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1 Introduction

This note is about a problem I call the topological traveling salesman problem,
or TTSP for short. I came to the TTSP as an outgrowth of Chapter 2 of my
recent children’s book [S]. However, it seems very possible that this problem
is in the literature already, under a different name, and that everything said
below is well known. I would appreciate comments and references.

The TTSP is a variant of the famous traveling salesman problem (TSP)
and seemingly related to the minimum spanning tree problem (MST). See
e.g. [W] for information about these classic problems. The TTSP is also
related to meanders , a subject with a large literature. See e.g. [DGG] and
the references therein.

Given N ordered points in the plane, and any ε > 0, the TTSP asks for
an embedded path in the plane that connects the points in the given order,
such that no other embedded path with this property is shorter by more
than ε. It would be simpler just to ask for the shortest embedded path in the
plane that connects the points in the given order, but the limit of a sequence
minimizers might not be embedded.

Figure 1 shows an example. The path on the left is the shortest path
connecting the given points in order and the path on the right is somewhat
longer but embedded. The embedded example is roughly within a factor of
2 of the shortest.

∗ Supported by N.S.F. Grant DMS-2102802 and a Simons Sabbatical Fellowship
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Figure 1.1: Two different connecting paths

To discuss quantitative features of this problem, we normalize our points
to lie in the unit square [0, 1]2 and take N ≥ 2. Let τN denote the infimal
number such that every ordered collection of N points in [0, 1]2 can be con-
nected in the given order by an embedded path of length less than τN . We
will prove the following result.

Theorem 1.1 τN ≤ 2N3/2.

By nearly alternating between two opposite corners of [0, 1]2, we can
choose N points in [0, 1]2 such that the shortest path connecting them has
length greater than

√
2(N − 1)− ε. So we have bounds like this:
√

2 (N − 1) ≤ τN ≤ 2N3/2.

I wonder which bound is closer to reality. Here are two conjectures, the first
much more ambitious.

Conjecture 1.2 τN > KN3/2 for some K > 0.

Conjecture 1.3 For any K we have τN > KN for N sufficiently large.

The rest of this note is organized as follows. In §2 I will prove Theo-
rem 1.1target*.1. In §3 I will define the meander number of a permutation,
a topological invariant of a permutation which somehow measures its “pla-
narity”. I will then reduce Conjecture 1.2target*.2 to a conjecture about
meander numbers of permutations.

I would like to thank Brienne Brown, Elizabeth Denne, Slava Krushkal,
and Katie Mann, who all played around with this at my instigation.
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2 The Upper Bound

2.1 Main Construction

Figure 2.1 illustrates our main construction. It is quite similar to the con-
struction illustrated in [DEY, Figure 11] but used for a different purpose.
In this toy example, N = 4, and our path is very far from being the shortest.
Let `(·) denote arc length.

Let p1, ..., pN ∈ [0, 1]2. In §2.2subsection.2.2 we show that there is a
polygonal tree T ⊂ [0, 1]2 such that ` = `(T ) < 2

√
N and pk ∈ T for all k.

p4
p'
4

p1

p2

p'
2

p3

p'
3

T

p1'

Figure 2.1 Constructing the path

Choose δ > 0 small. Define a family A1, ..., AN of nested annular neigh-
borhoods which surround T and remain within δ of T . Let p′k be a point
within δ of pk and on the inner boundary of Ak. Note that p′k+1 is also on
the outer boundary of Ak. Choose a path L′k ⊂ Ak which joins p′k to p′k+1

and only intersects ∂Ak at the endpoints. We can make all choices so that
`(L′k) < 2

√
N for all k. The embedded path L′ = L′1 ∪ ... ∪ L′N connects the

points p′1, ..., p
′
N in order and has `(L′) < N`(T ).

A map is K-Lipschitz if it expands distances by at most a factor of K.
Choose ε so that (1 + ε)× `(L′) < N`(T ). If δ is sufficiently small, then we
have a (1 + ε)-Lipschitz homeomorphism h of R2 which maps p′k to pk. See
§2.3subsection.2.3 for a proof. The image L = h(L′) is an embedded path
with `(L) < N`(T ) < 2N3/2 which connects the points of P in order.
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2.2 Short Spanning Tree

Here we justify our claim about the tree T used in our main contruction. Let
P = {p1, ..., pN} be a collection of N disjoint points in [0, 1].

Lemma 2.1 P is contained in a polygonal tree T of length less than 2
√
N .

Proof: Figure 2.2 illustrates our construction in the case N = 19.

Figure 2.2: The tree T for the case N = 19.

Let D be the largest integer such that D2 ≤ N . There is a unique set
of D evenly spaced unit horizontal line segments in [0, 1]2 such that every
point in [0, 1]2 is within 1/(2D) of their union. Let T ′ be the tree which is
the union of these segments and the vertical line segment of length 1−D−1
that joins their left endpoints. Let T be the tree we get by joining each point
of P to T ′ by a vertical line segment of length at most 1/(2D). We have

length(T ) ≤ D + (1−D−1) +N/(2D) < 2
√
N, (1)

and P ⊂ T . The last inequality in Equation 1equation.1 is clear for N > 100,
and one can check the first 100 values by explicit (computer) calculation. ♠

Remark: For what it is worth, the expression in Equation 1equation.1 is
actually less or equal to (7/4)

√
N . Asymptotically it equals (3/2)

√
N .

