow stick. As you turn the dial, the segment starts moving through space,
as if an invisible person were swinging around the glow stick according to
the commands of the dial.

Here is what it means for a surface to be a paper Moebius band.

• The surface is made out of a circle of bends. That is, the circle of
bends sweeps through the surface. The endpoints of the bends lie in
the surface boundary.

• When you cut the surface open along any of the bends, you can unwrap
the resulting surface isometrically (i.e. without stretching or tearing)
into the plane so that it becomes a symmetric trapezoid. The boundary
opens up to be two parallel sides of the trapezoid and the two other
sides come from the cut.
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The intuitive idea is that when you make a paper Moebius band, these
straight line segments automatically appear. The Moebius band is “bending
along the bends”.

Experiment 4: Make a paper Moebius band and cut it open along a bend.
Notice how it falls open into a symmetric trapezoid. Experiment with cutting
along different bends. The more perpendicular the bend is to the boundary,
the closer your cut-open surface will resemble a rectangle.

Let’s revisit the triangular Moebius band. The pinstriping in Figures
1.1 and 1.2 indicates the circle of bends. When you cut open along the
dotted segment in Figures 1.1 and 1.2 you get a rectangle, which counts
as a symmetric trapezoid. When you cut open along the bold segment in
Figures 1.1 and 1.2 you get the symmetric trapezoid shown on the left side
of Figure 1.2. I should say again that this definition does not quite work for
the idealized triangular Moebius band because the bends are not all disjoint
from each other. They trace over the same equilateral triangle three times.
However, if you imagine that you have an approximation that is actually
embedded in space, you will get an honest circle of bends.

After you cut the paper Moebius band open along the bend, there are two
measurements you can make: The height is the distance between the parallel
sides coming from the boundary. The width is the half the combined length
of the two parallel sides coming from the boundary. The ratio width/height
is the aspect ratio. In Figures 1.1 and 1.2 we have scaled so that the height
is 1. We always scale this way. As we have already discussed, the aspect
ratio in the idealized case is

√
3. For the approximations I have been talking

about (where you can actually do the cutting) the aspect ratio is larger than√
3.

Exierment 5: Make several paper Moebius bands using identical rectan-
gular strips. Cut them open along different bends and compute the aspect
ratio. Notice that you always get the same answer, namely the aspect ratio
of the original rectangular strip. One thing to note is that if you cut the
Moebius band open along any crosscutting straight line segment you will get
a symmetric trapezoid. You don’t even have to use a bend. So, in particular,
you can do this experiment quite quickly.
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1.4 The Main Result

The Main Theorem in [S] is that a paper Moebius band has aspect ratio
greater than

√
3. I call this the Main Theorem in [S].

The other theorem in [S] is that if you have a paper Moebius band whose
aspect ratio is close to

√
3 then the paper Moebius band itself is close to the

triangular Moebius band. The closer you get to
√

3 the more the thing has
to look like an equilateral triangle. In [S] I call this the Triangular Limit
Theorem. The Triangular Limit Theorem provides the rigorous justification
for the results of Experiment 0.

1.5 Further Reading

Since working out [S] there have been several other developments about
paper Moebius bands. In [BS], my wife and I identified what probably are
the shortest 3-twist optimal paper Moebius bands. These are ideal forms,
like the triangular Moebius band, and they have aspect ratio 3. In [H], Aiden
Hennessey proved the very surprising result that you can make a Moebius
band with as many twists as you like with a 1× 6.25 strip of paper.

You might also be interested in folded ribbon knots. These are like paper
Moebius bands except that they are polygonal in nature and pressed into
the plane. See [D] for a survey and [DL] for a wealth of conjectures about
them. The triangular Moebius band is probably best interpreted as a folded
ribbon knot. [DL, Corollary 25] is a special case of our Main Theorem in
which the folded ribbon knot is assumed to have a triangular centerline. [DL,
Conjecture 26] is a version of the Halpern-Weaver Conjecture in the language
of folded ribbon knots. The Main Theorem of [S] incidentally solves this
conjecture.

You might also be interested in rope knots. The general problem here is
to tie a knot of a given kind with as short a piece of rope as possible. See
[CKS] and [DDL] information about this.

