Vertex-Minimal Paper Tori

Richard Evan Schwartz *

August 7, 2025

Abstract

A paper torus is an embedded polyhedral torus that is isometric to
a flat torus in the intrinsic sense. We prove that there does not exist
a paper torus with 7 vertices, and that there does exist a paper torus
with 8 vertices. This settles the question of the minimum number of
vertices needed for a paper torus.

1 Introduction

1.1 Context

A flat torus is a quotient of the form R*/A, where A is a lattice of translations
of R?. More concretely, a flat torus is what you get when you identify the
pairs of parallel sides of a parallelogram by translations.

A polyhedral torus is a piecewise affine embedding ¢ : T — Q C R®. Here
T is a flat torus that has been triangulated, and ¢ is a continuous embedding
that is affine on each triangle of the triangulation. If, additionally, ¢ is an
affine isometry on each triangle, we say that ¢ is flat. When ¢ is flat, ¢ gives
an isometry from 7" to the surface ¢(T) C R? equipped with its intrinsic path
metric. However, the image ¢(T") could be crinkled up in space in a compli-
cated way. Put another way, in the flat case, ¢ tells how to build a torus in R
out of finitely many triangles so that the cone angle around each vertex is 2.

Definition: A paper torus is a flat embedded polyhedral torus.
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Surprisingly, paper tori exist. The 1960 paper of Y. Burago and V. Zal-
galler [BZ1] gives the first constructions. The 1985 paper [BZ2] proves that
one can realize every isometry class of flat torus as a paper torus. Their
construction produces examples with thousands of faces. The 2024 preprint
of F. Lazarus and F. Tallerie [LT] gives a universal combinatorial type of
triangulation which does the job simultaneously for all isometry types.

The work (in progress) [ALM] of P. Arnoux, S. Lelievre, and A. Malaga
gives a different construction which achieves every isometry class of flat torus
as a paper torus, using far fewer faces than in the other cited works. Specif-
ically, they prove that the embedded polyhedral tori described by U. Brehm
[Br] in 1978 can be made flat. In 2025, Vincent Tugayé [T, discovered a
9-vertex paper torus. This is the record to date.

1.2 Seven Vertices

One needs at least 7 vertices to make a paper torus because there is no
6 vertex triangulation of a torus. There is a 7-vertex triangulation of a
torus, and it is unique up to combinatorial isomorphism. This triangulation,
sometimes called the Moebius triangulation, is shown in Figure 1.1.

Figure 1.1: The universal cover of the Moebius triangulation

The Moebius triangulation gives the famous embedding of the complete
graph K7 in a torus. We are drawing part of the universal cover as well as a
fundamental domain consisting of 7 hexagons.



In 1949, A. Csaszér [Cs] showed that the Moebius torus has a polyhe-
dral embedding. Csaszar’s polyhedral embedding €2 is specified by giving
coordinates for the vertices P, ..., Ps. With our labeling, the coordinates are

(0,0,15),(3,3,0),(-3,-3,1),(—1,-2,3),(1,2,3),(3,3,1), (3,—3,0).

This torus has 2-fold rotational symmetry and its convex hull contains 5 of
the 7 vertices. See e.g. [G], [HLZ]|, and [L] for more detail and a discussion
of related topics. The Csaszar torus is not flat. Could some other embedding
of the Moebius torus be flat? The 2019 Ph.D. thesis of P. Quintanar Cortés,
[QC] makes significant partial progress on this problem. Here is our first
result.

Theorem 1.1 There does not exist a T-vertex paper torus.
A key step in the proof is the following result.

Lemma 1.2 (Hull) Suppose Q is an embedded T-vertex polyhedral torus,
not necessarily flat. Let H be the convex hull of Q). Suppose Q has all 7
vertices in OH. Then Q has at least one vertex P such that all 6 triangles of
Q incident to P are in OH.

I will deduce from the Hull Lemma that a flat polyhedral torus must
have a vertex P contained in the interior of the convex hull. I will then
use Crofton’s formula to show that the cone angle at P exceeds 2w. This
contradiction finishes the proof of Theorem 1.1.

