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Abstract

We prove a non-equivariant version of Mostow rigidity for symmet-
ric patterns of geodesics in hyperbolic space. This result allows for a
classification of pseudo-Anosov surface group automorphisms, based
on the large scale geometric structure of their orbits.

1 Introduction

Let H" denote hyperbolic n-space. By a symmetric pattern of geodesics in
H" we shall mean a countable collection I' of geodesics such that

1. The symmetry group of I' is a co-compact lattice in the hyperbolic
isometry group Isom(H™)

2. The stabilizer of each geodesic in I" acts with compact quotient.

3. There are only finitely many geodesics of I', modulo the symmetry
group.

Such a pattern arises, tautologically, as the lift of a finite union of closed
geodesics in a compact hyperbolic orbifold. In this paper we shall determine
whether or not a person with poor eyesight could ever mistake one symmetric
pattern of geodesics for another.
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1.1 The Main Result

For j = 1,2, let S; be any set, and let p; : S; x S; — [0, 00) be any function.
We say that a map ¢ : S7 — Sy is uniformly proper with respect to the pair
(p1, p2) if there is a function p: N — N such that for all s,s’ € S,

L opi(s,s') <n = pa(6(s), ¢(s)) < p(n).
2. pa(9(s),0(s) <m = pi(s,s') < p(n).

There is a canonical function p on pairs (g,g’) of geodesics. p(g, ') is
defined to be the infimal distance between a point on g and a point on ¢'.
We say that a map from one set of geodesics to another is uniformly proper if
it is uniformly proper with respect to p. We say that a subset G' of geodesics
has bounded geometry if every point of H" is within some uniform distance
of a geodesic in G. In §2-5 we will prove:

Theorem 1.1 Let n > 3. Suppose that I'y and Iy are symmetric patterns
of geodesics in H". Suppose that G; C I'; has bounded geometry. Then any
uniformly proper bijection from Gy to Gy is induced by a hyperbolic isometry.

Two special cases of Theorem 1.1 are worth pointing out:

1. There cannot be a uniformly proper bijection between non-isometric
symmetric patterns of geodesics.

2. A symmetric pattern of geodesics does not admit a uniformly proper
bijection onto a proper subset of itself.

1.2 Some Comparisons

In §3 we will see that the hypothesis in Theorem 1.1 implies that there is a
quasi-isometry of H"™ which bijectively ”pairs up” the geodesics in G; with
the geodesics in the image Gy = ¢(G1). However, this ”pairing up” is not
equivariant in any sense of the word. The proof of Theorem 1.1 seems to be
a kind of non-equivariant version of Sullivan’s linefield argument [Su].
While similar in spirit to both Mostow Rigidity [M] and Tukia’s theorem
on quasiconformal groups [Tu], Theorem 1.1 does not seem to follow, trivially
or otherwise, from either of these results. In fact, at the end of §2 we will show
that Theorem 1.1 implies Mostow rigidity for uniform hyperbolic lattices.



While clearly false for H?, Theorem 1.1 is true for all other negatively
curved symmetric spaces, and also (when suitably modified) for all non-
positively curved symmetric spaces with no rank one factors. The case of
complex hyperbolic space is similar to that of real hyperbolic space. (The
“transcription” of our argument can be carried out along the lines of what
is done in [S1].) For the other symmetric spaces mentioned, the rigidity
results in [P] and [KL]| say that an arbitrary quasi-isometry is equivalent to
an isometry. In all these cases, Theorem 1.1 is an immediate corollary.

I would have liked to prove Theorem 1.1 in variable negative curvature.
I have no idea how to do this.

1.3 Automorphisms of Surface Groups

Theorem 1.1 has an application for the study of surface group automor-
phisms. Let 3 be a closed surface, having genus at least 2. We equip 7 (X)
with a word metric, d, in such a way that multiplication on the left is an
isometry. In such a word metric, group automorphisms are (individually)
bi-lipschitz maps.

Given an automorphisms A : 71 (X) — 71(X), we define

€alw,y) = nlélé d(A™(z), A" (y))-

Note that £4(gz, gy) = &a(z,y). Note also that &4+ and &4 are Lipschitz
equivalent functions. &4 in some sense captures the large scale structure of
the orbits of A.

For j = 1,2, let A; : m(X) — m(X) be two different surface group
automorphisms. We say that A; and A, are coarse orbit equivalent if there
is a bijection ¢ : m(X) — 71 (X) which is uniformly proper with respect to
the pair (£ 4,58 4,)- This notion of equivalence captures, in some sense, the
meaning that two different group actions have the same large scale geometric
structure.

As a particular example, we say that a group isomorphism g : m(2) —
m1(X) commensurates A; to Ay if there are nonzero integers n; and ng so
that

go Al ogTt = Al
It is easy to see that such a map induces a coarse orbit equivalence be-
tween the two group actions. In this case, we will say that A; and A, are
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commensurable. Commensurability is extremely rare amongst surface group
automorphisms.

The mapping cylinder of A is the semidirect product of Z and 7(%),
twisted by the A action. We say that A is hyperbolic if the mapping cylinder
is the fundamental group of a closed hyperbolic three-manifold. According
to Thurston [T1] this happens whenever A is induced from a surface dif-
feomorphism which is isotopic to a pseudo Anosov map. This situation is,
in some sense, generic. We say that two (hyperbolic) mapping cylinders are
commensurable if they are commensurable, in the usual sense, as co-compact
hyperbolic lattices.

In §6, we use Theorem 1.1 (and some other machinery) to prove:

Corollary 1.2 Let S be a closed hyperbolic surface group. Let Ay, Ay, ... be
a sequence of hyperbolic automorphismns of S, all coarse orbit equivalent to
each other. Then

1. The corresponding mapping cylinders are all commensurable.

2. There are only finitely many commensurability classes of surface auto-
morphisms in the sequence.

To illustrate the sharpness of the corollary, we give, in §7, some examples
showing

1. There is an infinite sequence of hyperbolic automorphisms A4; : S; — S;
which are coarse-orbit-equivalent but pairwise incommensurable. The
groups S; are all hyperbolic surface groups, but the genus of the surface
tends to co with 1.