My paper [S] has a more extensive bibliography discussing other work
about paper Moebius bands and related topics.

1.6 Acknowledgements

In [S] I thank a ton of people for helping me think about the Optimal Moe-
bius Band Conjecture. They are listed at the end of the introduction in [S].
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2 Four Optimization Problems

In this chapter I will discuss 4 “optimization problems”. We put certain
constraints on a shape we are interested in, and then we try to find the
best shape according to some measurement. The results are stated in terms
of inequalities of the form “The measurement for any shape satisfying the
constraints is at least ...” In the next chapter I will relate the last of the
problems, the Coupled Circuit Problem, to the Optimal Moebius Problem.
Here is one piece of notation. In general, |γ| denotes the length of a curve γ.

2.1 The Triangle Problem

Let 5 be a triangle with a horizontal base of length x, and a height of y. Let
∨ denote the two non-horizontal sides. The measurement | ∨ | is the sum of
the lengths of the two non-horizontal sides. See Figure 2.1. We claim that

| ∨ | ≥
√
x2 + 4y2. (1)

The best shapes in this case are the isosceles triangles.
Here is the argument. Let x1 and x2 be the two vertices of the horizontal

side. Let q be the third vertex. Let x′2 be the point you get by reflecting x2
in the horizontal line through q.

2y
q

x
2

x
1

x
2
'

x

Figure 2.1: The Triangle Problem.

We have

| ∨ | = |x1q|+ |qx2| = |x1q|+ |qx′2| ≥ |x1x′2| =
√
x2 + 4y2.

The first equality is just the definition of |∨|. The second equality comes from
symmetry: The segments qx2 and qx′2 have the same length. The inequality
comes from the fact that the two segments x1q and qx′2 make a path joining
x1 to x′2, and the shortest possible path connecting these points is just the
segment x1x′2. The last equality is the Pythagorean Theorem.
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2.2 The Planar Circuit Problem

Our next problem builds on the Triangle Problem but recasts it in a slightly
different way. You should compare Figures 2.1 and 2.2 and see that really
they are not that different from each other.

Suppose X = X1X2 and Y = Y1Y2 are respectively horizontal and vertical
line segments having lengths

|X| = x =
√

1 + t2, |Y | = y ≥ 1. (2)

For now, writing x =
√

1 + t2 is just a complicated way of saying that x ≥ 1,
but in the next section the quantity t will have an additional meaning. We
are just warming up at this point.

Suppose also that Y is a vertical line segment that lies completely un-
derneath the horizontal line extending X. Finally, suppose γ is a continuous
loop that successively connects the points X1, Y1, X2, Y2. Figure 2.2 shows
all this.

x

y

X1 X2

Y1

Y2

L1

S2
S1

L2

Figure 2.2: A circuit γ connecting the endpoints of X and Y .

The 4 arcs L1, L2, S2, S1 comprise γ. Let |L| = |L1| + |L2| and likewise
|S| = |S1| + |S2|. Each arc is at least as long as the straight line segment
with the same endpoints. Hence |S| ≥ |X| and |L| ≥ | ∨ |, where ∨ is the
two non-horizontal sides of the triangle 5 having vertices X1, X2, Y1. This
triangle has base x and height greater than 1. Equations 1 and 2 give:

|L| >
√

5 + t2, |γ| = |S|+ |L| > α(t) :=
√

1 + t2 +
√

5 + t2 (3)

Our notation means that we are defining α(t) =
√

1 + t2 +
√

5 + t2 and we
have |γ| > α(t).
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2.3 The Coupled Planar Circuit Problem

This problem builds on the planar circuit problem but adds a new constraint
to the problem. We keep the same notation from the planar circuit problem.

This new constraint “couples” our loop γ to the segment X. What this
means is that we add some new constraint that forces γ and X to depend on
each other. This new constraint involves the variable t from above. Here it
is:

|S| = |L| − 2t. (4)

Equations 3 (left) and 4 give another bound:

|γ| = |S|+ |L| = 2|L| − 2t > β(t) := 2
√

5 + t2 − 2t. (5)

Combining Equations 3 and 5, we have |γ| > µ(t) := max(α(t), β(t)).