The Hull Lemma is a consequence of a stronger result contained in the
1991 paper [BE] of J. Bokowski and A. Eggert. Bokowski and Eggert use
oriented matroids to give classify the combinatorial types of 7-vertex polyhe-
dral tori. One consequence of their classification is the Hull Theorem: there
are no embedded 7-vertex polyhedral tori at all having all 7 vertices on their
convex hull boundary. (See the remarks after [BE, Theorem 3.7]. This is my
name for their result.) In my opinion, had these authors asked the flatness
question for 7-vertex polyhedral tori, they most likely would have been able
to answer it.

In order to keep this paper self-contained, I will give a light and entirely
combinatorial computer-assisted proof of the Hull Lemma. For the interested
reader, I will also take the extra step and deduce the Hull Theorem from
our combinatorial analysis and a bit of projective geometry. Only the Hull
Lemma is needed for our proof of Theorem 1.1, though the proof of Theorem
1.1 has one fewer step if we do use it.



1.3 Eight Vertices

Here is the main result.
Theorem 1.3 There exists an 8-vertex paper torus.

The example has 2-fold rotational symmetry and all 8 vertices in its convex
hull boundary. Let me discuss how I found it.

Motivated by our proof of Theorem 1.1, I first tried to rule out the exis-
tence of 8-vertex paper tori having all 8 vertices on their convex hull bound-
ary. Such a result would not be as decisive in the 7-vertex case, but it seemed
like a good step in a potential proof of non-existence. I performed a com-
binatorial analysis similar to what I did in the 7-vertex case. This analysis
ruled out most but not all examples. Afterwards, I could see experimentally
that indeed this kind of 8-vertex embedded polyhedral tori exist. At that
point, my attention turned to studying these kinds of examples in detail.

There are 7 combinatorial types of triangulation of the torus having 8
vertices. Of these 7 there is (in my opinion) a worst triangulation and a
best triangulation. The worst triangulation is obtained from the Moebius
triangulation by subdividing one of the triangles. The best triangulation has
degree sequence 6, ...,6 and is vertex-transitive. This triangulation is very
much like the Moebius triangulation. Figure 1.2 shows part of the universal
cover of this triangulation, as well as a fundamental domain. I will explain
the meaning of the blue triangles below.

Figure 1.2: The universal cover of the best 8 vertex triangulation
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For all but the worst triangulation, I noticed that one can place 8 points
on the unit sphere and then fill in the triangles to get an embedded 8-vertex
polyhedral torus. My computer program repeatedly places points at random
on (the surface of) an ellipsoid and then checks the embedding condition
until an embedded example turns up.

Next, I ran a hill-climbing algorithm which started with random collec-
tions of points on the unit sphere and then repeatedly perturbed them — not
necessarily keeping them on the unit sphere — with the goal of minimizing
an objective flatness function. The flatness function computes the maximum
deviation of a cone angle from being 27. The short story is that I got lucky
and this worked. The longer story is that [ made my good luck by incorpo-
rating some tricks into the algorithm, tricks that I gradually noticed after a
lot of experimentation. Here are 4 key tricks.

1. It was useful to first perturb the points within an ellipsoid surface that
contains them, and then to perturb the ellipsoid. This worked much
better than just perturbing the points at random, probably because
the method lets you separately control the normal and tangential vari-
ations.

2. It was extremely useful to control the combinatorics on the convex hull
boundary. The convex hull boundary has 12 faces, some of which — say
K of them — are also faces in the triangulation of the torus. Call K
the face number. I noticed that the examples with large face number
turned up much more often, but they never could lead to flat examples.
(There always appeared a star in the torus that was part of a convex
fan.) So I eventually constrained my search to favor examples with low
face number. The examples with low face number are more crinkly.

3. It helped to bound some auxiliary quantities, like the minimum angles
and dihedral angles, to prevent degenerations. Bounds of about 0.00001
on the dihedral angles worked well.

4. Tt helped to force the examples to have 2-fold rotational symmetry. This
simplification came later. After I found some asymmetric examples,
Samuel Lelievre asked me about symmetric examples and I tweaked
the program. The program works more reliably after incorporating the
symmetry.



With all these constraints in place, and then a lot of playing around,
I found some embedded and 2-fold symmetric examples of face number 6
which are flat up to 10716, I took the nicest one and simplified the coordi-
nates, feeding it back into the program to make it near-flat again. Then I
implemented a high precision version of Newton’s method and improved my
example to one that was flat up to 1074, Here are the coordinates of this
extremely near flat example, truncated after 32 digits.