2. There exist two hyperbolic automorphisms A, Ay : S — S which are
coarse orbit equivalent but not commensurable.

Both examples are based on manifolds which fiber over the circle in in-
equivalent ways.

1.4 Acknowledgments

Almost everything in this paper concerning surface diffeomorphisms owes its
existence to results of Bill Thurston. I would also like to thank Alberto Can-
del for suggesting that the analogue of [S2, Action Rigidity Theorem]| might
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be true for hyperbolic surfaces. (The Action Rigidity Theorem is similar to
Corollary 1.2, but applies to semisimple ergodic abelian torus actions.) I
would also like to thank the referee of this paper for catching a mistake in
the proof of Corollary 1.2, in an earlier version of this paper.

Finally, I would like to thank the University of Maryland for their hospi-
tality during the writing of this paper.

2 The Proof in Broad Strokes

let H denote n dimensional hyperbolic space, for some n > 3. Let d denote
the hyperbolic metric. We will use the upper half space model of H. In this
model, 0H consists of the one point compactification of n — 1 dimensional
Euclidean space FE.

2.1 Ambient Extension

A K-net N C H is a countable collection of points such that no two points
of N are within 1 of each other, and every point of H is within K points of
N. A K-quasi-isometry of H is a K-bi-lipschitz bijection between two K-
nets N1, No C H. Since such maps are bijective, we will frequently confound
them with their inverses. Hopefully this will not cause confusion.

Let ¢ : Gi — G4 be as in Theorem 1.1. We say that a quasi-isometry
q pairs the geodesics in G; with the geodesics in Gy as ¢ does if there is a
function p : N — N having the following property. If ¢ is defined on a point
z, and d(z,y) < k, for some v € G, then d(q(x), #(7)) < p(k). A necessary
and sufficient condition for this is that dgq and ¢ coincide on endpoints of the
relevant geodesics.

In §3 we will prove

Lemma 2.1 (Extension Lemma) There is a quasi-isometry q which pairs
the geodesics in G1 with those in G5 as ¢ does.

We will abbreviate the conclusion of the Lemma above by saying that
that q pairs G1 with Go. We will set h = 0q.



2.2 Eccentric Maps

Let T be a real linear map of E. Let g1, go be two conformal maps of 0H.
we say that the map

p=gooTog

is an eccentric map provided that
1. u preserves FE and fixes 0.
2. p is differentiable at 0.
3. u is not a real linear map.

The essential feature of p is that it is a non-linear real rational map, of
uniformly bounded degree.
In §4 we will use a geometric limiting argument to prove:

Lemma 2.2 (Eccentricity Lemma) Let G, I';, h and q be as above. If h
is not a conformal map, then there are symmetric patterns of geodesics §2;,
bounded geometry subsets W; C Q;, and a quasi-isometry w : H <+ H such
that

1. w pairs the geodesics in W1 to those in Ws.
2. p= 0w is an eccentric map.

3. The geodesic v = 0co belongs to both Wy and W,.

The analysis used to prove the Eccentricity Lemma is based on the reg-
ularity results in [M] concerning quasiconformal maps.

In the next two sections, we will see that the conclusion of Eccentricity
Lemma is impossible. In other words, h must be conformal, and the isometry
extending h pairs up the geodesics of G; with those of G5 as ¢ does.

2.3 Scattering of Points

Let A be an infinite cyclic group generated by a similarity of E which is not
an isometry. The quotient

Q=Q() =E—-{0}/A
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is diffeomorphic to the product of a circle and a codimension one sphere.
Let 7 : E — {0} — @ be the covering map. Also, let ' = F(A) be the
fundamental domain for A which has the form

F={zeE|l1<|z] <A}

Here ) is the expansion factor for the generator of A.
Now suppose that we have two such groups A; and As. Suppose also that
we are given:

1. An eccentric map pu.
2. A subset ¥ C Q1.
3. Asubset SCFE

we define a subset W(u, %, S) C Qs as follows:
U(p, %, 8) =mop(SNm (X))

In this definition, 7' (X) is the complete inverse image of .

We say that a subset S C F is adapted to A if there is an infinite sequence
of distinct contracting elements 71,75, T3, ... C A such that T;(F) C S. We
say that a subset ¥ C @ is d-dense if every point of F' is within ¢ of some
point of 7 1(X) N F.

In §5 we will prove:

Lemma 2.3 (Scattering Lemma) Independent of u there is a constant
0o > 0 having the following property: If S C E is adapted to A1 and X2 C @4
is 0p-dense, then WU (u,3,S) C Qq is an infinite set.

2.4 The Contradiction

Let Q;, W;, w, u, and 7 be as in the Eccentricity Lemma. For ease of notation,
we suppress the subscript 7 = 1, 2, which appears on all the objects below.

Let A be the stabilizer subgroup v = 0co, in the isometry group of Q.
By passing to an index two subgroup if necessary, we can assume that A is
cyclic. Let @, m, and F be as above. Let 7" be the generator for A, which we
take to be a contraction.



For any interval [a, b] of integers, we define
b .
Fla,b] = | T'(F).

For any positive integer k, we define OW* to be the set of endpoints of
geodesics in W which come within £ of v. Finally, we define

ola, b, k] = OW* N Fla, b].

Let Jy be the constant in the Scattering Lemma. Since W has bounded
geometry, there are integers dy and kg such that 7(co[a, b, k]) C @ is dp-dense
provided that b — a > dy and k£ > ky. We set

Fla] = Fla,a+ do];  ola] = ola,a + dy, ko).

We now bring back the subscript j. Modulo A; there are only finitely
many possible points of o1[a], as a varies in Z. Hence, by the Pidgeonhole
Principle, there is an infinite sequence of positive integers iy, is, 73, ... such
that the sets o1[i,,] are all equivalent under A;. Define

S = Gl Filim].
and
¥ =m (0w N S).
The sets S; and X; enjoy the following properties:
1. X1 € Q1 is finite and dy-dense.
2. S; is adapted to A;.
3. Sinwi(E) € oWk,

We conclude, from the Scattering Lemma, that ¥ = W(u, X1, S1) is an infinite
subset of Q5.

