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1 Introduction

Let S! be the unit circle. If ~ is an equivalence relation on S* we can form
the topological quotient space @ = S'/ ~. We call Q a circle quotient.

There is a hyperbolic geometry interpretation of circle quotients. We
think of the hyperbolic plane, H?, as the open unit disk in the Euclidean
plane. The ideal boundary of H? is S*. Every pair of distinct points in S*
determines a unique hyperbolic geodesic having these points as endpoints.
Given ~ we produce a collection I' of geodesics as follows. A geodesic belongs
to I iff its endpoints are equivalent. Conversely, if a collection I' of geodesics
satisfies a simple condition then there is an equivalence relation ~ which
determines T" as above. In this case we write Q(I') = S/ ~.

Sometimes the hyperbolic geometry interpretation is natural because the
circle quotient arises in connection with Kleinian groups [T]. For instance,

1. If I is the set of lifts of a simple closed geodesic on a closed hyperbolic
surface, then Q(I') is homeomorphic to an infinite union of circles,
tangent to each other in a tree-like pattern. This is the Mickey Mouse
example.

2. If T is the set of all lifts of a binding on a closed surface then Q(T") is
homeomorphic to S?, according to a theorem of R.L. Moore. A binding
is a union of two simple closed geodesics, whose complementary regions
are all homeomorphic to disks. This example arises in connection with
doubly degenerate limits of quasifuchsian groups.

* Supported by N.S.F. Research Grant



In this paper we will study perhaps the simplest examples of circle quo-
tients which are based on self-intersecting closed curves on a (punctured)
hyperbolic surface. Unlike the examples above, many of the quotients we
consider are not planar. We encountered the prototypical example while
studying complex hyperbolic Kleinian groups in [S1] and it is the complex
projective geometry of S3, rather than the conformal geometry of S2, which
determines the structure of the corresponding circle quotient. (Essentially
no geometry of this sort enters into this paper, however.)

Let ¥ be the thrice-punctured sphere, equipped with its usual finite area
complete hyperbolic metric. Figure 1.1 shows the commutator curve ~y on 3.
Here X is represented as a twice-punctured plane. We mean for v to be a
closed geodesic. We have the universal covering map H? — Y. Let I" be the
set of lifts to H? of 7. The right hand side of Figure 1.1 shows a sketch of
['. This is our prototypical example.

Figure 1.1

Here is a generalization. A horodisk in H? is a disk tangent to S' and
otherwise contained in H?. A k-flower is a union of k > 3 horodisks, hav-
ing pairwise disjoint interiors, such that each is tangent to two others, and
such that the union has k-fold hyperbolic rotational symmetry. If k£ is odd
(respectively even) we call the flower odd (respectively even). We say that
an infinite horodisk packing is an infinite collection H = {H,} of horodisks,
having pairwise disjoint interiors, such that all the complementary regions
are surrounded by flowers. Figure 1.2 shows part of the horodisk packing in
which the complementary regions are all surrounded by 3-flowers.



Figure 1.2

Say that a slalom curve of H is a regular C! bi-infinite path, contained in
OH, which makes an inflection point at every opportunity. One example is
drawn in Figure 1.2. We will see in Corollary 5.2 that slalom curves always
have two endpoints in S?, just like geodesics. If H is the packing in Figure 1.2,
and we replace each slalom curve of H by its geodesic representative which
has the same endpoints, we recover our prototypical collection of geodesics.

In general, we start with a horodisk packing H and consider the collection
'y of geodesic representatives of slalom curves of H. It follows from Corollary
5.2 that the relation induced by 'y is an equivalence relation. We call Q(I'y)
a horodisk quotient. We usually write Q(H) = Q(T'g).

Our main goal is to describe how to visualize these quotients. We will
even explain, in §7, how to build approximations to many of them out of
string in a canonical and algorithmic way.

Say that a tetrahedron space is a finite collection of tetrahedral subsets of
R? such that every two of the tetrahedra are either disjoint from each other,
or intersect in a common vertex, or intersect in a common edge. If Iy and
IT; are tetrahedron spaces we write I, — 1I; if each tetrahedron u; of II; is
contained in some tetrahedron g of 1. We also insist that p; MOuyg is either
empty, or a common vertex, or a common edge. We say that a nested sequence
of tetrahedron spaces is a sequence of the form Iy — II; — I, — II5...

Theorem 1.1 (Main Result) Let H be a horodisk packing, with associated
quotient Q(H). There is a nested sequence {I1,,} of tetrahedron spaces, such
that 11 = ;2 11, is homeomorphic to Q(H). Also, the homeomorphism
U : Q(H) — II conjugates Is(H) to a subgroup of PL(II).

Is(H) is the orientation preserving hyperbolic symmetry group of H. Each
element of Is(H) induces a canonical self-homeomorphism of Q(H). In the
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Main Result we think of Is(H) as acting on Q(H) in this way. PL(II) is the
group of self-homeomorphisms of II which extend to piecewise linear maps
in a neighborhood of II.

We wonder about the extent to which the Main Result can be transcribed
into a more rigid geometric situation. For instance, our Main Result combines
with the work in [S1] to show

Corollary 1.2 The prototypical horodisk quotient is homeomorphic to the
limit set of the last discrete complex hyperbolic ideal triangle group. At the
same time, there is an embedding of the prototypical horodisk quotient into
the 3-sphere so that the complement admits a complete metric of constant
negative curvature.

We will discuss this corollary now, but not elsewhere in the paper. Even
though we did not know, in [S1], that the limit set in question was homeo-
morphic to the prototypical horodisk quotient, we did have have a concrete
description of it. Here we just observe that our description of the proto-
typical horodisk quotient is identical to our description of the limit set in
[S1], once the geometric category is changed. The complex projective maps
in [S1] are changed to piecewise affine maps here. The hybrid spheres of
[S1] are changed to marked tetrahedra here. Indeed, the initial motivation
for writing this paper was to have a simpler geometric setting in which to
elaborate the structure of the neat limit set. In [S1] we also proved that
the orbifold at infinity for our group was commensurable to the Whitehead
link complement, a well known manifold which admits a complete hyperbolic
metric of finite volume. This means that the complement of the limit set, in
S3 has a complete hyperbolic metric (of infinite volume).

We now can prove that a vast class of horodisk quotients can be embed-
ded into S? so that their complements admit complete metrics of constant
negative curvature. See [S2].

The Main Result tells us a lot about embedding finite graphs into horodisk
quotients. Using the notation from the Main Result, we form the incidence
graph G(I1,) as follows. G(II,) has one red vertex placed at the center of
each tetrahedron of II,, and one blue vertex placed at each point in R?® which
is a vertex of a tetrahedron in II,. We join a red vertex to a blue vertex by
an edge iff the corresponding points in space are the center and vertex of the
same tetrahedron.



Corollary 1.3 For any n one can embed into Q(H) a graph G, which has
G(I1,) as a quotient graph.

A quotient graph is obtained by collapsing to points some of the edges in the
original graph. A planar graph has only planar quotients.

We will see in §6 that G(II,) is non-planar for sufficiently large n if H
has at least one odd flower. It will follow that QQ(H) contains a non-planar
embedded graph in this case. It is not hard to see, if H has all even flowers,
that one can partition the slalom curves into two sets, so that no two in
the first set intersect each other and no two in the second set intersect each
other. From here, it is well-known that Q(H) must be planar. In §7.1 we
will sketch a self-contained proof, based on our Main Result. In short,

Corollary 1.4 Q(H) is planar if and only if all the flowers of H are even.

Here is an overview of the paper. In §2 we introduce finite horodisk
packings and construct the horodisk packing graphs, which are finite graphs
associated to the finite packings. The graphs, properly considered as metric
spaces, are finite approximations to horodisk quotients.

In §3 we define marked rectangle spaces. These are metric spaces, made by
gluing together finitely many Euclidean rectangles, which contain isomorphic
copies of the horodisk packing graphs constructed in §2.

In §4 we define certain tetrahedron spaces, which we call marked tetra-
hedron spaces. These spaces contain PL embedded copies of the marked
rectangle spaces constructed in §3.

In §5 we take the limits of the constructions in §2-4 to prove the Main
Result.

In §6 we prove Corollary 1.3. We also prove that G(II,) is non-planar, for
large n, when the associated horodisk packing has at least one odd flower.

In §7 we show how our constructions can be simplified when the horodisk
packing either has all even flowers or all odd flowers. The first case leads
to a planarity proof and the second case leads to a method for building the
corresponding circle quotients out of string. Since the string art topic is
rather whimsical, we will only sketch a proof that it works.

I would like to thank Martin Bridgeman, Peter Doyle, Bill Goldman, and
David Epstein for conversations on topics relating to this paper. I would also
like to thank the anonymous referee, who made a great number of helpful
comments and suggestions.