3

1

32 =3.4641...

Figure 2.3: A plot of µ(t) for t ∈ [−1, 3].

Figure 2.3 shows a plot of µ(t). The minimum occurs when t = 1/
√

3,
and the minumum value is 2

√
3. Therefore, |γ| > 2

√
3. This number should

be familiar from our main result.
There is more we can say here. if |γ| ≈ 2

√
3 then t ≈ 1/

√
3 and x ≈ 2/

√
3,

and 5 has height ≈ 1 and L1, L2, S1, S2 are all nearly line segments. Hence γ
closely follows an equilateral triangle. This should resonate with our second
result, the Triangular Limit Theorem.
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2.4 The Coupled Circuit Problem

This is almost the same problem as the previous one. This time we think of
our plane as the XY -plane sitting in space. We keep the segments X and Y
as before but this time we allow our loop γ to move in space, above and below
the XY -plane. All we require is that the endpoints of the 4 arcs L1, L2, S2, S1

comprising γ are again X1, Y1, X2, Y2. Figure 2 again depicts the situation,
except that you should imagine you are looking down on the XY plane from
space. This problem has the same analysis as the planar version. Once again
we get |γ| > 2

√
3. Also, if |γ| ≈ 2

√
3 then γ nearly traces out an equilateral

triangle.

Let us relate this to paper Moebius bands. Let M be a paper Moebius
band of aspect ratio λ. As always, we scale so that M has height 1. Let γ be
the loop which is the boundary of M . Recall that 2λ is exactly the length of
the boundary of M . That is, 2λ = |γ|. We aim to recognize γ as a loop that
arises in the coupled circuit problem. Once we recognize this, the solution
of the coupled circuit problem tells us that |γ| > 2

√
3. This tells us that

λ >
√

3 and proves the Main Theorem.
We can say more. If λ ≈

√
3, then |γ| ≈ 2

√
3 and so, by our analysis

above, γ must nearly trace out an equilateral triangle. This gives us the
Triangular Limit Theorem.
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3 Recognizing a Coupled Circuit

3.1 T Patterns

Recall that a paper Moebius band M has a circle of bends sweeping through
it. A T -pattern on M is a pair of these bends which lie in the same plane and
point in perpendicular directions. The dotted and bold segments in Figures
1.1 and 1.2 make a T -pattern.

Experiment 6: Make a paper Moebius band and find a T -pattern on it.

I’ll prove below that every paper Moebius band has a T -pattern. Let us
assume for now that M has a T -pattern. We can rotate M in space so that
the bends X, Y of the T -pattern, and the loop γ, are situated just as in the
Coupled Circuit Problem. X and Y cut across M and so have length at least
1. This gives Equation 2.

To derive Equation 4 we cut open M along Y and flatten it out in the
plane. We get a symmetric trapezoid τ . Figure 4 shows one of several
possible ways τ could look, depending on how X and Y slant. The labels
match Figure 2.2. (The repeat of Figure 2.2 included for convenience, is not
quite drawn to scale.)

YXY

Y1

Y2Y1

Y2 L1X1

X2L2 S2

S1

1

t

1 1

x

Y

X1 X2

Y1

Y2

L1

S2S1

L2

Figure 2.2:

u u

Figure 3.1 The symmetric trapezoid τ .

The left and right sides of τ get the same labels because on M they are
joined together. Since |X| =

√
1 + t2 the Pythagorean Theorem tells us that

t equals the horizontal displacement of the endpoints of X. Therefore

|S1|+ t = |L2|+ u, |S2|+ u = |L1| − t. (6)

We get Equation 4 by adding these equations together and simplifying. For
the other possible pictures of τ , in which X and/or Y slant the other way,
the signs of t and/or u change but we get Equation 4 in all cases.

Having recognized γ as a loop that arises in the Coupled Circuit problem,
we get the two theorems in [S], as we discussed at the end of the last chapter.
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3.2 The Sphere

The rest of this paper just amounts to proving that a paper Moebius band
always has a T -pattern. We first discuss 3 views of the sphere.