On the other hand, since p is the boundary map of a quasi-isometry w
which pairs the geodesics of W, with those of W,, we see that there is a
constant kj, such that

p(OWko) c awho.
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Combining this with statement (3) above, we see that
u(S; N (D)) C AW,

Projecting, we see that
U C 7T2(8W2ko).

Recall that Wy C Q3. Modulo the isometry group of €2y, there are only
finitely many geodesics of W5 which come within k] units of the geodesic

7. Therefore, WQ(GWQ%) is a finite subset of Q2. Hence, so is W. This is a
contradiction.

2.5 Mostow Rigidity

In this section, we will use Theorem 1.1 to prove that two diffeomorphic
closed hyperbolic n-manifolds are isometric, if n > 3. This is a slightly more
restrictive statement than is usually associated with Mostow rigidity. We
make this restriction only for ease of exposition.

Suppose f : M; — M, is a diffeomorphism from one hyperbolic n-
manifold to another. Choose any closed geodesic v; C M;. The image
v2 = f(71) is a closed curve in M,.

Let I'; be the lift of v, to H. Let I', denote the lift of v, to H. Let
I’y denote the family of geodesics obtained by replacing each curve in I, by
the geodesic which has the same endpoints. Note that both I'; and I'y are
symmetric patterns of geodesics.

The lift f : H — H is a bi-lipschitz mapping. Since every geodesic of
[’y is uniformly close to the correpsonding curve in I';, the map f induces a
uniformly proper map from I'; to I's. From Theorem 1.1, the map f is uni-
formly close to an isometry f, of H. Clearly f, conjugates the fundamental
group of M; to that of M,. This is to say that M; and M, are isometric.

3 Extension Lemma

The purpose of this chapter is to prove Extension Lemma of §2.1. We will
use the notation established in §2.1.



3.1 Subsets of Geodesics

We begin with a structural result about symmetric patterns of geodesics.

Lemma 3.1 Let I be a symmetric pattern of geodesics. Then there is a
function h : N x N — N having the following property: Let K C I' be a
subset consisting of at most ki geodesics. Suppose that d(c, 8) < ko for any
two geodesics a, 5 € K. Then there is some ball of radius h(k1, ks) which
intersects every geodesic of K.

Proof: By induction, it is sufficient to prove the Lemma for triples of
geodesics—i.e. for k; = 3. Suppose that we have a sequence of counterexam-
ples, ay, Bk, vk, which remain pairwise with in n = ky of each other. Since
there are only finitely many lines modulo the symmetry group of I', we can
assume o = «. For now, we will drop the subscript from S and 7, even
though it is implicit in what it said.

Let G, be the stabilizer of « in the symmetry group of I'. By passing
to an index two subgroup if necessary, we may assume that G, is a cyclic
group. The generator of G, has an attracting fixed point o, and a repelling
fixed point a_. These two points are the endpoints of a. Let F, be any
fundamental domain for a/G,. Let Fp and F, respectively be translates of
F, so that d(3, F3) < n and d(F,,7) < n.

We now mention the subscripts explicitly. Translating by suitable ele-
ments of G, we assume that F}, is fixed, Fs, — a4, and F,, — a_. Since I'
is a symmetric pattern of lines, there are only finitely many lines which have
points within n of F,. Call the set of these lines S,. Likewise define Sg, and
S.,.- Note that 8, € S, and v, € S,,, by definition. Let g be the generator
of G,. There are integers my, ny such that

9" (Sa) = Sge; g™ (Sa) = So-

Furthermore, m; — +o00 and ny — —oc.

From the finiteness of S,, we see that the endpoints of geodesics in Sg,
converge to ;. and the endpoints of geodesics in S, converge to . Hence,
for sufficiently large k, any geodesic in Sg, will be more than n units from
any geodesic in S,,. O
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3.2 Two Basic Facts

In this section we state two easily proven facts about symmetric patterns of
geodesics. We omit the proofs.

Fact 1: Let I' be a symmetric pattern of geodesics. There is a posi-
tive lower bound for the distance between two non-intersecting geodesics in
I'. Furthermore, there is a positive lower bound to the angle between two
intersecting geodesics in I'.

fact 2: Let 71,7 € I' be two distinct geodesics. Let r be any positive
number. Let By and By be two metric r-balls in H, each of which inter-
sects both v; and ~,. There is some uniform upper bound 7’ to the distance
between By and Bs.

3.3 Main Construction

Let G;, I';, and ¢ be as in Theorem 1.1. Since G; has bounded geometry,
there is a positive number d having the following property: Every ball of
radius d in H intersects at least two geodesics of G.

For any point z € H, there is some finite subset K, C (G; which intersects
the ball of radius d about z. By definition, there are at least 2 geodesics in
K. From Fact 1, there is a uniform upper bound on the number of geodesics
in K,. We define ¢(z) to be the center of any ball of minimum radius which
intersects all the geodesics of ¢(K).

Since ¢ is uniformly proper, and there is a uniform upper bound to the
cardinality of ¢(K), there is by Lemma 3.1 a uniform upper bound to the
minimum radius of the ball about ¢(z) which intersects all geodesics in ¢(K).
Fact 2 now says that the choice of minimal ball in the definition of ¢ is unique
up to a uniformly small additive error.

Lemma 3.2 q is a uniformly proper map, with respect to the hyperbolic met-
ric on H.

Proof: Rather than introduce the auxilliary function used in the definition
of uniform properness, we will give a heuristic argument which can easily be
made numerical. If z and y are close together, then there is a uniform bound
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to the pairwise (minimal) distance between a geodesic in K, and K. From
Lemma 3.1 it follows that there is a uniform bound to the distance from a
ball of minimum radius intersecting both ¢(K,) and ¢(K,). Hence ¢(z) and
q(y) are uniformly close.