2 Finite Horodisk Packings

2.1 Basic Definitions

Bounded Interstices: Let H? be the hyperbolic plane. We define horodisks
and flowers in H? exactly as in the introduction. A bounded interstice is the
closure of the bounded component of H?—F, where F is a flower. The center
of the interstice is the fixed point of the hyperbolic rotation which stabilizes
the flower. An interstitial verter is a point of tangency between two of the
horodisks in the defining flower. A bounded interstitial arc is an arc of one of
the horocircles in the defining flower, which connects two interstitial vertices.

Unbounded Interstices: An unbounded interstice is the closure, in H? U
S', of a connected component of (H? U S') — F,. Here F, is the union
of two tangent horodisks. The center of this interstice is the point in S?,
contained in the interstice, which is fixed by the hyperbolic reflection which
interchanges the two horodisks of F,. The interstitial verter is the point
of tangency of the horodisks of Fy. The unbounded interstitial arc is the
geodesic ray connecting the interstitial vertex to the center.

Finite Horodisk Packings: A finite horodisk packing is a finite union of
horodisks, which have pairwise disjoint interiors, such that the complemen-
tary regions are all interstices. We normalize so that (0, 0) is the center of one
of the bounded interstices, and one of the horodisks bounding this interstice
has its basepoint at (1,0). (The basepoint is the point of tangency with S*.)
We call this interstice the initial interstice. Figure 2.1 shows an example on
the left, together with 4 interstitial vertices and each type of interstitial arc.

(1,0)

Figure 2.1
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The Adjacency Tree: We say that two interstices are adjacent if they share
a common interstitial vertex. To each horodisk packing H we may assign a
finite tree Ty. The nodes of Ty are the centers of the interstices. Two nodes
are joined by a geodesic segment or ray iff the corresponding interstices are
adjacent. The initial node of Ty is defined to be the initial interstice. In
this way, Ty is naturally a finite, embedded, planar, directed tree. Each
non-terminal node of 7" has valence at least 3. We call Ty the adjacency tree
of H. The right hand side of Figure 2.1 draws this tree.

The Black Order: If v is a node of Ty, other than the initial node, we let
S, C S' — (1,0) denote the set of terminal nodes ¥ such that the directed
path from the initial node to ¥ contains v. Sometimes S, is called the “set
of futures” of v. Suppose v and w are two such nodes, and that there is
no directed path, starting from the initial node, which contains both v and
w. We write v < w iff there are nodes v € S, and w € S,, such that one
encounters ¥ before 1 when travelling counterclockwise around S, starting
at (1,0). It is easy to see that this definition is independent of the choices of
v and W, and that either v < w or w < v. Thus, the embedding of T into
H? determines a partial order on the nodes of Tj;. We call this order the
black order for reasons which will become clear shortly.

Figure 2.2

Special Curves: Let H be a horodisk packing. Let v be a C! regular bi-
infinite path in H?. Suppose also that v = v; Uy, U3, where v, and 73 are
unbounded interstitial arcs, and <, is a union of bounded interstitial arcs.
We say that 7 is horo-like if 7, is contained in a single horocircle. We say
that v is slalom-like if 5, makes an inflection point at each interstitial vertex
in its interior. Figure 2.2 shows a horo-like curve and a slalom-like curve.



Horodisk Packing Graphs: We define a graph G = G(H) as follows. The
vertices of G are the centers of the unbounded interstices. These points lie
in S! and are in bijection with the components of S — H. Two vertices are
joined by a black edge if there is a horo-like curve which joins them. Two
vertices are joined by a white edge if there is a slalom-like curve which joins
them. It is easy to see that each vertex is incident to two white edges and
two black edges. We call G(H) the horodisk packing graph associated to H.

Orienting the Black Edges: We orient the horo-like curves so that they
travel clockwise around the horodisks. This gives an orientation to the black
edges of G(H). It is easy to see that the union of the black edges is a
Hamiltonian circuit for G(H). This circuit visits the vertices of G(H) in the
counterclockwise order that they appear on the circle. We define the first
vertex of G(H) to be the first vertex one encounters when travelling coun-
terclockwise, starting from (1,0). If v and w are vertices of G(H) we write
v < w if the black Hamiltonian circuit visits v before w, starting from the
first vertex. We call this the black order on the vertices of G(H). To connect
this definition with the one in the previous section: The vertices of G(H)
coincide with the terminal nodes of Ty. The black order here coincides with
the black order defined above, when restricted to the terminal modes.

Remarks:

(i) Technically, G(H) is a multi-graph, because more than one edge can
connect two vertices. In general, many of the graphs we define have this
property. We hope that the use of the term graph in place of multi-graph
does not cause confusion.

(ii) If H is contained in a larger horodisk packing H' it is not usually true
that G(H) is a subgraph of G(H'). We will see in §2.4 that G(H) is always
a quotient graph of G(H'), however.

(iii) One can ask if there is a natural way to orient the white edges of G(H).
This is indeed the case. Furthermore, it turns out that the union of the white
edges is also a Hamiltonian circuit. We will explain in the next section how
the two kinds of edges play dual roles within the graph.



2.2 Duality

Suppose H is a horodisk packing, with associated horodisk packing graph
G(H). Let G*(H) be the graph obtained by recoloring all the white edges of
G(H) black and all the black edges white. Is there a horodisk packing H*
such that G(H*) is isomorphic to G*(H), via a color preserving isomorphism?

Let us reformulate the question. Given a horodisk packing H, let (H)
denote the union of the interstices of H. In other words, (H) is just the
closure of H*> — H. We equip (H) with the path metric induced from the
inclusion into H?. Note that the horo-like curves and the slalom-like curves
are naturally curves in (H). We say that two finite horodisk packings H;
and H, are dual if there is an isometry ¢ : (Hy) — (H3), which carries horo-
like curves to slalom-like curves, and vice-versa. We normalize so that the
restriction of ¢ to the initial interstice of H; coincides with the hyperbolic
(and, coincidentally, Euclidean) reflection ro(z,y) = (x,—y). Except for
relatively trivial cases, ¢ would certainly not extend to a self-homeomorphism
of H®. If H, and H, are dual, we write H, = H;. An isometry from (H,)
to (Hy) maps vertices of G(H;) to vertices of G(H;). Moreover, it induces a
bijection between the set of black (respectively white) edges of G(H;) and the
set of white (respectively black) edges of G(H;). In short, such an isometry
induces the desired graph isomorphism from G*(H;) to G(H7Y).

Lemma 2.1 (Duality Lemma) Every finite horodisk packing has a unique
dual packing.

First we prove uniqueness. Suppose that Hy and H), are both dual to H;.
There is an isometry ¢ : (Hz) — (H)) which carries horocircles to horocircles
and interstices to interstices. 1 has a canonical extension to all of H?: To
define 9 on the interior of a horodisk of Hy, we choose the unique isometry
which extends the action of 1 on the boundary. 1 clearly preserves lengths
of paths and hence is an isometry. Since 1 is the identity on an open set, 9
is the identity everywhere.

We now construct a dual packing, H,. Let A; denote the union of bounded
interstices of H; which correspond to nodes of the adjacency tree which are
exactly j edges away from the initial node. Ag is the initial interstice.

Let ¢ : Ay — H? be the restriction to Ay of ry. Suppose that ¢, : A, —
H? has been defined, and is an isometry on each interstice of A,. Let b be
an interstice of A, 1. Let v be the unique vertex of b which is also a vertex of
an interstice a of A,. There is a unique hyperbolic reflection r which swaps



the two horodisks of H; which are tangent to each other at v. We define

¢n+1‘b = (T © [¢n|a])‘b

Here [¢,q] is the unique hyperbolic isometry which extends ¢,|,. We let ¢
be the union of all these maps. By symmetry, ¢ maps slalom-like curves of
H; into curves of the form v = 7; U v U 3, where 7, and 73 are geodesic
rays and 7, is contained in a horocircle.

Let a be any bounded interstice of H;. Let o; U ... U g, be the union
of slalom-like curves which contain the interstitial arcs bounding a. Let h;
be the horodisk containing the horocircular part of ¢(c;). If o; and oy in-
tersect in an interstitial vertex of a then h; and h; are tangent. From this,
and from symmetry, we see that F'(a) = Uh; is an n-flower. If a and b are
adjacent bounded interstices then one easily sees that the interstices defined
by F'(a) and F(b) are likewise adjacent. It follows from this fact that the ob-
vious big union Hy = |J F(a) is a horodisk packing. By construction, ¢ is the
isometry from (H;) to (Hs) which realizes the duality between H; and Hy. #

Corollary 2.2 G(H) is the union of two Hamiltonian circuits, the one made
from the white edges and the one made from the black edges.

We orient the white edges in G(H) using the orientation of the black
edges of G(H*). Thus, G(H) is a directed graph.

