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1 Introduction

This purpose of these notes is to describe some experiments I recently did
with complex hyperbolic triangle groups, and also to prove one easy result
about them. More specifically, I am talking about the complex reflection
triangle groups acting on the complex hyperbolic plane CH2. These groups
are deformations of classic hyperbolic triangle groups acting on the real hy-
perbolic plane H2.

These notes are an expansion of some comments I made in my short paper
[S] in the Proceedings of the 2002 ICM. At the time I wrote that paper, fewer
people were interested in the kind of monotonicity phenenoma I will discuss
here. Now that the topic is in the air, I did more extensive experiments and
will formulate some crisp conjectures about them. Finally, I’ll sketch the
proof a partial result which gives additional credence to the conjectures.

In the rest of the introduction I will define enough terms so that the main
conjectures are understandable. Following this introduction the rest of the
notes are devoted to describing the experiments in enough detail that a com-
petent programmer could repeat them.

The Complex Hyperbolic Plane: See [G] for an extensive treatment
of complex hyperbolic geometry. The complex hyperbolic plane CH2 is the
open unit ball in C2, equipped with a Riemannian metric (and in fact a
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Kahler metric) that is invariant under all complex projective transforma-
tions which perserve the unit ball. This metric is normalized to agree with
the standard Euclidean metric at the origin. The group of such isometries is
usually denoted PU(2, 1). The group PU(2, 1) has index 2 in the full isom-
etry group of CH2; we get the full group by adjoining the map which is
coordinate-wise complex conjugation. We are not going to care about these
anti-holomorphic elements of Isom(CH2). The element T ⊂ PU(2, 1) is
called loxodromic if there is some d > 0 such that T moves all points of CH2

at least d units, and elliptic if T fixes a point in CH2. Otherwise, T is called
parabolic.

Complex Reflections: A complex reflection is an element of PU(2, 1) that
is conjugate to the map (z, w) → (z,−w). The fixed point set of this partic-
ular complex reflection is the complex line w = 0, and in general the fixed
point set is some complex line. Conversely, given a complex line in C2 which
intersects CH2, there is a unique complex reflection that fixes that line.
Thus, complex reflections can be specified by complex lines.

Angles between Complex Lines: Suppose L1 and L2 are complex lines
which intersect in a point of CH2. Then there is an isometry I such that
I(L1) and I(L2) intersect at the origin, and both I(L1) and I(L2) intersectR
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in a line. The angle between L1 and L2 is defined to be the angle between the
real lines I(L1)∩R2 and I(L2)∩R2. This definition can be given entirely in
terms of PU(2, 1) invariant quantities. See the discussion around Equation 5.

Complex Hyperbolic Triangles: Call a triple p1, p2, p3 ∈ CH2 non-
degenerate if these points do not all lie in a complex line. In this case, these
points define 3 distinct complex lines L1, L2, L3. Here Lj is the complex line
containing pj−1 and pj+1, with indices taken mod 3. We let θj be the angle
at pj between Lj−1, Lj+1. This configuration of points and lines is called a
(n1, n2, n3) triangle if θi = π/ni. Typically we use this notation only when
n1, n2, n3 are integers. Just as in the real hyperbolic case, a necessary and
sufficient condition for the existence of such a configuration is that

1

n1

+
1

n2

+
1

n3

< 1.

To avoid trivialities we take n1 ≥ n2 ≥ n3 ≥ 3. Thus, all choices are possible
except n1 = n2 = n3 = 3.
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The space of triples of points is 12 = 4 × 3 dimensional. The group
PU(2, 1) is 8 dimensional. Thus there is a 4-dimensional family of nondegen-
erate triples. The map (p1, p2, p3) → (θ1, θ2, θ3) goes from the 4-dimensional
moduli space into R3 and so the fibers are typically 1-dimensional. Thus, if
we fix (n1, n2, n3) we expect a 1-dimensional moduli space of each triple.

The Moduli Space: We fix an allowable triple (n1, n2, n3) as above and
keep with the notation already established. We have the associated triangle
group generated by the reflections I1, I2, I3 in the lines L1, L2, L3. The prod-
uct Ij−1Ij+1 has order nj. Given a word w in the digits {1, 2, 3}, we let Iw
denote the corresponding product of the generators. Thus, I1213 = I1I2I1I3.