First View: We let S2 denote the sphere of unit vectors in space. In other
words, S2 is the set of points (x, y, z) with x2 + y2 + z2 = 1.

Second View: The north pole and south pole respectively are the points
P+ = (0, 0,+1) and P− = (0, 0,−1). We can get a nice coordinate system for
S2 which works away from P+ and P−. We use a pair of angles (θ, φ) which
denote longitude and latitude. Here θ, the longitude, takes values in S1, the
circle. The latitude φ takes values in the interval (0, π). That is, 0 < φ < π.
This angle represents the angle that the given point makes with P+. When
φ ≈ 0 we are at at a point near P+. When p ≈ π we are at a point near
P−. When φ = 0 we would be at P+, but then θ is not well defined. The
same problem happens when φ = π. This is why we say that the coordinate
system works away from P+ and P−.

Third View: We can think of S2 as the set of arcs of the circle S1. For each
arc of S1 we can find a pair (θ, φ) so that the arc goes counterclockwise from
the angle θ−φ to the angle θ+φ. Angles in S1 are only defined up to multiples
of 2π. So, for instance, if θ = 3π/2 and φ = 3π/2, then θ + φ = 3π, whcih is
the same as π. When φ ≈ 0 the arc is quite short. When φ ≈ π the arc wraps
almost all the way around S1. Given this geometric behavior, it makes sense
to interpret P+ as the empty set and P− as all of S1. So, if we include the
empty set and the whole circle as arcs, then S2 is exactly the set of arcs of S1.

The Antipodal Map: There is a symmetry of S2 called the antipodal map.
In our first coordinate system, the antipodal map exchanges the diametri-
cally opposed points (x, y, z) and (−x,−y,−z). In our second coordinate
system, the map exchanges the points (θ, φ) and (π + θ, π − φ). Note that
these two points correspond to complementary arcs: (θ, φ) describes the arc
that starts at θ−φ and ends at θ+φ whereas (π+ θ, π−φ) describes the arc
that starts at θ + φ and ends at θ − φ. The two arcs connect the same two
points but trace out opposite sides of these two points. This description even
works for the “arcs” corresponding to P+ and P− because the complement
of the empty set is S1 and vice versa. The antipodal map on S2 corresponds
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to taking complementary arcs in S1.
Let us call the antipodal map A. Here is a formula for A in each of our

coordinate systems.

A(x, y, z) = (−x,−y,−z),

A(θ, φ) = (π + θ, π − φ),

A(θ0, θ1) = (θ1, θ0). (7)

In the third equation, we are describing an arc of S1 by its starting and
endpoint point. We think of starting at θ0 and moving counter-clockwise
around until reaching θ1. The complementary arc has the same endpoints
but they come in the opposite order.

3.3 Continuous Functions

A function on S2 is an assignment of each point of p a value f(p). For
instance, if S2 is the surface of the earth, then f(p) might be the current
temperature at p. The function f is called continuous if small changes in p
result in small changes in f . So, if we want to guarantee that f changes by
less than any given amount, say 10−100, then as long as we pick a point p′

sufficiently close to p the difference between f(p) and f(p′) will be less than
10−100.

Here is a more formal definition of a continuous function: For all p on S2

and for all ε > 0 there is a δ > 0 so that if we move p by more less than δ
the value f(p) changes by less than ε. In the less formal description given
above, ε was 10−100.

To recognize a T -pattern in the Moebius band M , we are going to define
two functions g and h of a pair (u0, u1) of bends. We will interpret g and
h as functions on S2 and they will be continuous. When g(u0, u1) = 0
the pair (u0, u1) will point in perpendicular directions. When h(u0, u1) = 0
the pair (u0, u1) will lie in the same plane. So, if we have a common zero
g(u0, u1) = h(u0, u1) = 0 then we have our T -pattern.

Let me explain the power of continuity. Let’s suppose that g(p) < 0 and
g(q) > 0. Then we can consider any path from p to q on the sphere. Since g
switches from positive to negative along the path, there must be some place
where g = 0 along the path. We don’t know where this zero is, but the
continuity guarantees it. If we want a common zero to the two functions, we
need a more sophisticated argument.
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3.4 The Borsuk-Ulam Theorem

A function f on S2 is called odd if f(A(p)) = −f(p). That is, f takes on
opposite values at antipodal points. The Borsuk-Ulam Theorem says that
two odd functions g and h have a common zero. This is exactly what we are
looking for. (We have not defined g and h yet, nor shown that they are odd,
but that is coming.) Now I will sketch a proof of the Borsuk-Ulam Theorem.