2.3 Drawing the Horodisk Packing Graphs

Necklaces: A closed (respectively open) k-necklace is a union of two sim-
ple closed (respectively open) curves, one black and one white, which string
together k vertices in the same order. These graphs are better defined by
example. Figure 2.3 shows the cases k = 3,4, 5. A necklace is horizontal (re-
spectively vertical) if its two curves are oriented in the opposite (respectively
the same) directions. The reason for this terminology will emerge in §3.

AN —=

Figure 2.3
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Motivating Discussion: If the packing H is a k-flower then so is the dual
packing H*. The horo-like curves and slalom-like curves of H coincide in this
case and G(H) must be a closed k-necklace. The isometry (H) — (H*) is
orientation reversing on the initial interstice of (H), the only one that counts
in this case, so that the orientation of the slalom-like curves is opposite from
the orientation of the horo-like curves. Hence, G(H) is horizontal.

Suppose that G(H) is given, and we want to construct G(H'), where H'
is obtained from H by modifying H in the simplest way—that is, by adding
a k-flower into one of the unbounded interstices of H. Call this unbounded
interstice V. Let v be the vertex of G(H) which corresponds to V. That is,
V is the symmetry point of V' N St. Outside of V, everything about the two
packings agrees. Moreover, exactly two horo-like and two slalom-like curves
of either packing enter into V. These 4 curves correspond to the 4 edges of
G(H) which are incident to v. All of this tells us that G(H') is obtained from
G(H) by cutting out a small neighborhood of v and splicing in a new graph.
The spliced-in graph has k — 1 vertices, since the k£ — 2 horodisks inserted
into V, to make a k-flower, break up ¥V N S! into k — 1 smaller arcs.

To find the identity of the spliced-in “mystery graph”, we turn the prob-
lem inside out. We can obtain H' from a single k-flower by adding all of H
(except for two horodisks) to one of the unbounded interstices of this single
flower. The same analysis as above shows that we obtain G(H') from a closed
k-necklace by cutting out a neighborhood of a single vertex and splicing in
another graph. But this cut-open necklace is in exactly the same position as
the mystery graph. Hence, the mystery graph is just an open (k—1)-necklace.

So, when we pass from G(H) to G(H') we splice in an open necklace at
the appropriate vertex. There is only one way to do the splicing so as to make
all the orientations match. The only thing we have not determined is: How
do we decide if we splice in a horizontal necklace or a vertical necklace? Here
is a heuristic idea: If H is a single flower then G(H) is a closed necklace but
G(H') is not just a closed necklace. If we splice an open horizontal necklace
into a closed horizontal necklace, we just get a longer closed necklace. Hence,
we must splice a vertical necklace into the horizontal one. This special case
suggests that the general pattern is one of alternation.

General Method: Let Ty be the adjacency tree of the horodisk packing
H. Let TE denote the set of nodes of Ty which are exactly k edges away
from the initial node. Every two nodes in TF are comparable in the black
ordering. Thus, the black partial ordering on the nodes of Ty determines a
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linear ordering on the nodes of T%.

Now we build G(H). If the initial node of Ty has valence n, we let G be
a horizontal closed n-necklace. Once we choose a first vertex of G, the black
oriented edges of GGy determine a black order on the vertices of GGy. There is a
unique bijection from the vertices of Gy to the vertices of T} which respects
the two black orders.

Suppose we have constructed a graph G_;, whose vertices are in a black-
order-preserving bijection with the nodes of TX. We create G}, as follows. If
v is a vertex of G_1, we let n, be the number of edges directed out of the
node o of Tk which corresponds to v. We cut out a small neighborhood of
v and we splice in an open n,-necklace. We make this necklace horizontal
if £ is even and vertical if £ is odd. Doing these splices at all vertices of
Gr_1, we create G. The first vertex of GG, is defined to be the first vertex
of the spliced-in graph which replaces the first vertex of Gy_;. This choice
determines a black order on the vertices of Gy. There is a unique bijection
from the vertices of Gy to the vertices of Th™ which respects the two black
orders. Thus we construct a sequence of graphs Gy, ..., G, until we run out
of nodes of Ty. The final graph is G(H).

Why Alternation: Why do we alternate between horizontal and vertical
necklaces? The reason is: If we have a duality ¢ : (H) — (H*) then ¢ is
orientation preserving or reversing on an interstice, depending on the parity of
the distance from the corresponding node to the initial node, in the adjacency
tree.
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3 Marked Rectangle Spaces

3.1 Basic Definitions

Marked Rectangles: By rectangle we always mean the solid 2-dimensional
body. We always take the sides of our rectangles parallel to the coordinate
axes in the plane. We say that a marked rectangle is a rectangle with one
pair of opposite sides declared plain and one pair declared dotted. One of
the diagonals of a marked rectangle has negative slope. We call this diagonal
black. We call the other diagonal white. We color a vertex according to
the color of the diagonal which contains it. We say that a vertex is high if
it is contained in the top edge of the rectangle—that is, the horizontal edge
whose y-coordinate is larger. The left hand side of Figure 3.1 shows a marked
rectangle. We always draw in the black diagonal.

Figure 3.1

Subdivision: We say that a run of marked rectangles is a finite sequence
My, ..., M}, of marked rectangles, such that M, and M;;,; are translation
equivalent and intersect in a common dotted edge, for all 7. The right hand
side of Figure 3.1 shows two examples.

The run {M;} of rectangles canonically determines a single marked rect-
angle M. As a set, M = (JM,. The plain sides of M are defined to be the
vertical (respectively horizontal) ones iff the plain sides of the M; are the
horizontal (respectively vertical) ones. The run shown at the extreme right
of Figure 3.1 determines a marked rectangle which is translation equivalent
to the one shown in the left side of Figure 3.1.

Inversely, if M is a marked rectangle we define a subdivision of M to be
a run of £ > 2 marked rectangles which determines M. Here is the secret
behind this definition, which relates it to the discussion in §2.3: Iterated
subdivision of marked rectangles alternately produces horizontal and vertical
runs.

Marked Rectangle Patterns: Suppose that P and P’ are finite unions

of marked rectangles. We write P — P’ if P’ is obtained from P by subdi-
viding exactly one marked rectangle of P. We call P’ a strict refinement of
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P. Let M, be the marked rectangle whose underlying set is the unit square
and whose dotted sides are horizontal. We say that P is a marked rectangle
pattern if there is a finite sequence: My — P, — ... - P, = P.

Black and White Orderings: We inductively define an ordering on the
marked rectangles within a pattern. The singleton {Mj} obviously has only
one order. Suppose that M, ..., M, are the marked rectangles of P listed
in their order, and that P — P'. Suppose that M; is the marked rectangle
which, in passing from P to P’, is subdivided into the run {M;, ..., M;;}. We
list the M;; from left to right (respectively top to bottom) if these marked
rectangles run horizontally (respectively vertically). We order the marked
rectangles of P’ as follows:

My < ... <My < My < ... < My, < Mipq <...<M,.

So, an ordering on P canonically determines an ordering on P’. By induction,
then, we define an ordering of the marked rectangles within any marked
rectangle pattern. We call this ordering the black ordering. We can define the
white ordering simply by switching the words left and right in the definition.
Figure 3.2 shows an example. The marked rectangles have been pulled apart
to show their structure. The big centered numbers show the black ordering.
The small corner numbers show the white ordering.

1

7
2

8

.......................................... 1 2345 6 7 8 9

3

9
Figure 3.2

Indexing by Trees: Marked rectangle patterns are canonically indexed by
finite directed trees. Except for the trivial tree, we insist that non-terminal
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nodes of our trees have at least two outgoing edges. We assume that these
trees are embedded in the plane, with the non-terminal nodes in the upper
half plane and the terminal nodes in R. The ordering on R gives an ordering
on the terminal nodes. Figure 3.2 shows an example. (The lines drawn
beneath the tree in Figure 3.2 encode its structure and will be used below.)

Our method prefers the black ordering over the white one. We associate
to My the trivial tree. Suppose the rectangle pattern P is associated to the
tree T'. Suppose also that there is a map from the terminal nodes of T to the
marked rectangles of P which respects the black order. Suppose that P — P’
and that P’ is obtained from P by subdividing the ith marked rectangle into
a run of k. We let 7" be the directed tree obtained by lifting the ith terminal
node a bit off of R and connecting this node back to R with £ new outgoing
edges. These edges are then mapped, from left to right, into the M;;, so as
to respect the black order. We will let P(T) denote the marked rectangle
pattern associated to the tree 7'.

3.2 Duality Revisited: A Magic Trick

In this section we show a trick which is the secret behind the main result in
the chapter, [§3.4, Graph Isomorphism Theorem].

Suppose 7' is a finite directed tree, drawn so that the outgoing edges come
symmetrically downward out of each node, as in Figure 3.2. Given a node
v € T, let r, be the reflection in the vertical line through v. Let T, be the
subtree whose initial node is v. We say that we reverse T at v if we delete T,
from T and replace it by r,(7},). In so doing, we create a new tree, abstractly
isomorphic to T', but embedded differently.