There is a canonical interval of parameters associated to (n1, n2, n3). We
always identify this interval with [0, 1] and we use the variable t ∈ [0, 1]
to describe the corresponding groups. At the parameter t = 0 the three
points p1, p2, p3 lie R2. In this case the intersection Lj ∩R2 for j = 1, 2, 3 is
just a real hyperbolic (n1, n2, n3) triangle drawn in the Klein model. For all
t ∈ [0, 1) the elements Iw are all loxodromic for the following list of words:

• w = abc, where a, b, c are distinct digits.

• w = abac where a, b, c are distinct digits.

This uniquely characterizes our intervl of paramaters. We call this interval
the preferred interval .

We let Γ(n1, n2, n3; t) be the group corresponding to t ∈ [0, 1]. The pa-
rameter t is essentially an affine function of the distance between p1 and p2.
I will say this more explicitly in the next chapter.

Discreteness Conjecture: In my 2002 ICM paper I conjectured that an
(n1, n2, n3) complex hyperbolic triangle group is discrete provided that it lies
in the preferred interval. As we pass the the end of the interval, one of the
elements just discussed instantly becomes elliptic, and so the preferred inter-
val is the maximal interval of discreteness.

First Monotonicity Conjecture: Given γ ∈ PU(2, 1), we define

∆(γ) = |z|4 − 8Re(z3) + 18|z|2 − 27,

where z is the trace of γ. The quantity ∆(γ) is called the Goldman discrim-
inant . It is positive if and only if γ is loxodomic, and it serves as a proxy for
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the translation length of the isometry. Given an element γ ∈ Γ(n1, n2, n3; 0)
we let γt denote the corresponding element of Γ(n1, n2, n3; t). In particu-
lar, γ0 = γ. According to the Discreteness Conjecture, if ∆(γ0) > 0 then
∆(γt) > 0 for all t ∈ [0, 1).

Here is the first monotonicity conjecture: For any loxodromic element
γ ∈ Γ(n1, n2, n3; 0), the quantity f(t) = ∆(γt) is monotone decreasing for
t ∈ [0, 1]. This conjecture probably implies that the translation distance is
also monotone decreasing, but I didn’t explicitly check this.

Second Monotonicity Conjecture: The group Γ(n1, n2, n3; 0) is deter-
mined by the three initial points p1, p2, p3. These points are the vertices of
the triangle determining the group. Let V0 denote the orbit of these points
under Γ(n1, n2, n3; 0). The elements of V0 are the fixed points of the elliptic
elements in Γ(...; 0). We define Vt in the same way. There is a canonical map
from V0 to Vt which sends the fixed point of a given elliptic of Γ(...; 0) to the
fixed point of the corresponding elliptic in Γ(...; t).

A better way to say this is as follows: For each pair v0, w0 ∈ V0 there is
a 1-parameter family vt, wt. We let f(v, w, t) denote the distance between vt
and wt. Our second conjecture is that the function f(v, w, t) is non-increasing
for all choices of n1, n2, n3 and v, w.

Applications: The Monotonicity Conjectures would go a long way towards
proving the Discreteness Conjecture. Essentially they reduce the Discrete-
ness Conjecture to the statement that Γ(n1, n2, n3; 1) is discrete and faith-
ful. Here are some specially nice examples. Let n1, n2, n3 ∈ {3, 4, 6}. Then
Γ(n1, n2, n3; 1) has the property that the trace of every word has a half-integer
real part. (For some choices you get integers rather than half-integers.) In
all these cases, the corresponding groups are discrete. So, if we knew either
Monotonicity Conjecture, we could conclude the Discreteness Conjecture for
these 9 cases. I suspect that a similar easy argument works for any of the
arithmetic triangle groups.

Another application is that the Hausdorff dimension of the limit set
Λ(n1, n2, n3; t) is monotone increasing in t. This follows from the connec-
tion between the Hausdorff dimension of the limit set and the Poincare series.

Partial Results: Call a triple (n1, n2, n3) partially even if at least one of
the integers is even. In §3 I will sketch the proof that the First Monotonicity
Conjecture holds for infinitely many words (which are not powers of each
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other) with respect to a partially even triple. I’ll prove a similar kind of
statement about the Second Monotonicity Conjecture. It turns out that,
in the partially even case, many of the fixed points of finite order elements
are organized into totally regular infinite trees, each of which is contained
in a totally real, totally geodesic slice of CH2. (When all the integers are
even, all the fixed points are organized into these trees.) Essentially, both
conjectures are true if we just restrict attention to any of these trees.