Suppose, on the other hand, that ¢(x) and ¢(y) are close. Let B, and B,
be the balls of radius d which respectively intersect all geodesics of K, and all
geodesics of K. From Lemma 3.1, there is a uniformly small ball in H which
intersects all the geodesics in ¢(K;) U ¢(K,). Since ¢ is uniformly proper,
Lemma 3.1 says that there is a uniformly small ball B which intersects all
the geodesics K, U K,. Fact 2 says that B must be uniformly close to both
B, and By. Hence x and y are uniformly close. O

Since G5 has bounded geometry, ¢(H) is dense in H up to an additive
constant. Thus, we may define a “near inverse” map ¢ '. This map is
also uniformly proper, and the composition of ¢ and ¢ !, in either order, is
uniformly close to the identity. Since H is a path metric space, these two
conditions imply that ¢ restricts to a quasi-isometry.

¢ has a continuous and bijective extension h = dq to 0H . It is a standard
fact that ¢ takes geodesics into uniformly thin tubular neighborhoods of
geodesics. The action of both ¢ and ¢ on geodesics is therefore controlled by
the action of h on endpoints. These statements imply the Extension Lemma.

4 Eccentricity Lemma

The purpose of this chapter is to prove the Eccentricity Lemma of §1.2. We
will use the notation established in §1.2. The material here is an adaptation
of [S1, Ch. 6] to the present setting.

4.1 Hausdorff Topology

The Hausdorff distance between two compact subsets K, Ko C H is defined
to be the minimum value 6 = §(K, K») such that every point of K; is within
d of a point of K ;1. (Indices are taken mod 2.) A sequence of closed subsets
S1, 59, ... C H is said to converge to S C H in the Hausdorff topology if, for
every compact set K C H, the sequence {§(S, N K, SN K)} converges to 0.

Let ¢ : H — H be a quasi-isometry, defined on nets N, Ny C H. Let
Gr(q) C H x H denote the graph of g. Note that Gr(q) is a net in H x H.
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In what follows, the positive integer K is fixed. Let ¢, be a K-quasi-
isometry defined relative to K-nets N, ; and N,o. We say that ¢i, ¢, ...
converges to q provided that:

1. N, ; converges to a K-net NN, in the Hausdorff topology.
2. Gr(gy) converges to Gr(g) in the Hausdorff topology.

q : N7y — N, will automatically be K-bi-lipschitz.

Lemma 4.1 Let {q,} be a sequence of K-quasi-isometries of H. Let h, =
0q,, be the extension of q,. Suppose that:

1. h,(0)=0.
2. h,(E) =E.
3. h, converges uniformly on compacta to a homeomorphism h : E — E.

Then the maps g, converge on a subsequence to a quasi-isometry q. Further-
more g = h.

Proof: Let 0 be any chosen origin of hyperbolic space. We will first show that
the set {¢,(0)} is bounded. Let y; and v, be two distinct geodesics through
0. Then the quasi-geodesics ¢,(7;) remain within uniformly thin tubular
neighborhoods of geodesics d,,; and d,2. By hypothesis, the endpoints of
0n,1 and and d, 2 converge to four distinct points of O H. Furthermore, the
point ¢, (0) must lie close to both 6, and 6, 2. This implies that {g,(0)} is
bounded. Statement 1 now follows from a routine diagonalization argument.

By thinning out the sequence, we can assume that g, converges to a
quasi-isometry ¢o.. Let hy = 0¢no- Let p be any point in E. Let v be
any geodesic, one of whose endpoints is p. Let d,, denote the geodesic whose
tubular neighborhood contains ¢, (). Then ¢, converges to some geodesic
0s0, in the Hausdorff topology. Hence the endpoints of d,, converge to those
of 0. This means that h,(p) converges to hy(p). Hence h(p) = hyo(p).
Since p is arbitrary, we get Statement 2. O
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Lemma 4.2 Let I, be a sequence of hyperbolic isometries. Let T be a sym-
metric pattern of geodesics. Let G C T' be a bounded geometry subset. Let
G, = I,(G) and Ty, = I,(T"). Then, on a subsequence, Ty, converges to a
symmetric pattern of geodesics, I'', and G, converges to a bounded geometry
subset G' C I".

Proof: The convergence of I',,, on a subsequence, is obvious from the fact
that I has co-compact symmetry group. The subsets I,,(G) have uniformlly
bounded geometry, independent of n. A routine diagonalization argument
shows that we may extract a convergent subsequence. O

4.2 Differentiability Principle

We say that a map D : E — E is a pure dilation if has the form D(v) = Av
for some A > 1. We say that a sequence Dy, D,,... of pure dilations is
unbounded if the expansion constants A, Ao, ... tend to oo.

Suppose that f : E — E is a homeomorphism which fixes the origin, and
which is differentiable at the origin. Then the differential df (0) is a linear
transformation of the tangent space Ty (E).

For any unbounded sequence Di, D,, ... of pure dilations, consider the

sequence:
fu=DnofoD;"

It is a standard fact from several variable calculus that f, converges, uni-
formly on compacta, to a linear transformation f,, and that f,, = df(0),
under the canonical identification of 7T,(E) with E. We will call this the
Differentiability Principle.

4.3 Main Construction

Let G;, I';, ¢ and h be as in the Extension Lemma. Then A is a quasi-
conformal map of 0H. Composing with isometries, we may assume that
h(oo) = co. Thus h is a quasi-conformal self map of E. Such maps are almost
everywhere differentiable. [M, Th. 9.1]. Let dh(z) denote the differential
of h at x. If h is not conformal, then there is a positive measure subset
S C E where dh(z) is not a conformal map, for x € S. [M, Lemma 12.2].
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Translating, we may assume that z = 0, that ~A(0) = 0, and that dh(0) exists
but is not conformal.