Here is a canonical re-embedding of a tree 7. Start with 7, = 7. Obtain
T, by reversing Ty at the initial node. In general, obtain Tj,; by reversing
T; at all nodes which are j edges away from the initial node. Let 7™ be the
final tree obtained. To illustrate this, we perform this re-embedding on the
tree shown in Figure 3.2. Rather than draw all the trees, we will just list
how the vertices are permuted. In each list, the underline indicates which
numbers are to be reversed to get the next list.

123456789 — 987 654321 — 789 12 3456 — 789 21 6543 — 789216345

We have met this construction before, disguised in hyperbolic clothing.
Let T be the adjacency tree to a horodisk packing H, then the main con-
struction of [§2.3, Duality Lemma|, which constructs the dual packing H*,
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exactly performs the succession of reversals just described. The only differ-
ence is that we used hyperbolic geometry rather than Euclidean geometry to
effect the reversals. Hence, T™* is isomorphic to the adjacency tree of H*.

Now for the magic trick: Pair up the labels of T* with 7', using the
following suggestive notation: 7',8% 93, 2% 15 6%, 37 4% 5° Now look at the
marked rectangles in Figure 3.2 (or Figure 3.3 below). You will see these
pairs exactly!

3.3 Marked Rectangle Spaces

Let P be a marked rectangle pattern, consisting of n marked rectangles.
We let P be the topological space which is the disjoint union of n marked
rectangles. We think of the marked rectangles in P as being canonically
bijective with the marked rectangles of P. We form the space | P| as follows:
Identify the low black (respectively white) vertex of the ith rectangle in P
to the high black (respectively white) vertex of the (i + 1)st rectangle in P.
Indices are taken cyclically, mod n. The arrows in Figure 3.3 show which
points are identified in |P|. We are using both the black and white orderings
to define these identifications.

The union of all the black (respectively white) diagonals is homeomorphic
to S', and visits every rectangle in |P|.

Figure 3.3
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To see the black circle in Figure 3.3, start in the first marked rectangle in
the black ordering. Trace your finger from high to low along the first black
diagonal, then jump to the second high black vertex and repeat. And so
forth. When you get to the last black low vertex, you jump back to the first
black high vertex. The apparent discontinuities are not discontinuities at all,
for the relevant points are identified.

3.4 The Graph Isomorphism Theorem

If H is a finite horodisk packing, H determines a marked rectangle space in
the following way. Let 75 be the adjacency tree of H, as defined in §2.1.
Use a stereographic projection p to identify H? with the upper half plane,
so that the p(1,0) = co. Let T = pu(7g). The initial node on 7" is the image
under p of the initial node of 75. The interior points of 7" are all contained
in the upper half plane and the terminal nodes are contained in R. These
are the conditions we required so that we could index a marked rectangle
pattern by 7. Let P = P(T) be the marked rectangle pattern indexed by T
and let |P| be the associated marked rectangle space. We write |P| = |P|(H)
to denote that P just depends on the finite horodisk packing H.

There is a graph G'(H) canonically associated to |P|(H). This graph
is simply the union of the black and white diagonals, with the centers of
rectangles put in as vertices. The corners of the rectangles are not counted
as vertices of G'(H). We orient the edges so that they travel from high to
low within a rectangle.

Let G(H) be the horodisk packing graph associated to H. By construc-
tion, the terminal nodes of the tree T are in canonical bijection with the
vertices of G(H) and also with the vertices of G'(H). Hence the vertices of
G(H) are in canonical bijection with the vertices of G'(H).

Theorem 3.1 (Graph Isomorphism) There is a color-preserving graph
isomorphism from G(H) to G'(H) which extends the isomorphism of the
verter sets.

Proof: We use the terminology from §2.3. First, suppose that H is a k-
flower. Then the marked rectangle pattern P(H) is a horizontal run of k&
marked rectangles. It is easy to see that G'(H) must be a horizontal closed
k-necklace. For the induction step, suppose that H; and H, are such that the
adjacency tree 75 is obtained from 7} by extending a single terminal node
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by k new outgoing edges. Here k£ > 2. To create P(H;), a unique marked
rectangle of P(H,) is subdivided into k& new ones. From this it is easy to see
that G'(H;) is obtained from G'(H;) by splicing in a horizontal or vertical
open k-necklace at the relevant vertex. This necklace is horizontal or vertical
depending on whether or not the marked rectangles of the subdivision run
horizontally or vertically. Our result now follows from induction, and from
the observation that iterated subdivision alternately produces horizontal and
vertical runs of marked rectangles. &
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4 Marked Tetrahron Spaces

4.1 Basic Definitions

Marked Tetrahedra: By tetrahedron we mean the convex hull of 4 general
position points in R®. A tetrahedron has 6 edges made from three pairs of
disjoint edges. We declare one pair dotted, one pair plain and one pair col-
ored. One of the colored edges we call black and the other one we call white.
Each vertex is contained in a unique colored edge. We define a vertex to be
the same color as the colored edge that contains it. We call one of the black
vertices high and one low. Likewise for the white vertices. A suitable linear
map from R® to R? maps a marked tetrahedron onto a marked rectangle,
respecting all the markings. Any two marked tetrahedra are eqivalent via a
unique affine transformation which respects all the markings.

The Heart: We now define a nice PL. embedding of a marked rectangle
into a marked tetrahedron p. We take indices mod 8. Let ¢ be the center (of
mass) of u. Let vy, vs, vs, v7 be the vertices of u, labelled so that an uncolored
edge e; connects v;_; and v;;; for all even j. Let w; be the midpoint of the
segment which joins ¢ to the midpoint of e;. The points w; are contained
in the interior of p. Let p be the union of the 8 triangles, defined by the
triples (c, z;, 441). Here x stands for either v or w. We call u the heart of p.
Figure 4.1 shows a planar projection. It is easy to see that u is an embedded
topological disk, contained in the interior of u, except for the vertices. It
is also easy to see that there is a canonical piecewise affine map from any
marked rectangle into p.

VS ed v3

e6: wé 2

> V1

v7
Figure 4.1
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Subdivision, Informal Discussion: Soon we will define the subdivision of
a marked tetrahedron. Our definition incorporates both the subdivision rule
in §3.1 and the gluing rules given in §3.3. We will make the construction for
a particular marked tetrahedron and then extend the definition to all marked
tetrahedra by affine maps.

Before we make our precise construction we paint an informal picture of
it. Imagine the usual picture of DNA, with two helical strands, one black
and one white, coiling around each other and rising upwards. Picture the
horizontal molecular ties connecting the two strands as dotted line segments.
The convex hull of the set of two successive ties is a tetrahedron. The black
(respectively white) edges of the successive tetrahedra are the edges connect-
ing the black (respectively white) points of two successive ties. The ties form
the dotted edges. The plain edges are the other edges. The union of these
tetrahedra is roughly our model for a subdivision.

Subdivision of a Marked Tetrahedron: To take advantage of cylindrical
coordinates we will temporarily identify R® with C x R. Let zp = 1+1i. Let
1 be the tetrahedron whose vertices are

(Z(), 2) (—Z(), 2) (Eo, —2) (_EO, —2)

We declare that the plain edges are contained in the horizontal planes C' x
{£2}. (Our subdivision will switch plain and dotted edges, so as to match our
informal picture.) The black edge connects (Zy, —2) to (29, 2). The white edge
connects (—Zg, —2) to (—2¢,2). The dotted edges are the remaining edges.
Figure 4.2 shows the projection of 1 to C. The black edge is drawn boldly
and the white edge is indicated by a thin white strip. We declare z, high
and —Zzg high. (This definition has nothing to do with their R-coordinates
in C x R.)

70 z0

Figure 4.2

Let n > 2 be fixed. We sometimes omit n from our notation. Let 7}, be
the set of n — 1 points on [—1,1], which are evenly and maximally spaced.
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We have
11

T2 = {0}’ T3 = {_1’ 1}7 T4 = {_1,05 1}7 T5 = {_15 _ga ga

1}
and so forth. Let ¢; be the jth element of T;,.

Let w be the unit complex number, having smallest possible positive
argument, such that w"zy = zp.

Define the following sequences.

(D A ()

Here 7 runs from 1 to n — 1. (The choice of 1/2 is fairly arbitrary.) Let B
be the sequence {(Zo, —2), B', (20, 2)}. Note that B,, consists of n + 1 points
in C x R. We think of these as black points. The first point coincides with
one of the black vertices of y. The last point coincides with the other black
vertex of y. We define W in an analogous way, and all the same statements
are true, with white replacing black.

Let b; be the ith point in B. Likewise define w;. Let pu; be the convex
hull of the points b;, w;, b;y1, w;r1. We define the dotted edges to be the
horizontal ones. We define the black edge to be the one bounded by two
b-vertices. Likewise we define the white edge. The other two edges are plain.
The vertices already have colors. For k = 1, n, we define a vertex of uy to be
high if it coincides with a high vertex of u. For i = 1,...,n — 1, we define a
vertex of p; 41 to be high if the corresponding vertex of y; is low.