These modest results give some theoretical credence to the conjectures,
and also reveal some of the geometric structure of these groups. I am not
sure how to promote these partial results to a proof in general. However, the
geometry is really beautiful and merits further study.
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2 Computations

2.1 Defining Triangle Groups

The basic object for us is the Hermitian form on C2,1 given by

⟨V,W ⟩ = v1w1 + v2w2 − v3w3. (1)

Here V = (v1, v2, v3) and likewise for W .
We let C2,1

− denote the subset of vectors V such that ⟨V, V ⟩ < 0. These
are called the negative vectors . The positive vectors are defined similarly.

There is a map Π from C2,1 to CP 2, namely

Π(V ) =
(v1
v3
,
v2
v3

)
. (2)

CH2, the open unit ball in C2 is the image of C2,1
− under this map.

Each positive vector W defines a complex line LW in CH2, namely
Π(W⊥) where W⊥ consists of vectors V such that ⟨V,W ⟩ = 0. The complex
reflection IW fixing LW has the formula

IW (V ) = V − 2
⟨V,W ⟩
⟨W,W ⟩

W. (3)

Given U, V define the box product

U ▷◁ V = (u3v2 − u2v3, u1v3 − u3v1, u1v2 − u2v1). (4)

This vector is such that ⟨U,U ▷◁ V ⟩ = ⟨V, U ▷◁ V ⟩ = 0.
Here is one more useful function. When V,W are positive vectors the

angle θ between the complex lines they define satisfies the identity cos2(θ) =
D(V,W ), where

D(V,W ) =
⟨V,W ⟩⟨W,V ⟩
⟨V, V ⟩⟨W,W ⟩

. (5)

When V,W are negative vectors the distance d between satisfies cosh2(d) =
D(V,W ).

Starting with the points p1, p2, p3 (represented by negative vectors) we
define positive vectors Wj = pj−1 ▷◁ pj+1. We then define the complex
reflections I1, I2, I3 so that Ij = IWj

. These respectively fix the complex lines
L1, L2, L3, where Lj = Π(W⊥

j ).
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2.2 Finding the Triangle Groups

Given (n1, n2, n3) we let θ1, θ2, θ3 be the angles, namely θj = π/nj. In this
section we explain how we compute (approximately) the preferred interval
with respect to (n1, n2, n3).

We first define

amax =
√
1− α−2, α =

cos(θ1) cos(θ3) + cos(θ2)

sin(θ1) sin(θ3)
. (6)

Next we define points

p1 = (0, 0), p2 = (a, 0), p3 = b(cos(θ1), sin(θ1)). (7)

When a = amax and b ∈ C is suitably chosen, we have the totally real
triangle with angles θ1, θ2, θ2. The remaining triangles with these angles
have a ∈ (0, amax). When a is sufficiently close to 0 the triangle does not
exist.

Now we fix a ∈ (0, amax). By construction, the angle at p1 is θ1. For
x ∈ [0, 1] we define

b(x) =
1

C + ρeπix
, C =

cos(θ1)

a
ρ =

(
√
1− a2) sin(θ1)

a tan(θ2)
. (8)

That is, we take a suitable chosen number on the circle of radius ρ centered
at C and we invert this number to get b(x). Any choice of x gives us a triple
(p1, p2, p3(x)) with the angle at p2 equal to θ2. Since we want to have a point
in CH2 we only do this when |b(x)| < 1.

Bisection Algorithm: We seek a value x = x(a) such that the angle at
p3(x) is θ3. We define

fa(x) = θ − θ3(x), (9)

Where θ3(x) is the angle at p3(x).
If f(0) and f(1) have the same sign, we declare the algorithm a failure.

Otherwise we start with (x1, x2, x3) = (1, 0, 1/2). By assumption f(x1) and
f(x2) have opposite signs. At this poin we check the sign of f(x3). Then...

• If f(x1) and f(x3) have opposite signs we set y1 = x1 and y2 = x3 and
y3 = (y1 + y2)/2. Then we redefine xj = yj for j = 1, 2, 3.

7



• If f(x2) and f(x3) have opposite signs we set y1 = x3 and y2 = x2 and
y3 = (y1 + y2)/2. Then we redefine xj = yj for j = 1, 2, 3.

Now we have an interval half the size on which f(x1) and f(x2) have opposite
signs. We iterate this 100 times and this gives us a value x3 for which f(x3)
is very near 0. We then set p3 = p3(x3) and stop.

The Range of Values: When a < amax is sufficiently close to amax, the
Bisection Algorithm works, and we get our triangle group. When a is
sufficiently close to 0 the Bisection Algorithm fails. We run a second bi-
section algorithm to find the value amin such that the interval [amin, amax]
precisely gives the preferred interval. Here is how this works. We define
(a1, a2, a3) = (0, 1, 1/2) as above.