4



2.3 Lipschitz Homeomorphisms

Here justify our use above of a (1 + ε)-Lipschitz homeomorphism.

Lemma 2.2 Let ε > 0 be given. There is some δ > 0 with the following
property. If p, p′ are within δ× diam(Q) from the center of Q then there is a
(1+ε)-Lipschitz homeomorphism of Q which is the identity on ∂Q and which
maps p′ to p.

Proof: We take a cell division of Q as shown in Figure 2.2. The shaded
squares R’ and R have half the side length of Q and respectively are centered
at p′ and p. The trapezoids are all affinely equivalent via affine maps which
are translations when restricted to their vertical or horizontal edges.

Q

R'

p'

Q

R

p

Figure 2.3: The subdivision into trapezoids and squares

Our homeomorphism h is the piecewise affine map which carries the left cell
division to the right one in the obvious way. If δ small enough, all the trape-
zoids have nearly the same shape and h will be (1 + ε)-Lipschitz. ♠

Corollary 2.3 Let d > 0. Suppose p1, ..., pN ∈ R2 are such that ‖pi−pj‖ > d
for all i 6= j. Suppose p′1, ..., p

′
N are such that ‖p′k − pk‖ < δ for all k. Then,

if δ is sufficiently small there is a (1 + ε)-Lipschitz homeomorphism of R2

which maps p′k to pk for all k.

Proof: Place disjoint squares Q1, ..., QN of side-length d/4 centered at
p1, ..., pN , apply the previous result, and extend the homeomorphism to be
the identity outside of the squares. ♠

5



3 The Lower Bound

The goal of this chapter is to discuss Conjecture 1.2target*.2 and relate it to
meanders.

3.1 Cyclic Meanders

A meander is a finite disjoint union of embedded loops in R2, each of which
has a nonzero finite number of transverse intersections with the X-axis in
R2. A cyclic meander is a meander with just one loop. We only care about
the cyclic meanders.

When we record the intersection points of a cyclic meander in order we
get a cyclic permutation. We orient cyclic meanders so that they go counter-
clockwise around the region they bound. The permutation determines the
meander up to isotopy. We consider two meanders equivalent if they are
equivalent up to isotopy. Figure 3.1 shows an example of a cyclic meander.

0 2 94 765 831

Figure 3.1: The cyclic meander corresponding to (0, 1, 2, 9, 4, 7, 6, 5, 8).

There is a large literature on meanders and they appear across many
disciplines – braid groups, statistical mechanics, protein folding, etc. See for
example [DGG] and the references therein. Many papers in the literature
deal with the enumeration of meanders. Here is an easy bound.

Lemma 3.1 There are at most 4N−2 meanders having N intersections.

Proof: Let N = 2M . If we look at the top half of the meander, we have a
matching of the 2M points on the line. Each such matching is determined
uniquely by a choice of M of the points, the lower of the two numbers paired.
(In our example the subset {0, 1, 4, 5, 6} gives the top half.) Note that 0 must
appear in this list and N − 1 does not. Thus there are at most N − 2 choose
M − 1 top halves to a cyclic meander. This number is at most 2N−2, by
the Binomial Theorem. Hence there are at most 2N−2 top halves. Likewise,
there are at most 2N−2 bottom halves. ♠
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3.2 The Meander Number of a Permutation

We call a cyclic permutation π meandric if it comes from a cyclic meander.
The number of cyclic permutations of N things is (N − 1)! and at most 4N

of these are meandric.
Let π be a cyclic permutation of {0, ..., N −1} and let S ⊂ {0, ..., N −1}.

The first return map of π to S is well defined and gives a cyclic permutation
of S. For instance, the first return map of the permutation above to {0, 3, 7}
is the permutation (0, 7, 3), meaning 0 → 7 → 3 → 0. It we write 0′ = 0
and 1′ = 3 and 2′ = 7 we get the permutation (0′, 2′, 1′). In this way, the
permutation π = (0, 1, 2, 9, 4, 7, 6, 5, 8) induces the permutation σ = (0, 2, 1).
We write π → σ in this case. In general, the construction is to relabel the
elements of S as 0′, 1′, 2′, ..., derive the new permutation from the first return
map, and then forget the “primes”.

Definition: If σ is a cyclic permutation, we let µ(σ) to be the size of the
smallest cyclic meandric permutation π such that π → σ. The quantity µ(σ)
is a kind of topological invariant of σ.