For simplicity assume the following conditions:

g(P+) = +1, g(P−) = −1, h(P+) = h(P−) = 0. (8)

This isn’t really much of a restriction and anyway our functions g and h,
defined below, will have these conditions.

We bundle together g and h into a single map F = (g, h). So, for each
point p on the sphere F (p) = (g(p), h(p)) is a point in the plane. We want
to see that there is some point p such that F (p) = (0, 0). We will argue by
contradiction. We will suppose that there is no such point and then we will
end up at an impossible conclusion. The only way out of the contradiction
is that there must be a common zero.

Consider a line `θ of longitude on S1. This path starts at P+, goes through
the point (θ, π/2) on the equator, and continues on to P−. Consider the image
F (`θ) in the plane. This path starts out at (1, 0) and ends at (−1, 0) and
(by assumption) misses (0, 0). If you stand at (0, 0) and watch F (`θ) as it
goes, your next will twist a half-integer number of times, either clockwise or
counter-clockwise. Let’s say that this number N(θ) is positive if the overall
net twisting is more counterclockwise and negative if the overall net twisting
is more clockwise. If we move θ just a little bit, then N(θ) does not change.
This function is both continuous and half-integer valued. But then N(θ) is
always the same value, no matter the value of θ. In particular, N(0) = N(π).

Consider `π. We have `π = A(`0) except that we have to verse the di-
rection of A(`0) so that it runs from P+ to P−. Since g and h are odd
functions, F (A(`0)) = −F (`0). Geometrically, F (A(`0) is obtained by ro-
tating F (`0) 180 degrees around the origin. As F (A(`0)) goes from (−1, 0)
to (1, 0) it winds the same number of times as does F (`0). But remember
that F (`π) is obtained by reversing the direction of F (A(`0)). This means
that N(π) = −N(0). This is a contradiction. The only way out that is
that we cannot always define N(θ). This means that there is some p so that
F (p) = (0, 0). This completes the proof of the Borsuk-Ulam Theorem.

16



3.5 Crash Course on Vectors

To find our T -pattern, it remains to define the functions g and h, show that
they are odd, use the Borsuk-Ulam Theorem, and then interpret the result
geometrically. We need to collect a few more preliminary ideas before doing
all this.

To match tradition, we say that a vector is a point in space. A unit vector
is a point in S2. What is the difference between points and vectors? Well,
nothing really, except that one often thinks of a vector as being more like a
direction in space. We usually denote vectors like this: −→v . There are two
operations on vectors which we now describe.

The Dot Product: Given vectors −→v 0 = (x0, y0, z0) and −→v 1 = (x1, y1, z1)
and the dot product is a number:

−→v 0 · −→v 1 = x0x1 + y0y1 + z0z1. (9)

When the vectors are nonzero, their dot product equals 0 exactly when they
are perpendicular. When the vectors are unit vectors, the dot product is ±1
exactly when −→v 1 = ±−→v 0. The dot product is symmetric and bi-linear:

−→v 0 · −→v 1 = −→v 1 · −→v 0, (a−→v 0 +−→w 0) · −→v 1 = a(−→v 0 · −→v 1) +−→w 0 · −→v 1.

You can see these properties directly from the formula.

The Cross Product: Given vectors −→v 0 = (x0, y0, z0) and −→v 1 = (x1, y1, z1)
and the cross product is another vector:

−→v 0 ×−→v 1 = (y0z1 − y1z0, z0x1 − z1x0, x0y1 − x1y0.) (10)

For nonzero vectors, the cross product vanishes exactly when the vectors are
multiples of each other. When the cross product is nonzero, it is perpendic-
ular to both vectors. The cross product is anti-symmetric and bi-linear:

−→v 0 ×−→v 1 = −−→v 1 ×−→v 0, (a−→v 0 +−→w 0)×−→v 1 = a(−→v 0 ×−→v 1) +−→w 0 ×−→v 1.