Choose an unbounded sequence Dq, Ds, ... of pure dilations. There are
hyperbolic isometries Dy, D,,, ... such that dD,, = D,. Consider the objects:

3. G, = D,(G)).
4. h, =0q, = D,oho D’

From the differentiability principle, the maps h, converges to the linear
map h' = dh(0), as  — oco. By Lemma 4.2, I, ; converges, on a subsequence,
to a symmetric pattern of geodesics I';. Likewise, G, converges to a bounded
geometry subset G; C I';. By Lemma 4.1, the maps ¢, converge, on a thinner
subsequence, to a quasi-isometry ¢’ with d¢' = h' = dh(0). Clearly, ¢’ pairs
G, with Gj,.

Let v; be a geodesic of G’; which has both endpoints in E. We may choose
these geodesics so that h' takes the endpoints of y; to those of ;. Let g; be
an isometry which takes the endpoints of v, to 0 and co. We may choose g;
in such a way that ' takes g;'(c0) to g5 '(00). The following objects satisfy
the conclusion of the Eccentricity Lemma:

1. W; = g;(Gj).-
2. Q; = g;(T%).
3. w=gs0q ogrl.
4. p=gyooh'ogrt.

The only slightly non-obvious point is that u is non-linear. Here is a quick
proof': We write g;' o = A’ 0 g;. Suppose p is linear. Then, for a generic
hyperplane II, we have that g;(II) is a round codimension-one sphere, and
so is g5 ' o u(I). In particular, there is some codimension-one round sphere
S such that A'(S) is also a codimension-one round sphere. This implies that
h is a similarity, in contradiction to our assumption.

'Supplied by the referee.
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5 Scattering Lemma

The purpose of this chapter is to prove the Scattering Lemma of §1.3. We
will use the notation developed in §1.3.

5.1 Zariski Density

Let X C U be two subsets of E. We say that X is d-dense in U if every point
of U is within ¢ of some point of X.

Let ¢ = p/q be a real rational function on E. Here p = p(x1, ..., x,) and
q = q(x1, ..., z,) are polynomials. We say that ¢ € F(kq, ko) if

1. p and ¢ have degree at most k.

2. The sets {p = 0} and {g = 0} have dimension zero and cardinality at
most ks.

The following technical result is quite analogous to the statement that
two polynomials agree everywhere if they agree on sufficiently many points.

Lemma 5.1 Let U be any open set, and let ki, ko be given. There is some
constant 6 = 6(ky, ko, U) > 0 having the following property: If ¥ C U is -
dense, then any two elements of F'(k1, ko) which agree on ¥ agree everywhere.

Proof: Let n = dim(E). Let vy, ...,vy be the monomials on E of degree at
most ki, listed in any order. Define ¢ : E — R by:

P(z) = (vi(x), ..., vn(x)).

It is clear that ¢(U) spans RY . Otherwise, we could construct some nonzero
polynomial which vanished on U but which did not identically vanish. Since
1 is uniformly continuous on the closure of U, the linear span of ¥ (X) is all
of RN, for any sufficiently dense subset ¥ C U.

Now consider our two functions ¢, ¢y € F(ki1, ko). We write ¢; = p;/q;.
By deleting at most 2k, points, we can assume that the denominator g; never
vanishes on X. Thus, for every point « € ¥, we have p;(z) = 0. We write:

N
pj = Z aj,kvk; Aj = (aj’l, ceey aj’N).
k=1
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Thus, for each = € X, we have
P(@) - (A1 — Az) =0.

Since 1(X) spans R, we see that A; = A,. We finish the proof by applying
the same argument to 1/¢; = ¢;/p;. O

Corollary 5.2 Let U C E be any open subset. Then there is a constant
d = 6(U) > 0 having the following property. If two eccentric linear maps
agree on a d-dense subset of U, then they agree everywhere.

Proof: Let I denote inversion in the unit sphere of E. I is a quadratic
rational map of E. It is not hard to see that every eccentric map may be
written in the form

mmo(loTol)or,

where T is linear, and 7; is an isometry of E. An easy computation shows that
the coordinate functions of any eccentric map belong to (say) F(100,100).
We now apply the Lemma above coordinatewise. O

5.2 Flexible Differentiability Principle

Suppose that h : E — E is a homeomorphism, such that h(0) = 0 and dh(0)
exists. Let 17 and T, be two contracting similarities of E, both of which fix
0. These maps need not be dilations; some rotational component is allowed.
For each pair k, k' of positive integers we define the map

hlk, k" =Ty o hoTE.

Lemma 5.3 Suppose that K1, Ky C E are compact subsets. Suppose that
(k1, k), (ka, kb), ... is a sequence of pairs such that

1. k, — oc.
2. hlkn, kL](K) N Ky # 0.

Then, on some subsequence, hlk,, k| converges, uniformly on compacta, to
a linear map.
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Proof: There is a similarity s,,, a pure dilation D,,, and a pure rotation r,,
such that
hlkn, k;] =sp0(Dypoho D;l) o Ty

Moreover, the sequence D, D,, ... is unbounded. From the Differentiability
Principle of §4, the maps D,, o ho D, ! converge, uniformly on compacta, to
dh(0). Hence, the condition on the image of K; implies that the sequence s,
lies in a compact subset of maps. The same of course is true for the rotations
rn. Hence, on a subsequence, we get the desired convergence. O

We shall call this the Flexible Differentiability Principle.

5.3 The Moment of Truth

Let 1, Q; = Q(A;) and F; = F(A;) be as in the Scattering Lemma. Let Tj
be the generator of A;, which we take to be a contraction. let 6y = 6(U) be
the positive constant in the conclusion of Lemma 5.2.

Suppose that X C @ is and dg-dense subset, and suppose that S C E
is any subset which is adapted to A;. Our goal is to prove that the set
U(p, 2, S) C Q2 is infinite.

Define

E() = 7T1_1(E) N Fl-

By hypothesis, there is an infinite sequence of positive integers ki, ko, k3, ..
such that
T (Fy) C S.