Our construction is now done. We call {1, ..., 4, } the n-th subdivision
of ;1 and we extend this definition to all marked tetrahedra by affine maps.
It is easy to see that y; C p for all i. Also p; Np; =0 if |i — j| > 2 and
and ;11 share a common dotted edge. Finally a dotted edge of u coincides
with a plain edge of u for k =1, n.

Remark: One might worry that our definition of high and low runs into
a problem with parity. We write b; 1 ux to denote the sentence “b; is high,
considered as a vertex of u;.” The symbol b; | uy has the opposite meaning.
Here is an analysis of two consecutive cases, n = 2, 3.

bidp bidps bt bo L pa by Tpe b3 p.

bidp bidp bot bl pa b3 Tpe bslpuz batus bytu
No problem.
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4.2 Simple Marked Tetrahedron Spaces

Suppose T and T" are finite unions of marked tetrahedra. We write T — T’
if 7" is obtained from 7" by subdividing a single marked tetrahedron. We call
T a strict refinement of T. Let po be the regular tetrahedron, with some
marking chosen. We say that a simple marked tetrahedron space is a finite
collection P of marked tetrahedra such that pyy —» P, — ... = P, = P. We
call these objects SM'T'Ss for short.

We would like to define the black order on the marked tetrahedra within
an SMTS, but we are temporarily thwarted because we do not have good
notions of left and right, or top and bottom, in space. However, looking
carefully at the definition given in §3.2 we only had to have the notion of left
to right and top to bottom. Our markings allow us to define these concepts.
Suppose that e; and ey are two edges, either both plain or both dotted. We
say that e; precedes es if e; contains the high black vertex and e; contains
the low black vertex. This notion is compatible with the planar definition,
for the left and top edges of a marked rectangle, however they be marked,
always contain the high black vertex.

Now that we have our notion of precedence, we can define the black order-
ing on the marked tetrahedra within a space inductively. For the inductive
step, suppose u is a marked tetrahedron which is subdivided into py, ..., -
We order the p; so that the first one touches the first plain edge of p and
the last one touches the last (that is, second) plain edge of pu. The rest of
the construction is exactly the same as in §3.2.

Just as in §3.2, each SMTS is indexed by a directed tree, such that there is
a canonical bijection between the terminal nodes of the tree and the marked
tetrahedra within the SMTS. The construction is the same, and so we omit
the details. If T is such a tree, we let II(T) be the corresponding SMTS.

We now discuss the relationship between a marked rectangle space (MRS),
defined in §3.3, and an SMTS. Every SMTS has a heart. Namely, one takes
the union of all the hearts of the individial marked tetrahedra. One can
see, by induction on the complexity of 7', that there is a canonical bijection
between the rectangles of the MRS, |P|(T"), and their PL copies within the
heart of ﬁ(T) One would like to say, simply, that this map is induced by
a PL homeomorphism from |P|(T) to the heart of II(T). This is almost the
case.

Note that an MRS has 2 special points. One of these points is the equiva-
lence class consisting of the first high black vertex and last low black vertex.
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The other special point is the equivalence class consisting of the first high
white vertex and the last low white vertex. Let |P|(T) be the same space

as |P|(T'), except that the points comprising these equivalence class are not
identified. We call |P|(T) a simple marked rectangle space (SMRS).

Lemma 4.1 There is a canonical PL homeomorphism between the SMRS
and the heart of the corresponding SMTS. This homeomorphism respects the
two black orders.

Proof: Our definitions have been set up precisely for this result. The result
follows from induction and simply from unravelling the definitions. &

4.3 Marked Tetrahedron Spaces

We are interested in MRSs and not SMRSs, so we need to improve the
definition of an SMTS. Really, we just need a way to close up the outside
points of the biggest marked tetrahedra in our configuration. Our solution
is not that canonical, but it is perhaps the best that can be done in R3.

Say that a marked tetrahedral k-ring is a collection p1, ..., pp of marked
tetrahedra, having pairwise disjoint interiors, such that p; and p;;, share
a common dotted edge. Here indices are taken mod k. We also insist that
the relevant high points of p; are matched with the relevant low points of
tj+1- Intuitively, one thinks of these tetrahedra as coming from a subdivision,
except that the ends are wrapped around and brought together.

Lemma 4.2 For every k > 3 there exists a marked tetrahedral k-ring.

Proof: Let vy,...,v; be the vertices of a regular planar k-gon. Consider the
line segments s; = v; x [0,1] C R?. Perturb these line segments slightly so
that no two are parallel. Let T; be the convex hull of s; and s;;, suitably
marked. Indices are taken mod k. If the perturbation is small the union of
the T; has all the required properties. #

We always distinguish, within a marked tetrahedral ring, a marked tetra-
hedron which we call leftmost. Say that a marked tetrahedron space (MTS)
is a finite collection P such that, in the sense of the previous section, R —
P, — ... - P, = P. Here R is a marked tetrahedral ring. Every MTS
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has a black ordering. The choice of the leftmost marked tetrahedron within
R allows us to define the black order for tetrahedral rings. After this, the
induction step is the same as for an SMTS. Each MTS is indexed by a finite
directed tree. The only change is that the initial node of this tree must have
valence at least 3. We let II(7") be the MTS associated to T

The spaces II(T) and TI(T) differ only in that two extra dotted edges of
II(T) is glued together. There is the same difference between |P|(T’) and
|P|(T"). Hence

Lemma 4.3 There is a canonical PL homeomorphism between the MRS and
the heart of the corresponding MTS. This homeomorphism respects the two
black orders.

Let H be a finite horodisk packing with adjacency tree Ty We write
II(H) = I(Ty). Let G(H) be the horodisk packing graph. Recall from
the introduction that G(II) is the graph whose red vertices are centers of
tetrahedra in II and whose blue vertices are vertices of tetrahedra in II. A
red vertex is connected to a blue vertex iff the corresponding center and the
corresponding vertex belong to the same tetrahedron. Thus, G(II) is a graph
embedded into R?, whose edges are straight line segments. The following is
immediate from the Graph Isomorphism Theorem and from Lemma 4.3.

Lemma 4.4 (Realization Lemma) If one places a new vertex at the cen-
ter of each edge of G(H) then there is a canonical graph isomorphism from
G(H) to G(II). The original vertices of G(H) are mapped to the red vertices
of G(I1) and the added vertices in G(H) are mapped to the blue vertices of
G(II).
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5 The Main Result

5.1 Basic Definitions

All Definitions Extended: Recall from the introduction that an infinite
horodisk packing H is an infinite collection of horodisks, having pairwise dis-
joint interiors, such that every complementary region is a bounded interstice.
We normalize as in the finite case. We define interstitial arcs, interstitial ver-
tices and slalom curves as in the finite case. The only difference is that there
are no unbounded interstices. We define the adjacency tree just as in the
finite case. Here this is an infinite directed tree with no terminal nodes.

Notation: Now we set up some notation which we will use throughout the
chapter.

o Let T' = Ty be the adjacency tree of H. Let T™ C T denote the set
of nodes which are at most n away from the initial node.

e Let H, denote the union of flowers corresponding to nodes of 7T™. Note
that H, is a finite horodisk packing for all n, and H, C H,;;. Obviously,
H=UH,.

e Let U, denote the set of unbounded interstices of H,. Each interstice
u € U, defines the closed arc u N S*. Let U be the union of these arcs.
Note that U is a partition of S* and USS, refines U in the ordinary sense
that partitions refine each other.

e Let G, = G(H,) be the horodisk packing graph associated to H,. The
arcs of U are canonically bijective with the vertices of G,,.

e Let I1, = TI(H,) be the marked tetrahedron space associated to H,. Let
on : G, — 11, be the embedding from the Realization Lemma. Using ¢,
we see that the arcs of U:° are canonically bijective with the tetrahedra of
IT,,. This bijection is coherent: Nested intervals correspond to nested marked
tetrahedra.
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5.2 Endpoints of Slalom Curves

Let |U,| be the maximum Euclidean diameter of a region in Uj,.

Lemma 5.1 lim,,_,, |U,| = 0.

Proof: Every region u € U, is determined by two tangent horodisks A, and
B,. There are only finite many horodisks in H which have diameter greater
than e. If we choose n sufficiently large then at least one of A, or B, will
have diameter less than €. In either case, it is not hard to see that u has
diameter at most C'y/e for some universal constant C. &

Corollary 5.2 Every slalom curve of H has two distinct accumulation points
in St. If two slalom curves of H share an endpoint then they coincide.
Finally, the endpoint of a slalom curve is never the basepoint of a horodisk.