Our running assumption is that the group Γ(a2) exists and is in the
preferred interval. This is true when a2 = 1. The group Γ(0) does not exist.
We check whether Γ(a3) exists and is in the preferred interval...

• If so, then we set b1 = a1 and b2 = a3 and b3 = (b1 + b2)/2.

• If not, then we set b1 = a3 and b2 = a2 and b3 = (b1 + b2)/2.

Then we redefine aj = bj for j = 1, 2, 3. We repeat this 100 times and this
gives us a very good approximation to amin.

The Final Parametrization: Given t ∈ [0, 1] we let a = (1−a)amax+tamin.
We then run the Bisection Algorithm to find b = b(a) and this gives us the
group we are call Γ(n1, n2, n3; t).

2.3 The Experiments

Here are the basic definitions we need:

• Let G(M) denote the list of all allowable triples in lexicographic order.
Thus, for instance, G(4) = {433, 443, 444}. The set G(12) has 219
triples.

• Let W (N) denote the set of all words of length at most N . For instance
W (3) = {123, 132, 213, 231, 312, 321}. The set W (14) has 49140 words.

• For any K let Ik denote the k intervals of length 1/K in [0, 1]. For
instance I2 = {[0, 1/2], [1/2, 1]}.
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Let ∆(n1, n2, n3; t;w) denote the Goldman discriminant of Iw with respect
to the group Γ(n1, n2, n2; t). When the triple (n1, n2, n3) is fixed we shorten
this notation to ∆(t;w).

GivenM,N,K we consider all choices (n1, n2, n3) ∈ G(N) and w ∈ W (N)
and [t0, t1] ∈ IK . For each choice we do the following:

• We first check that w is loxodromic. This means that the word Iw is
loxodromic in Γ(n1, n2, n3; 0), the real group. If not, we ignore w.

• We check numerically that ∆(t;w) is not constant. Our check has a
tolerance of about 10−4, which takes care of the round-off error our
method produces for big groups and long words. If ∆(t;w) is constant,
we ignore w.

• If we have not ignored w we check that ∆(t0;w) > ∆(t1, w).

We say that the triple (M,N,K) is discriminant good if this check works for
all relevant choices.

Now we turn to a discussion of the vertices. We keep the same notation
as above. For each word w and each triple (i, j) ∈ {1, 2, 3}2 we consider the
pair of vertices

v = pi, w = Iw(pj). (10)

The vertices v, w are functions of the quintuple (n1, n2, n3; t; v, w). We define
D(n1, n2, n3; t; v, w) to be the quantity D(V,W ) given in Equation 5. Here
V and W are negative vectors representing v and w respectively. Again,
D(V,W ) is a monotone increasing function of the distance between v and w.

For exactly the same words, groups, and intervals, and for every pair
(i, j) we check that D(t0; v, w) > D(t1; v, w) for all relevant cases. If the
check always works, we call the group (M,N,K) vertex good .

Using several hours of computation on my 2016 IMAC, I checked, mod-
ulo roundoff error, that the triple (12, 14, 32) is both discriminant good and
vertex good. This check takes several hours to run.
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3 A Partial Result

3.1 Some Structure

There is a graph associated to the group Γ(n1, n2, n3; t). The vertices are the
fixes point sets of the elements conjugate to IjIk. The edges are geodesic
segments that connect up adjacent fixed points. This graph is naturally iso-
metric to the 1-skeleton of the tiling of the real hyperbolic plane associated to
Γ(n1, n2, n3; 0). Call this graph Λ. We call a vertex in Λ even if its degree is
twice an even number. Note that nj is even if and only if vj is even. When Λ
is associated to a partially even group, there are infinitely many even vertices.

Even Flowers: The flower of a vertex of Λ is the union of v and all the
adjacent vertices. Call this flower F (v). There are 2nj vertices in F (v) aside
from v. These vertices may be split into 2 groups, depending on their parity
in their cyclic order. Thus, if v, w1, ..., w2n are the vertices in the flower, then
we have the two even flowers F1(v) = v, w1, w3, ... and F2(v) = v, w2, w4, ....
Each of these flowers has n + 1 vertices, and v is central to both. The re-
maining vertices we call peripheral . We call F1(v) and F2(v) even flowers .

Here is the first basic fact: The vertices of a even flower all lie in the
same R-slice. That is, there is a totally real geodesic plane containing all
the vertices of a even flower. In general, the two R-slices so defined at each
vertex are distinct from each other. This just amounts to a calculation.