This is to say, in particular, that
T (%) C 7 1 (Z) N S.
For each such number k,,, choose any positive integer k!, such that
T, " o o TEm (5)

has nonempty intersection with Fy. Let u,, be this composition. Define

o0

V= U /J'm(EO)-

m=1

Here is the moment of Truth:
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Lemma 5.4 V contains a bounded infinite set.

Proof: Since y is eccentric, so is p,,. Since Xy and F, are both compact,
the Flexible Differentiability Principle implies that the maps u,, converge,
on a subsequence, to a linear map. By deleting elements, we may assume
that our whole sequence converges. Thus, V' is bounded.

Since none of the maps ., is linear, but the limit is, there are infinitely
many distinct maps in our sequence. If V' was a finite set, then there would
only be finitely many choices for the image p,,(X0). On the other hand,
by our choice of constants, two eccentric maps which agree on ¥, coincide.
Hence V' is infinite. O

Observe that ,
pm(So0) C Ty " (S N w7 (3).

Summing over m, we have:

Vc U douSnari(D)).
A€,

Projecting, we have
(x)  m(V)C ¥(p,X,S).

This follows from the fact that mo(A(J)) = mo(J) for any subset J C E and
any A € As.

Since V' contains a bounded infinite set, m(V’) is an infinite set. From
(*), we see that W(u,X,S) is also an infinite set, as desired.

6 Surface Group Automorphisms

6.1 The Auxilliary Pattern

Let S = m(X) be a hyperbolic surface group, with identity element e. We
will equip S with a left-invariant word metric ds. Let M be the semidirect
product of Z and S. The group law is:

[n1, 81] - [n9, S2] = [n1 + g, $1A™ (s9)].

We will equip M with a left invariant word metric dy;. We identify Z with
the subgroup generated by [1, e].
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By hypothesis, M has a faithful representation into Isom(H?). We will
call this representation R. Let v be the unigue geodesic stabilized by the
element R[1,e]. Let I" be the pattern of geodesics given by the orbit RM (7).

Let I : S — M be given by I(s) = [0,s]. It is easy to see that I is
uniformly proper with respect to the two word metrics. Let G = Ro I. The
group G acts freely and transitively on ['. Define 8 : S — I' by the formula

B(s) = R0, 5] (7).

By construction, 3 is a bijection from S to I'.

Let £ = &4 be the A-invariant symmetric function defined, in the intro-
duction, on § x S. Let p be the symmetric function on I' x I" describing the
distance between pairs of geodesics.

The following technical result is at the heart of the relationship between
the Main Theorem and Corollary 1.2.

Lemma 6.1 (Comparison Lemma) The bijection B : S — T is uniformly
proper with respect to the pair (€, p).

Proof: Consider the bijection I, from elements of S to right cosets of Z in
M:
I(s) =[0,s]Z.

The group RZ stabilizes the geodesic 7, by definition. Consider the bijection
1, from right cosets of Z into I', given by

P(aZ) = Ra(y).
Since RZ stabilizes v, the map 9 is well defined. We compute
Pol(s) =v([0,5]Z) = R[0, s](v) = B(s).

Hence
B=1ol

Define the symmetric function §(aZ,bZ) to be the minimum d,; distance
from a representative of aZ to a representative of bZ.

Sub-Lemma 6.2 ¢ is uniformly proper with respect to (0, p).
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Proof: Let x € v be any chosen basepoint. Consider the map ¥ : M —
H? given by U(m) = Rm(z). It is well known that ¥ is a quasi-isometry
with respect to the pair (das, dgy). Here dgy is hyperbolic distance. Our
sublemma folllows immediately from this and from the definitions. O

Sub-Lemma 6.3 I is uniformly proper with respect to (£,9).

Proof: Below, the constants C, (s, ... have the desired dependence. Sup-
pose that £(s,t) < C;. By definition, there is an integer n for which

da(A"(s), A" (1)) < C.
Since [ is uniformly proper with respect to (da, dys), we have
dar ([0, A"(s)], [0, A*(1)]) < Co.
A routine computation shows that
[—n,e]- [0, A"(v)] = [-n,v] € [0,v]Z.
This is true for v = s,t. Since left multiplication is an isometry, we have that
du([=n, 5], [-n, t]) < Cs.

By definition, this implies that 6([0, s]Z, [0,¢]Z) < Cs.

At this point, we reset our constants. For the converse, suppose that
5([0,s]Z,[0,t]Z) < C;. Then, by definition, there are integers ng, n; such
that

dy ([—ns, 8], [—ne, t]) < Ch.

From the structure of the semidirect product, we conclude that
Ins — ny| < Cs.
Therfore, by the triangle inequality.
dy([—n, s], [-n,t]) < Cy.
Here we have set n = n,. Since left multiplication is an isometry, we have

du ([0, A"(s)], [0, A" ()] < Ci,
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Since [ is uniformly proper with respect to the two word metrics, we have
da(A"(s), A™(t)) < Cs.
By definition, this says that £(s,t) < C5. O

Combining the two Sub-Lemmas, and recalling that § = ¢ o I, we see
that § is uniformly proper with respect to (£, p), as desired. O

6.2 Commensurability of Mapping Cylinders

In this section, we prove the first statement of Corollary 1.2. Suppose that
A; and A, are hyperbolic automorphisms of S. Suppose that g : S — S is a
bijection which is uniformly proper with respect to (&1, &2).

Consider the associated map

¢=Progofi.

¢ is a bijection from I'y to ['s. By the Comparison Lemma, ¢ is uniformly
proper with respect to the pair (p, p). Hence, by our Main Theorem, ¢ is
a hyperbolic isometry. In particular, the patterns I'y and I'y are isometric.
Hence, the lattices Aut(I';) and Aut(I'y) are conjugate.

Now, the group R;M; has finite index in Aut(T';). Thus, R; M; and Ry M,
have finite index in conjugate groups. This is to say that M; and M, are
commensurable as lattices. This is Statement 1 of Corollary 1.2.

6.3 Finiteness of Classes

In this section, we prove Statement 2 of Corollary 1.2. Let A;, A, ... be a
sequence of hyperbolic surface automorphisms of S, all of which are coarse
orbit equivalent. To prove Statement 2, we just have to find a pair of distinct
indices (k, 1), for which A and A; are commensurable.