Proof: Let v be a slalom curve of H. First, since we can always renormalize
H by an isometry to pick a new initial interstice, we can assume that -y
contains an interstitial arc of the initial interstice of H. Let 7, denote the
portion of v which is contained in the union of bounded interstices of H,,.
The set v — v, consists of two infinite rays. One of these rays is contained
in some unbounded interstice a,, of U,, and the other is contained in some b,
of U,. Since |U,| — 0, we see that Na, is a single point a,, € S'. Likewise
Nb, = by C S'. Tt is easy to see that a; # b; and that ay N by = (). Hence
(oo # bso- These are obviously the two accumulation points of ~.

For the second part of the lemma, let v and 7' be two such slalom curves
which share an endpoint a. Let {a,} and {a],} be the corresponding sequences
of unbounded interstices, such that a = Na,, = Na}, is the common endpoint.
It is easy to see that a,,5 N S! is contained in the interior of a, N S'. In
particular, a., is contained in the interior of a,. Since U;° is a partition of
S', we must have a, = a, for large n. Since this is true, in particular, for
two consecutive choices of n, we see that v and 7' share an interstitial arc.
But this implies that v = 7.

For the third part, suppose that a is the basepoint of a horodisk h of H.
Since a is contained in the interior of a, NSt for large n, we see that h C a,,.
This contradicts Lemma 5.1. &
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5.3 The Interstitial Space

Let (H) is the union of interstices of H. We equip H with the path metric,
induced with the hyperbolic metric on H?. We define an end of (H) to be a
nested sequence of regions

Ug D UL D Ug D U3...; Uy, € U,.

We put a metric (and hence a topology) on the set of ends by saying that
the distance between two ends is 27" if they agree exactly up to the first n
terms. Let H,, denote the space of ends, equipped with this metric. It is
easy to see that H,, is a Cantor set.

Every horocircle determines two distinct ends. One simply lists out the
unbounded interstices entered by the horocircle. For cosmetic purposes, we
pad out the beginning of the sequences so that they start with an element of
Uy. Every slalom curve also determines two distinct ends, in the same way.
There are two natural equivalence relations on H,,. Given z,y € H,, we
write x ~ y iff x and y are the two ends of a horocircle. We write x ~q y iff
x and y are the two ends of a slalom curve. Let ~ be the union of the two
relations ~; and ~y. That is, z ~ y if and only if x ~; y for some j =1, 2.

Lemma 5.3 Q(H) is canonically homeomorphic to He,/ ~.

Proof: First, we claim that H,/ ~ is canonically homeomorphic to S*.
This is almost a tautology. The inclusion map (H) — H? induces a contin-
uous surjection 7 : Hy,, — S!. It is easy to see that 7 identifies two ends
of H, iff they are equivalent under ~;. Hence 7 is a continuous bijection.
Note that Hy, is compact, and hence so is Hy/ ~1. A continuous bijection
from a compact space to a Hausdorff space is a homeomorphism. Hence, 7
is a homeomorphism. In sum: Q(H) = S/ ~o= (Hu/ ~1)/ ~o= Hy/ ~.
This completes the proof. &

Lemma 5.4 Let p = {r,} and 0 = {s,} be two ends of Hy.

1. If p and o are the two ends of a horocircle (respectively slalom curve)
then for sufficiently large n the centers of r,, and s, are joined by horo-
like (respectively slalom-like) curves.
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2. If p and o are inequivalent in H,, then there is some n such that the
centers of r,, and s, are joined neither by a horo-like curve of H,, nor
a slalom-like curve of Hy.

Proof: For large n the sequences {r,} and {s,} simply list out which regions
the horocircle (or slalom curve) enters. The first half of our lemma is obvious
from this. For the second half, suppose there is a a horo-like curve which
joins the relevant centers of r, and s,, for infinitely many n. The limit of
these horo-like curves converges, on a subsequence, to a horocircle of H. The
convergence may be taken in the Hausdorff topology on closed subsets of H?.
The key point to this convergence is that the points on S!, corresponding to
our ends, are distinct. Hence there is a lower bound to the set of diameters of
our horo-like curves. A very similar argument works for slalom-like curves. &

5.4 Duality Again

This section is not needed elsewhere in the paper. We say that two packings
H and H' are dual if there is an isometry from (H) to (H') which interchanges
horocircles of H with slalom curves of H' and vice versa. We normalize this
isometry as in §2.3.

Lemma 5.5 (Infinite Duality Lemma) H has a unique dual packing H*.
The horodisk quotients Q(H) and Q(H*) are homeomorphic.

Proof: The uniqueness proof is exactly the same as for the Duality Lemma
of §2.3. For existence, let {H,} be the sequence of finite horodisk packings
approximating H and let {H}} be the sequence of dual packings. Let ¢, :
(H,) — (H}) be the sequence of isometries. It is easy to see, from the proof
of the Duality Lemma, that these maps are all compatible, and that the limit
map exists. Moreover, H> C Hy , for all n. It follows that H* = U H; is
dual to H and that limit map lim ¢,, implements the duality.

Now consider Q(H) and Q(H*). Let Hy be the set of ends of (H) and
let HX be the set of ends of (H*). The isometry i : (H) — (H*) induces
a homeomorphism from H,, to H} . By construction, z ~; y in H, if and
only if i(x) ~3—j) i(y) in H},. Combining this information with Lemma 5.3
we see that 7 descends to a continuous map from Q(H) to Q(H*). The whole
process is invertible, so that ¢ induces a homeomorphism. &
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5.5 Geometry of Iterated Subdivision

In this section we prove several technical results about subdivision of tetra-
hedra. Let |S| denote the Euclidean diameter of a set S C R®. We begin
with two preliminary results.

Let p be the marked tetrahedron used in §4.2 to define the subdivision.
Say that a tetrahedron i is internal to p if 1 C p and pNOw is either empty,
or a vertex common to both tetrahedra.

Lemma 5.6 Suppose [i is a tetrahedron which is internal to p. There is a
universal constant o € (0,1) which has the following property: Let L be any
line which contains two distinct points of fi. Then |L N | < oL N pl.

Proof: The result follows from compactness if /i is contained in the interior
of p. So, consider the case when they share a vertex v. We translate so
that v = 0. Suppose {L,} is a sequence of lines such that |L, N f|/|L, N ul
converges to 1. By compactness, this can only happen if L, N u, as a set,
shrinks to 0. Let D, be the dilation such that |D,(L, N p)| = 1. The
scale factors for the D, increase unboundedly. From this it follows that
D, (1) converges, in the Hausdorff topology on closed subsets, to a strictly
convex cone C. Indeed, p and C coincide in a neighborhood of 0. Like-
wise D, (fi) converges to a strictly convex cone C. Note that C C C, and
dC NoC = {0}. Let M, = D,(L, N ). The segments M, all have unit
length, and have both endpoints on 0C'. It is easy to see that a subsequence
converges to a limit segment M. Since dilations preserve ratios of lengths,
we have [M N C|=|M NC|=1. But then C N AC contains the endpoints
of M. This is a contradiction. &

Lemma 5.7 Let i1 be the marked tetrahedron used in the definition of subdi-
wiston. There exists a finite list of tetrahedra g, ..., ig, tnternal to i, having
the following property: If ' is any tetrahedron in any subdivision of p and

w' is any tetrahedron in any subdivision of y' then p" C fi; for some j.

Proof: By construction, there is a single compact subset K, contained in
the interior of y, such that ' C K unless y' is either the first or last tetra-
hedron in the relevant subdivision. This K does not depend on the number
of tetrahedra in the subdivision. We can fit K inside a tetrahedron fiy which
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is contained in the interior of u. Now suppose p' is either the first or the last
tetrahedron in some subdivision of y. If 4 is subdivided into £ > 3 tetrahedra
then the first and last tetrahedra in the subdivision are the same independent
of k. For this reason, there are only 4 different choices for . Running the
same argument as above, we see that there are tetrahedra fiq, ..., ji4, internal
to p, such that p” C [i;, for some j, unless p” is the first or last tetrahedron
in the subdivision of . In this final case, it is easy to see that u” itself is
internal to . Again there are only 4 choices for p” given p’. Hence there
are only finitely many choices of p”. By adding these choices to our list of
internal tetrahedra we complete the proof. &

Corollary 5.8 (Shrinking Lemma) There is some o < 1 which has the
following property: Let 1y be a marked tetrahedron. Let u, be a marked
tetrahedron in a subdivision of pg. Let uo be a marked tetrahedron in a
subdivision of p1. Then |ps| < alug|. Here o does not depend on these
tetrahedra.

Proof: Let T be the affine map which maps py to p, our model marked
tetrahedron, in the way which preserves the markings. Let p/ = T'(u;) and
p" = T(uz). Let fi; be the tetrahedron, internal to p, which contains p”.
Here we are using the notation from the previous lemma. Let a,b € pus be
points which realize |us|. Let A be the line which contains a and b. Let
L =T()). By convexity, po N L is a line segment bounded by two points a’

and b'. We have

pal _ la—bl _[Ln]
ol =l =] " Ll

<ij<1.