Figure 3.2 shows an example drawn in an alternate way. You should
imagine that this meander is drawn on the sphere, which we have projected
into the plane. The red arcs lie in the upper hemisphere and the blue arcs
lie in the lower hemisphere. The grey labels on the outside of the circle go in
the usual order. The black labels are a guide to how the path moves around.
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Figure 3.2: A 26-meander induces the permutation k → k + 5 mod 13.
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The permutation σ is given by σ(k) = k + 5 mod 13. This permutation
is not meandric. However, Figure 3.2 shows that there is a meandric permu-
tation π ∈ S26 such that π → σ. Hence µ(σ) ≤ 26. I would conjecture that
in fact µ(σ) = 26 for this example. One can do a similar things for other
permutations based on arithmetic progressions in Z/N .

Define
µN = max

σ∈SN

µ(σ). (2)

Here is a weak lower bound on the meander number, which just comes
from counting.

Lemma 3.2

µN ≥
( ln(N)

ln(8)
− 1

)
×N.

Proof: Let K = µN/N . There are less than 4KN cyclic meandric permuta-
tions of size KN . For each of them, there are at most KN choose N induced
permutations. But this number is at most 2KN . So, all in all, there are at
most (1/2)× 8KN cyclic permutations σ ∈ SN with µ(σ) ≤ KN . But there
are (N − 1)! cyclic permutations in SN . Hence

(8K)N > (N − 1)! > (N/8)N .

The last inequality is an easy application of Stirling’s formula. Taking nat-
ural logs and simplifying the expression we get the bound advertised in the
lemma. ♠

Lemma 3.3 µN < N2

Proof: This is what we get from the method discussed in §2.1subsection.2.1.
We put N points on the circle at the Nth roots of unity, then create the path
from §2.1subsection.2.1, using the circle minus a tiny interval as a spanning
tree. This gives us a meander which crosses the circle at most N2 times –
actually it is about N2/2. By adjusting the labels, we can achieve any per-
mutation in SN we like this way. ♠

I conjecture that this method is often close to optimal.

Conjecture 3.4 (Meander Number) There is some constant K > 0 such
that µN > KN2 for all N .
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3.3 The Topological Salesman Again

In this section I will explain why the Meander Number Conjecture implies
Conjecture 1.2target*.2. For simplicity we assume that N is an even perfect
square. We place N points on the maximal evenly spaced

√
N ×

√
N square

grid of points in [0, 1]2.
We choose a loop L = LN that contains all the vertices of the grid and

has horizontal and vertical edges. Figure 3.3 shows the cases N = 4, 6. The
edges of LN have length 1/

√
N − 1, which is greater than 1/

√
N .

Figure 3.3: The loop LN .

We choose some permutation σ such that µ(σ) > KN2 and then we order
the points of the grid according to σ. If we can connect the points in order
using a path of length less than ` then we can connect the points in order
(and then cycle back to the beginning) using a loop of length less than 2`.
Let Λ be such a loop. We want to see that Λ has length on the order of N3/2.

Consider the number of times Λ intersects L. By perturbing Λ an arbi-
trarily small amount we can guarantee that Λ intersects L transversely at
each intersection point, meaning that Λ locally moves from one component
of R2 − L to the other. Figure 3.4 shows the kind of modifications we have
in mind.

One kind of local modification, which we make at grid points, introduces
a new crossing when it is used. The other kind of local modification, which
we use at extra intersection points, removes an intersection. So, after adding
at most N new crossings, we see that the pair (Λ, L) is homeomorphic to a
pair (Λ′, S1), where Λ′ is a meander and S1 is the unit circle. So, Λ intersects
L in O(N2) points.
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Figure 3.4: Two kinds of local modifications

If Λ intersects the interior of some edge e of L twice in a row, then we
can find an arc A of Λ which has this property in a minimal way, in the sense
the the union of A and the portion of e between the two intersection points
bounds a disk that contains no other arcs of Λ. We can then shorten Λ by
pushing A across the disk to a new arc A′. This removes two intersection
points as well. Figure 3.5 shows the construction.

A A'

Figure 3.5: Pushing A across a disk
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We claim that Λ cannot have the intersection pattern eo1, e
o
2, e

o
1, for 3

consecutive intersections. Here e1 and e2 are adjacent edges of L and eoj is
the interior of ej. Figure 3.6 shows how this pattern forces Λ to intersect the
interior of one of e1 or e2 twice in a row.

e1 e1 e1

e2 e2 e2

Figure 3.6 An alternating intersection forces a double intersection

In the cases depicted, the blue arc is the arc with the three crossings and
then the red arc is a possible continuation. There are infinitely many cases
here, but in all cases the blue arc sets up a trap from which the red arc must
later escape, and it can only escape by creating a double edge intersection.

Now we give the final argument. Assuming the Meander Number Con-
jecture, we can say that Λ intersects L at least O(N2) times. But then we
can find O(N2) disjoint arcs of Λ, each containing exactly 3 points where Λ
crosses L at points interior to the edges of L. From what we have just fin-
ished arguing, each of these special arcs must intersect L in 3 distinct edges.
But then each special arc has length greater than 1/

√
N . Hence the total

length of Λ is O(N3/2). This is what we wanted to show.
The same argument shows that there are collections of N points in [0, 1]2

which cannot be connected by a path that is shorter than O(µN/
√
N). This

would only be interesting (for Conjecture 1.3target*.3) if we could show that
µN grows faster than N3/2.
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