Hooked Even Flowers: We concentrate on even flowers now, and we
change our notation so that (v, w1, w2, ...) denotes an even flower. We call
two even flowers

(v, w1, ..., wk), (v′, w′
1, ..., w

′
k)

hooked if they have exactly one vertex in common, say w1 = w′
1, and the

following two conditions arise:

• The triple
v, w1 = w′

1, v
′

lies on a geodesic segment.

• w1 = w′
1 is an even vertex.
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In any partially even group, there are many hooked even flowers. Here is
how they arise. Let’s say that n1 is even. Then the element

J = (In2In3)
n1/2

is an involution. We take any even flower F that has v1 as a peripheral vertex
and then we observe that F and J(F ) are hooked. The common peripheral
vertex in this case is v1. This picture occurs in the 2-neighborhood of any
even vertex.

Here is the second basic fact: Two hooked even flowers lie in the same
R-slice. This is another calculation, but I think that probably it just follows
from symmetry and special properties of the involution J mentioned above.

Even Trees: We call two even flowers F0, Fn equivalent if there is a sequence
F0, F1, ..., Fn such that Fj and Fj+1 are hooked for all j. Two equivalent flow-
ers lie in the same R-slice. We define the grand continuation of the flower to
be the union of all the edges and vertices of all the flowers in its equivalence
class. The grand continuation of a flower is a tree whose interior vertices all
have the same degree and whose interior edges all have the same length. The
leaves of the tree are odd vertices in Λ. The interior edges have even vertices
for midpoints.

The nicest case to consider is the situation when all of (n1, n2, n3) are
even. In this case, all the grand continuations of even flowers are infinite
regular trees. Even in the case when just one of the integers is even, there
are infinitely many grand continuations which are infinite regular trees.

3.2 Monotonicity of Real Regular Trees

As a prelude to proving our result, we consider the situation for infinite
regular trees embedded in the real hyperbolic plane. Up to isometry, such a
tree is determined by a pair of integers (d, L). Here d is the degree and L is
the length of the edges.

The basic fact is that these regular trees are completely monotone. If we
consider the two trees T (d, L) and T (d, L′) with L′ > L then the distance
between every pair of vertices v′, w′ in the latter tree is greater than the
distance between the corresponding vertices v, w in the former. More is true:
There is a distance non-increasing map from H2 to H2 which maps T (d′, L′)
to T (d, L). I think that this is a well-known result.
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I remember hearing a proof this result from my friend Peter Doyle, and
also I think that these kinds of considerations came up in the work of Gold-
man, Minsky, (and maybe Margulis) on Lorentzian space times. The point
is that they have to do with totally positive deformations . I can’t remember
this too well and I don’t think that these guys ever published the paper.
Also, it probably arises in the proof by Danciger, Gueritaud, and Kassel of
the crooked planes conjecture.

Anyway, here is a sketch of the proof. Let us work in the copy of H2

which contains T (d, L). We define a family of perpendicular bisectors to the
edges of the tree. These turn out to be disjoint from each other. Now we
go a kind of grafting operation where we replace each of these bisectors with
an infinite geodesic strip which, at its narrowest, has width L′ − L. The
boundaries of the strip should be perpendicular to the relevant edge of the
tree. When we are done, we have an exact copy of H2 (!) The new copy has
T (d, L′) embedded in it rather than T (d, L). The distance non-increasing
map just collapses the strips.

3.3 Putting it Together

Now suppose we have a partially even family Γ(n1, n2, n3, t). We we increase
t our infinite regular trees keep their degree but their edges get shorter. Thus,
the distance between any pair of vertices within such a tree decreases mono-
tonically. This is the infinite list of pairs for which the Second Monotonicity
Conjecture holds.

It is worth mentioning that some cases of this are especially beautiful.
For instance, in the (4, 4, 4) case, in the last (conjecturally) discrete group
in the family, these infinite regular trees develop cusps: They are just barely
embedded: Their accumulation set on the ideal boundary is an entire R-
circle. These R-circles lie in the limit set of the group, and so the limit set in
this case has a dense family of R-circles. This is a kind of R-circle analogue
of a circle packing limit set such as the Apollonian gasket.

For the First Monotonicity Conjecture, consider any word which preserves
one of our infinite trees. Such a word also preserves the R-slice containing
it. Going back to the analysis of the real case, there is a distance non-
increasing map of the R-slice to itself which conjugates the word associated
to Γ(n1, n2, n2; t) to the corresponding word in Γ(n1, n2, n3, t

′) with t′ > t. I
didn’t do the calculation, but the monotonicity of the Goldman discriiminant
should be pretty obvious from this.
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