The equality comes from the fact that an affine map is a similarity when
restricted to a line. The last inequality comes from Lemma 5.6. Taking
a = max(qy, ..., @) finishes the proof. #

5.6 Putting it Together

Referring to the notation of §5.1, note that II,,., is obtained from II, by
subdividing each marked tetrahedron in II,,. Let II = N1I,. We will construct
a homeomorphism ¥ : Q(H) — II. In outline:
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1. We construct a canonical map U : Hy, — II.
2. We show that U is surjective and continuous.

3. We show that ¥ respects the equivalence relation ~ and never identifies
points which are inequivalent under ~.

These results show that ¥ induces a quotient map W : Il — Q(H) which is
a continuous bijection. Since the domain is compact and the range is Haus-
dorff, ¥ is a homeomorphism.

Definition of the Map: Suppose p = {r;} is an end of Hy. Let v, be the
vertex of G, which is the center of the unbounded interstice r,,. Let u, be the
marked tetrahedron of II, which contains ¢, (v,). By construction {u,} is
a nested sequence of tetrahedra. Compare the discussion at the end of §5.1.
From the Shrinking Lemma, () y, is a single point. We define \If(p) =N pn.

Surjectivity and Continuity: The maps ¢,, are surjective onto the centers
of tetrahedra of I1,,, and these tetrahedra shrink to points as n — oo, by the
Shrinking Lemma. This proves that U is surjective.

If p; and p, are two ends which are less than 2" apart then ¥(p;) and
U (p,) are contained in the same marked tetrahedron of IL,. The diameter of
this tetrahedron is exponentially small, by the Shrinking Lemma. Hence, ¥
is a continuous map.

Interaction with the Equivalence Relation: Now let us show that ¥
respects the equivalence relation ~;. Suppose p = {r,} and 0 = {s,} are the
two ends of a horocircle. By Lemma 5.4, a horo-like curve of H,, connects the
center of r, to s, for n sufficiently large. That is, the corresponding vertices
of G, are joined by a black edge. Hence W(p) and ¥(o) are contained in
tetrahedra of II,, which share a vertex. Since this is true for all large n,
and since these tetrahedra shrink to points, we must have ¥(p) = ¥(0).
This limit must be a black vertex of infinitely many tetrahedra. The same
argument works for ~5, with white replacing black.

Finally, let us show that T doesn’t identify any points which are inequiv-
alent under ~. If the ends p and o are not equivalent under ~ then by
Lemma 5.4 there is some n such that r, and s, are unbounded interstices
whose centers are joined neither by a horo-like curve nor a slalom-like curve.
By the Realization Lemma, two tetrahedra in II,, share a vertex if and only if
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they correspond to adjacent vertices in (G,,. Therefore, the map ¢, maps the
vertices corresponding to 7, and s, into marked tetrahedra which are disjoint
from each other. It now follows from our definition of ¥ that ¥(p) # ¥ (o).

Remark: We have also shown that II contains the union of all the ver-
tices of all the II,,. Moreover, we have shown that the composition map Yo
maps basepoints of horodisks onto the black vertices, and endpoints of slalom
curves onto the white vertices. If we had made all the constructions in this
chapter with respect to the dual packing, we could construct all the same
objects, except that all the black vertices would be colored white and all the
white vertices would be colored black.

Symmetries: Having completed our outline, we know that ¥ : Q(H) — II
is a homeomorphism. To finish the proof of the Main Result, we consider
symmetries of the infinite packing H.

Suppose v : H*> — H? is a hyperbolic symmetry of H. We give the same
name to the induced self-homeomorphism of Q(H). The map Wo~yo ¥~ is
a self-homeomorphism of II. Call this map .

We say that a partition interval is an interval in JUS°. These are the
closures of the connected components of S' — H,,, for all the n. Each partition
interval a corresponds canonically with a marked tetrahedron p,, as discussed
in the last point of §5.1. Let ¢, be the restriction of ¢ to IINu,. Consider the
action of v on Ug®, the first partition of S into intervals. For each interval
a € Uge there is a finite collection of partition intervals ay, ..., a; such that
a=a;U...Uag and by = y(ay) is a partition interval. This follows from the
fact that ~ preserves H.

From the affinely natural way we make our subdivision construction, we
see that 1, is the restriction of the unique marking preserving affine map
from p,, to pp,. (The orientation preserving nature of v makes sure that the
notions of “high vertex” and “low vertex” are not reversed.) We perform the
same analysis for each of the finitely many intervals of Ug®.

The analysis above shows that there is a finite union X of tetrahedra such
that II C X and such that v extends to an affine map on each tetrahedron
within X. Now X is not quite an open neighborhood of II. However, given
that every two tetrahedra in X are either disjoint or share at most one edge,
it is easy to thicken the extension up a bit, in the complement of X, to get
a PL extension in a neighborhood of II.
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6 Graphs

6.1 Embedding Paths

Let IT = N1II, be as in §5. A Il-tetrahedron is a marked tetrahedron which
belongs to II,, for some n. In the proof of the Main Result, we saw that Il
contains every vertex of every Il-tetrahedron. If u is a Il-tetrahedron, let
II, = IINu. Let V(i) be the vertex set of u. It follows from Lemma 5.7
that IT, N op = V().

Let ¢ : S' — II be the composition of the projection S' — Q(H) with
the homeomorphism ¥ : Q(H) — II, given in the Main Result.

Lemma 6.1 Suppose z and y are the endpoints of an arc I C S*, and
o(x) # ¢(y). Then, there is an embedded path v C ¢(I) which joins x to y.

Proof: This result is a special case of the well-known result that a compact
Hausdorff space X is path connected if there is a continuous surjection from
an interval to X. To keep this paper self-contained, we prove the special case
at hand. For ease of exposition we assume that neither x nor y is the endpoint
of a slalom curve. We also assume that [ is contained in a semicircle.

We order the slalom curves, which have both endpoints in I, according
to the distance between their endpoints. If several coincide by this measure,
we order these arbitrarily. Let Iy = I. In general, if I, is a finite union of
closed arcs, we create 1,1 by deleting the open subarc bounded by the first
slalom curve which has both endpoints in one of the arcs of I,,. Since, by
Lemma 5.2, two slalom curves never share an endpoint, the two endpoints in
question are contained in the interior of the relevant arc of I,,. Hence, I, is
again a finite union of closed arcs. Lemma 5.4 implies that this process goes
on forever. C' =1, is totally disconnected, and hence a Cantor set.

Our ordering has been chosen so that no two points in C' are identified,
except for each of the two points bounding an arc of S* — C. For instance,
if two points in different intervals of I; are identified, then the slalom curve
which makes the identification would have been listed and used before the
one we used to define I; in the first place. The same argument works, in an
inductive way, when passing from I, to I,,;. The identifications that are
made on C merely “close up the gaps”. Thus, ¢(C) is an embedded path

joining (z) to B(y). #
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Lemma 6.2 Any two vertices of i can be joined by a path in 11, which avoids
the other vertices of .

Proof: Suppose that v and w are both white vertices of u. Let I’ be the
interval of U2° which corresponds to p via our constructions in §5. By the
construction of ¥, the map from the Main Result, ¢(I') = II,, and ¢ maps
the endpoints of I’ to the black vertices of . Now, ¢ is injective on the
basepoints of horodisks by Lemma 5.2. Therefore, there is an arc I, contained
in the interior of I', whose endpoints are mapped to v and w. Applying the
previous result to I gives us a path connecting v to w. Since ¢ is injective on
basepoints of horodisks, and since both black vertices have pre-images not
in I, we see that our path avoids these black vertices.

Now suppose v and w are joined by a plain edge. Let i/ be the marked
tetrahedron in the subdivision of y which shares this plain edge. Note that
' is disjoint from V() — {v, w}. There is some arc J' such that ¢(J') =1I,,.
There is some sub-arc J C J’ such that ¢(J) C u' and ¢ maps the endpoints
of J to v and w. Applying the previous result to J gives us a path, embedded
in 4', which joins v to w. Though this path may contain other vertices of p’,
it does not contain any other vertices of p.

The other cases are not used below. In brief, the “black edge case” follows
from the “white edge case” and from the Duality Principle; the “dotted edge
case”, like the “plain edge case”, is treated by passing to a subdivision. We
omit the details. #

6.2 Embedding Graphs

In this section we prove Corollary 1.3.

Say that the I-graph is just the letter I. It has 6 vertices. Likewise we
define the X-graph. Note that the X-graph is a quotient graph of the I-
graph. We first prove that we can embed either an X-graph or an I-graph
in II, so that the valence-1 vertices map bijectively to V().