From the proof in the previous section, we may normalize our represen-
tations Ry, Ry, ... so that the isometric patterns I'y, 'y, ... all coincide. Let I’
denote this common pattern.

Consider the sequence of groups G; = R; o I;(S). The groups G are all
copies of S, sitting in Aut(I"). At this point, we quote the following
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Theorem 6.4 (Finiteness Theorem) Let S be a closed hyperbolic surface
group. Let A be a co-compact 3-dimensional hyperbolic lattice. Then, modulo
conjugacy, there are only finitely many isomorphic images of S in A.

Proof: In case A is torsion-free, this is exactly [T2, Cor. 8.8.6a]. For an
extremely general case, which in particular covers the case above, see [RS,
Theorem 7.1]. O

From the Finiteness Theorem, we may find a pair of distinct indices (a, b)
such that the groups G, and G, are conjugate in Aut(I'). Conjugating R,
by this element, we can assume that G, = Gj,.

Since GG, acts transitively on I', we may further conjugate R, so that the
geodesic 7, (stabilized by R,[1,€],) coincides with the geodesic 7, (stabilized
by Ry[1,e€]s.) Let v denote this common geodesic. Consider the bijection

h= 8" 0 pa

Lemma 6.5 h is a group isomorphism.

Proof: Clearly, h is bijective. Let s € S. The element A(s) has the property
that

Ry 0 Iy(h(s))(77) = Ra o L(s)(7)

Since G, = G, and since both these groups act freely on I', we conclude that
Ry o Iy(h(s)) = R, o I,(s).

Since Ry o I, and R, o I, have the same image, and since s € S is arbitrary,

we may write
h=(Ryol) ' o(R,0H,).

Thus A is an isomorphism. O
To Complete the proof of Corollary 1.2, we prove

Lemma 6.6 h commensurates A, to Ay.
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Proof: From the Comparison Lemma, h is uniformly proper with respect to
the pair (&,,&). Conjugating A, by h, we may assume that h is the identity.
We just have to prove the following statement: If the identity is uniformly
proper with respect to (&,,&), then A, and A, are commensurable.

Choose any finite generating set W = {wy,...,w,} for S. Choose any
element w € W, and consider the orbit A,(w), A2(w), ... Since the identity
map is uniformly proper with respect to the pair (&,,&,), there are integers
ki, ko, ... and some fixed constant C such that

wl = AP o Al (w)

is within C of the identity. Since there are only finitely many points within
C of the identity, the sequence w!, w?, ... must repeat infinitely often. Taking
subsequences, and applying this argument to each element in W, we produce
distinct integers p and g such that A% A and Aks A agree on all of W. This
easily implies that A, and A, are commensurable. O

7 Some Examples

In this chapter we will give an example of an infinite sequence of hyper-
bolic automorphisms A; : S; — S;, which are coarse orbit equivalent but
pairwise incommensurable. Similarly, we give an example of two hyperbolic
automorphisms A, A; : S — S which are coarse-orbit-equivalent but incom-
mensurable. The examples are based on hyperbolic manifolds which fiber
over the circle in inequivalent ways.

7.1 Forms and Fibrations

Let M be a closed hyperbolic 3-manifold, with chosen origin 0 € M. Let
H, (M) denote first singular homology on M. Every element in H;(M) can
be represented by a closed geodesic in M, though not uniquely.

A closed 1-form w is integral provided that it has integral periods on all
elements of H,(M). Further, w is nonsingular if it never vanishes. A vector
field V is adapted to w if w,(V,) = 1 at every point p € M. Every nonsingular
form admits an adapted vector field, though not a unique one. Say that the
pair (w, V) is good if
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1. w is closed, integral, and nonsingular.

2. V is adapted to w.

3. The integral curve « of V' through 0 is closed.
4. w has period one on a.

Let v be a closed geodesic. We say that w is primitive on v if w has period
1 on 7.

Lemma 7.1 Suppose that w is closed, integral, and nonsingular. Suppose
that w is primitive on a closed geodesic «y. Then there is a good pair (w,V)
such that the associated pattern is isometric to the lift of v to H?>.

Proof: First, choose any vector field V' which is adapted to w. If T'is another
vector field, tangent to the fibers of the fibration—i.e. annihilated by w—then
V + T is still adapted to w. It is easy, but tedious, to choose 7" in such a way
that the trajectory through 0 is closed, and that the trajectory through 0 is
freely homotopic to . O

Integration of w gives rise to a fibration ¢ = ¢, : M — R/Z. We
normalize so that ¢(0) = 0. Let ¥ = ¢~1(0). Naturally, we use 0 as the
basepoint of 3. The field V' defines a flow, whose time-1 map is a a basepoint
preserving self-diffeomorphism f : ¥ — ¥. The induced map 71(f) : m(2) —
71(X) is a hyperbolic surface automorphism. We call this map the associated
automorphism. The trajectory « is in the same free homotopy class as some
closed geodesic 7. Let I' be the lift of v to the universal cover H?. We call
I' the associated pattern.

Lemma 7.2 (Equivalence Criterion) Suppose (w1, V]) and (wq, V2) are
good pairs. Then the associated automorphisms are coarse orbit equivalent if
the associated patterns are isomorphic.

Proof: Tracing through the construction in §6.1, and recalling the Compar-
ison Lemma, we see that there is a bijection 8; : m(X;) — T';, which is
uniformly proper with respect to the pair (§;, p). If I'; and I'y are isometric,
then the composition 35 ' o 3; is a coarse orbit equivalence. O
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Lemma 7.3 (Incommensurability Criterion) Suppose that (w1, V1) and
(wa, Vo) are good pairs. Suppose that the associated automorphisms are com-
mensurable. Then there is a self-isometry of M which carries the cohomology
class of wy to that of wo

Proof: For the moment, we supress indices. There is an n-fold cyclic cover
M (w,n), defined as follows: Let Q(M) denote the space of paths of M, based
at 0. Identify two paths if they have the same endpoints, and if the integral
of w over the first path agrees mod n with the integral over the second path.
The quotient space is M (w, n).