You can also see these properties directly from the formulas.
We will use the dot product and the cross product to define our magic

functions g and h.
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3.6 The Entailing Operation

We need one more ingredient before we introduce our magic functions g and
h. We need to relate the circle of bends to vectors.

Each bend u in our circle of bends has a pair of unit vectors which are
parallel to it. We denote these by −→u and −−→u . There is no way to prefer one
over the other. In this way, we assign a pair of unit vectors to each point in
the circle S1. We call both these vectors orientations of the bend. A point

θ in S1 corresponds to the bend Lθ, and then the two orientations are ±
−→
L θ.

Suppose we have an arc of S1, say (θ0, θ1). If we choose an orientation
−→
L θ0 then there is exactly one way to choose an orientation for Lθ1 so that the
orientations vary continuously along the arc. As we move along the arc we
just avoid making any sudden jumps. We only have two orientations at each
point, so there is a clear choice that makes the orientations vary continuously.

We write
−→
L θ0  

−→
L θ1 when these orientations are related as we have just

been describing. The symbol  means entails . Let us simplify our notaton
by setting u0 = Lθ0 and u1 = Lθ1 .

Suppose that −→u 0  
−→u 1. Here are the key properties of our entailing

operation.

1. −−→u 0  −−→u 1.

2. −−→u 1  −−→u 0. This is because we are on a Moebius band!

3. If our arc is short, corresponding to a point near P+, then

−→u 1 ≈ −→u 0.

This is because the orientation hardly moves at all.

4. If our arc is almost all of S1, corresponding to a point near P−, then

−→u 1 ≈ −−→u 0.

This is because we are on a Moebius band!

Experiment 7: Make a paper Moebius band and draw some orientations on
the bend. Try to check that the 4 above properties of the entailing operation
are true for some examples of pairs of bends.
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3.7 The Magic Functions

Now we can define or magic functions g and h and find the T -pattern.
Let (u0, u1) be a pair of bends. Again, we think of (u0, u1) as describing

an arc of S1, which in turn gives us a point of S2. Let m0 and m1 respectively
be the midpoints of u0 and u1. We define

g(u0, u1) = −→u 0 · −→u 1, h(u0, u1) = (m0 −m1) · (−→u 0 ×−→u 1). (11)

Here −→u 0  
−→u 1. Since −−→u 0  −−→u 1, we would get the same values starting

with −−→u 0. In other words, our functions are well defined. The functions are
continuous because the bends vary continuously in our circle of bends.

We have not yet defined g and h on P+ and P− but Properties 3 and 4 of
the entailing operation tell us that we should define g(P+) = 1 and g(P−) = 1
and h(P+) = h(P−) = 0. Once we do this, g and h are continuous functions
on S2.

Let us now check that g and h are odd functions on S2.

g(u1, u0) = −→u 1 · (−−→u 0) = −−→u 0 · −→u 1 = −g(u0, u1),

h(u1, u0) = (m1−m0) ·(−→u 1×(−−→u 0)) = (m1−m0) ·(−→u 0×−→u 1) = −h(u0, u1).

By the Borsuk-Ulam Theorem there is some p in S2 such that

g(p) = h(p) = 0.

Note that p 6= P± because g(P±) = ±1. This means that p corresponds to
an honest pair of unequal bends (X, Y ). That is

g(X, Y ) = h(X, Y ) = 0.

Since g(X, Y ) = 0 we have
−→
X ⊥

−→
Y . In other words, the bends point in

perpendicular directions. Let −→n =
−→
X×
−→
Y . Since h(X, Y ) = 0, the vectors

−→
X

and
−→
Y and mX −mY are all perpendicular to −→n . (Here mX is the midpoint

of X and mY is the midpoint of Y .) But then, using the bi-linearity of the
cross product, every vector of the form vX − vY , where vX is a point of X
and vY is a point of Y , is perpendicular to −→n . This implies that X and Y
lie in the same plane perpendicular to −→n . In short, X and Y are co-planar.
This shows that (X, Y ) makes a T -pattern.

Our proof is done.
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