Figure 6.3 shows our construction. For ease of exposition we will assume
that, in passing from II, to Il,,;, the tetrahedron y is subdivided into 3
tetrahedra, as shown schematically in Figure 6.3. Some of the white vertices
have been marked. The arrows indicate that points are actually identified.
Let u!, ph, p% be the three marked tetrahedra in the subdivison of y, repre-
sented from left to right in Figure 6.3. If n is some given marked tetrahedron
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and @ and b are vertices of 1 we use the notation (a — b| 1) to stand for the
sentence “connect a to b in I, with a path which avoids the V(n) — {a, b}.”

Figure 6.3

The following 5 constructions are made possible by Lemma 6.2:

(x—=wi| ) (@20 ) (@—=ylp) (y—=wlps) (y— o ps)

After trimming away some of our set, we have an embedded I-graph. If pu
is divided into k£ > 3 tetrahedra, then the middle step above is expanded
into k — 2 similar steps. If p is divided into 2 tetrahedra then the middle
stap is eliminated. In this case, we could produce an X-graph rather than
an [I-graph.

We start with the incidence graph G(II,). Within each tetrahedron u of
I1,,, the graph G(II,) is just an X-graph. We replace this X-graph with the
graph we have embedded into II,,. Doing this replacement, we arrive at the
G, mentioned in Corollary 1.3.

6.3 Non-Planar Incidence Graphs

We begin with an example. Figure 6.4 shows the marked rectangle space
|P|(H;) when H is the prototypical horodisk packing. The arrows indicate
identifications. The graph made from thick lines is a subgraph of G'(H;).
We have colored the vertices so as to reveal that this subgraph is exactly
K33 (the complete bipartite graph) and hence non-planar. So, G'(H;) is
non-planar. Now, G(II;) is obtained from G'(H;) by inserting a vertex at
the center of each edge of G'(H;). Hence, G(II;) is non-planar.
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|—> -
Figure 6.4

In general, suppose that H has some odd flower. Let H' be the horodisk
packing, isometric to H, which has this odd flower as its initial interstice. It
is not hard to see that G(II,,) has G(IT}) as a quotient graph for n sufficiently
large. This works as long as n is at least two more than the distance from the
odd flower of H to the initial node of H, in terms of the adjacency tree. Since
planar graphs have only planar quotients, G(I1,,) is non-planar provided that
G(I1}) is non-planar. Therefore, we can assume without loss of generality
that the initial interstice of H is an odd flower. In this case we will prove
that G(II;) is non-planar.

When we build the marked rectangle pattern for H;, we start with an odd
horizontal run Mj, ..., M of marked rectangles and then subdivide each M;
into a vertical run {M;;}. We color the center of M;; black for all i. We color
all other centers white. In the graph G'(H;), all the white centers within
a vertical run are connected together. Also, each black (respectively white)
center in the ith vertical run is connected to some white (respectively black)
center the (i — 1)st vertical run and some white (respectively black) center
in the (i 4+ 1)st vertical run.

From this description, we see that G'(H;) has a subgraph G”(H;), and
this subgraph has the following quotient graph, X;: The vertices of X are
bi, ..., bk, w1, ..., wi. Taking indices mod k, an edge connects each b; to w;_y,
wj, and wj;;. (This forces the same connections, with the b’s and w’s re-
versed.) When k is odd X} is easily seen to be non-planar. Since X is
non-planar, G"(H;) is non-planar. Hence G’(H;) is non-planar. G(II) is
obtained from G'(H;) simply by inserting vertices at the midpoints of all the
edges of G'(H;). Hence G(II;) is non-planar.
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7 Special Cases

7.1 Even Packings and Planarity

Here we sketch a proof that Q(H) is planar when H has only even flowers.
Say that a marked quadrilateral is a quadrilateral with the same markings
as a marked rectangle. The left half of Figure 7.1 shows the subdivision
rule for breaking a marked quadrilateral into 3 smaller ones. (We do not
want to specify the exact geometry of this subdivision.) The main point of
this construction is that the union of the three black (respectively white)
diagonals still connects the black (respectively white) points of the original
marked quadrilateral.

Figure 7.1

A similar subdivision rule can be made for any odd £ > 3. In analogy
to what we did in §4.3 we define a quadrilateral r-ring to be a succession of
r > 4 marked quadrilaterals joined cyclically, along common dotted edges.
Here r > 4 is always even. The right hand side of Figure 7.1 shows the case
r = 4. The black and white diagonals can be chosen so as to make closed
polygons. Using the alternative definitions, everything we did in §4-5 goes
through, except perhaps the Shrinking Lemma. If all nested sequences of
quadrilaterals shrink to points, then (H) is homeomorphic to N II,, which
is obviously planar using the new definitions.

The game is to choose the geometry of the subdivision, subject to the
fixed combinatorics, so that nested sequences all shrink to points. Here we
explain without proof one way to do this. Define the enormous sequence
{S,} by the formula Sy = 1 and S, ;1 = 10°". Suppose ¢ is a quadrilateral
of II,,, and we need to subdivide ¢ into ¢, ..., q;. We do the subdivision so
that the diameter of go U ... U gx_1 is less than 1/S, times the length of the
shortest side of g. We center this tiny union within 1/S,, of the midpoint of
the longest dotted side of g. This method is fun to contemplate.
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7.2 0Odd Packings and String Art

We saw in §7.1 that we could define a simpler subdivision rule when we
were dealing with horodisk packings in which all the flowers were even. The
same thing is true when all the flowers are odd, though the main application
of the construction is a whimsical one: It gives a method for building the
corresponding circle quotient out of string.

Say that a skew pair is a pair of line segments in R®> which are contained
in skew lines. We call one of the line segments black and one of them white.
A marked tetrahedron is really an elaboration of this structure. If we start
with a marked tetrahedron we form a skew pair by taking the colored edges.

q q
1 1
Figure 7.2

If g is a skew pair and £ is an even integer, we form k£ new skew pairs,
qi, ---, Qx, as shown in Figure 7.2 for £k = 2 and k£ = 4. The thickest pair of
segments is q. The skew pairs ¢; move sequentially along these segments,
from left to right, as indicated by the labellings. The endpoints of the g; are
meant to be evenly spaced on the relevant segment of q.

The key point of our construction is that the union of the black (respec-
tively white) segments of the ¢; connects up the two endpoints of the black
(respectively white) segment of ¢ when k is even. Another virtue of our con-
struction is that it is affinely natural, since the restriction of an affine map
to a line preserves the notion of “even spacing”. We call the set {g;} the
subdivision of gq.

We define a k-skew ring to be a collection of k skew pairs, joined end to
end, so that the colors match. This definition works for any £ > 3. However,
since the subdivision rule for skew pairs works only when £ is even, it seems
natural only to consider k-skew rings when £ is odd.
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Given a finite horodisk packing H, we make some of the same construc-
tions as in §4. We start with a k-skew ring, where £ is the number of horodisks
bounding the initial interstice. Then we subdivide the individual skew pairs
according to the combinatorics of the packing. For instance, for the pro-
totypical horodisk packing, we start with a skew 3-ring and then iteratively
replace each skew pair by two smaller ones, as shown on the left side of Figure
7.2.

Performing this procedure for the finite horodisk packings {H,}, which
approximate the infinite horodisk packing H, we produce a sequence {B,}
of black curves and a sequence {W,} of white curves. Each curve in this
sequence is an PL embedding of a circle into R®. We now give a heuristic
argument that the limit of B,, in the Hausdorff topology on closed subsets
of R?, is homeomorphic to Q(H). The same statement is true for the limit
of the W,.

RecallAthat I1,, is the finite collection of marked tetrahedra associated to
H,,. Let II,, be the union of the convex hulls of the skew pairs produced at
the nth stage of our construction. From a combinatorial point of view, II,
and II,, are identical. Geometrically, however, there is a difference: Every
tetrahedron in II,; is contained in a tetrahedron of II,,, except possibly for
one edge. This is no longer true for ﬁn+1 and II,,.

On the positive side, every tetrahedron of ﬁn+1 is at contained in a tetra-
hedron of II,. Furthermore, it is not hard to show that every tetrahedron in
ﬁn+3 is, in the sense of Lemma 5.7, internal to a tetrahedron of II,. Consider
the infinite intersection II = ﬂﬁn. If we knew that every nested sequence
of tetrahedra shrinks to a point then essentially the same proof given in §5
would show that Q(H) and II are homeomorphic. Furthermore, this shrink-
ing implies that II is the Hausdorff limit of either of the two sequences of
curves we defined.

We will not prove in general that nested sequences shrink to points. We
will, however, sketch a proof when there is a bound to the size of the flowers of
H. In this case, a variant of the Shrinking Lemma is true. As we mentioned
above, it is not hard to check that every tetrahedron of ﬁn+3 is internal to
some tetrahedron in II,, in the sense of Lemma 5.7. Knowing this, and using
the bound on the sizes of the flowers, one can produce a version of Lemma
5.7, for the third rather than second subdivision. From here, the proof of the
Shrinking Lemma is the same.
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