Suppose that the two maps 71(f1) and m(f2) are commensurable. Then
there is a basepoint preserving diffeomorphism § : 3; — X5 which, up to
basepoint preserving isotopy, conjugates fi" to f3?. Standard arguments
allow us to alter V5 in such a way § actually conjugates fi'* to f32. (Note
that altering V5 alters fo.)

The map d can be extended, using the trajectories of V}, to give a diffeo-
morphism

A : M(wl,nl) — M(Wg,ng)

Which carries &; to @,. Here @; is the lift of w to M (w;,n;).

For convenience, we set Mj =M (wj, nj). By mostow rigidity, Ais isotopic
to an isometry I : M; — M,. I carries the class of @; to that of @,. From
volume considerations, n; = ny. Furthermore, I conjugates the covering
isometry group of M; to that of M,. Finally, the class of w; is fixed by the
elements of the covering group of Mj. Putting all this together, we see that
I induces an isometry I : M — M which carries the class of w; to that of
wWa. O

Below, we will produce a geodesic v, and an infinite sequence wq, ws... of
closed, integral, nonsingular forms which are primitive on . These forms
will have the following properties:

1. The genus of the fiber 3J; defined by the fibration ¢; tends to oco.

2. For some pair of indices ¢, j, the fibers 3J; and ¥; have the same genus.
However, there is no self-isometry of M which carries the class of w; to
the class of w;.
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From the three Lemmas above, our sequence provides the two examples
advertised at the beginning of this chapter. It is well known that such a
situation can be arranged, using the tools in [—bf T3]. For convenience, we
work this out explicitly.

7.2 Thurston’s Norm on Homology

Let H'(M) denote the first de Rham cohomology group of M. Let H' (M, Z)
denote the classes of integral forms. H'(M, Z) is isomorphic to Z¢, for some
integer d.

A cone in H'(M) is a set which is invariant under dilations. To save
words later, we will stipulate that the origin does not belong to a cone. An
integral plane in H'(M) is an affine subspace which intersects H'(M, Z) in
a cocompact lattice. It is well known that two integral planes intersect in an
integral plane. Here is a paraphrasal of some of the main results in [T3].

Lemma 7.4 (Cone Lemma) There is a conver open cone C C H'(M)
such that every point of H' (M, Z) N C is represented by some nonsingular
form. Moreover, C is foliated by convex pieces of codimension one parallel
hyperplanes { H;}4~o. Points of C N\ H*(M, Z) which lie on the same leaf H;
all define fibrations having the same genus fiber. The hyperplane through the
origin and parallel to H; is integral.

Proof: According to [T3, Th. 1], there is a norm on Hy(M), whose unit
sphere is an integral polyhedron. This norm induces, by duality, a norm
N on H'(M), whose unit sphere is an integral polyhedron P. In case w €
H'(M, Z) is nonsingular, —N(w) is equal to the Euler characteristic of the
fiber in the fibration defined by w.

By [T3, Th. 5], the set of classes in H'(M, Z) which have nonsingular
representations forms a certain cone in H'(M). This cone intersects the unit
sphere in top-dimensional faces. If we take a suitable sub-cone C', we can
guarantee that C' intersects P in a single top-dimensional face. Hence, the
restriction of N to C agrees with a linear norm N’. The level sets of N’
are exactly the foliating hyperplanes H;. Since the relavent face of the unit
sphere of N is contained in an integral hyperplane, the parallel hyperplane
through the origin is also integral. O
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The isometry group of M acts as a finite group on H'(M). Hence, we
may choose C' so small that any nontrivial motion of H'(M) induced by an
isometry moves C' completely off itself.

Say that a subset Y of a metric space X is fat if Y contains arbitrarily
large metric balls. Say that a closed geodesic v € M is primitive if there is
some integral 1-form which has period 1 on . Equivalently, - is primitive if
it represents a primitive element in Hy(M).

Lemma 7.5 There is a primitive closed geodesic v having the following prop-
erty: The integral hyperplane in H'(M) annihilating -y intersects C in a fat
set.

Proof: H;(M) is dual to the lattice H'(M, Z). Rays in H;(M)® R through
primitive elements in this lattice are dense. Hence, by duality, annihilators of
primitive closed geodesics in H*(M, Z) are dense in the space of codimension
one subspaces of H*(M). The Lemma follows immediately from this. O

We set Cz = CNH'(M, Z). We choose our manifold M so that the rank
of HY(M) is at least 3. Let v be any primitive closed geodesic guaranteed
by Lemma 7.5. Let IT € H'(M) be the annihilator of . Since II is integral,
the intersection Il N H'(M, Z) is a a co-compact lattice of II. Since [I N C
is fat, there is an infinite unbounded sequence 71,72, ... € C'z which has the
following properties:

1. 7, anniahilates ~.
2. The metric ball of radius n about 7,, is contained in C.

Let o be any element of H'(M, Z) which has period 1 on . The elements
wy = 0 + 7, will belong to C'5 for sufficiently large n. Also, w, is primitive
on v. By The Cone Lemma, the genus of the fibration determined by a
nonsingular form representing w,, tends to oo with n. The forms w,, provide
the forms for our first example.

The plane II + o is integral. Hence, the intersection

~

th(H—i—J)ﬂHt
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is integral whenever this intersection contains a point of H'(M, Z). There is
an unbounded increasing sequence ny, ng, ... such that X, is integral. More-
over, since X, and X, differ by a translation, there is a single number K
such that every point of X, is within K of a point of H'(M,Z) N X,,,.

On the other hand, the intersection X,, N C contains larger and larger
metric balls (in X,;) as j — oo. Therefore, we can include in our sequence
above two elements 7; and 7; such that w;,w; € Cz belong to the same
hyperplane H;. From the Cone Lemma, they define fibrations having the
same genus fiber.
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