+0.755  +0.650 =
—0.455 +0.345 2z

—0.170 +1.140 2z " 19805 0571 5359 7793 5561 6538 2008 5693

fgigg :82;3 21 21 = 0.9902 8162 4334 3054 2934 3176 1585 8328 (1)
0,090 +0:665 00 29 = 0.9765 3883 4703 1231 7624 1842 4567 2434
+0.170 —1.140 2

+0.090 —-0.665 0

The 0th row of this array gives coordinates for vertex 0, and so on. This
example has 2-fold rotational symmetry. The symmetry is the permutation
(04)(13)(26)(57). When we just use the numbers in Equation 1 we get an
embedded example that is flat up to an error of about 10732, (See §4.) Here
is some more precision.

zp = 0.9805 0571 58597793 5561 6538 2008 5693 0055 3244 8886 6182 3764 0925 1031 3998
528969000219 1976 30529441 6054 1397 29796612 39144736 3149 9461 8320 0299

z1 = 0.990281624334 3054 2934 3176 15858328 0396 3159 0105 1356 1699 8363 9853 0130
166229604417 012224797351 16732074 0218 8931 29529639 3940 0849 98224101

z9 = 0.9765 38834703 12317624 18424567 2434 3419 2723 3847 8043 1363 4317 6666 5944
1656 5345 8266 6325 9911 2468 3851 5637 14354186 4964 47454121 8471 8234 9025

Again, this example has face number 6. The blue triangles in Figure 1.2
correspond to the 6 triangles of the torus that lie in the convex hull bound-
ary. Figure 1.3 shows a numerical computation of the intrinsic geometric
structure of the triangles. We are showing part of the universal cover of the
triangulation.



Figure 1.3: The intrinsic structure.

Figure 1.3 looks quite tame, but the extrinsic geometry is quite beautiful
and intricate. Figure 1.4 shows one of the slices of the object by the XY
plane.

Figure 1.4: The XY -slice of the example

This slice is very spiky and sort of “barely embedded”, but the embed-
dedness is quite robust compared to the plot precision of 10716,

Figure 1.5 shows the slice by the X Z plane. You are looking at two nested
embedded polygons. The annulus between these two polygons is a slice of the
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solid handlebody bounded by the torus. The two “parallel vertical segments”
on the right are neither parallel nor segments. Fach is a bigon made from
two smaller and symmetrically placed segments which meet at an angle that
deviates from 7 by an amount on the order of 0.01.

Figure 1.5: The X Z slice of the example



Figure 1.6 shows the slice by the Y Z plane. We have shown some close-
ups to indicate that the two polygons are disjoint and embedded, even though
without magnification it looks close.

Figure 1.6: The Y Z slice of the example.

Figure 1.7 shows a slice in a random direction. Once again, we have an
embedded loop.

Figure 1.7: A random slice of the example



Once we fix this direction we get a level set foliation of the torus by curves
that lie in planes perpendicular to this direction. In figure 1.8 we have drawn
the level set foliation in the intrinsic flat structure and then lifted the picture
to the universal cover. The highlighted loop in Figure 1.8 corresponds to
the loop shown in Figure 1.7. This Figures 1.7 and 1.8 show two views of
the same polygon, one in the intrinsic geometry and one as it appears in
ictures gives you a sense of the really weird

=

: Intrinsic view if the level set foliation

Now let me explain how I convert the example above into a proof of
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Theorem 1.3. Call the example above T'(zg, 21, 22), where we think of 2, 21, 29
as variables rather than as the fixed numbers given above. Let 6x(z0, 21, 22)
be the cone angle of T'(zg, 21, 29) at vertex k. Let

F(Z();ZlaZQ) == (60791792)-

If F(z0,21,22) = (2m, 2w, 27) and T(2o, 21, 22) is embedded then we have our
proof. We use the Inverse Function Theorem. Let dF be the Jacobian of F,
computed at our example. We display dF' and its inverse up to 2 digits:

—-091... 40.74... 4+0.39... —0.56... +0.23... 4+0.76...
+0.74... —=192... +1.14... +0.23... —=0.04... 40.64...
+0.39... +1.14... —0.06... +0.76... +0.64... 40.57...

(3)
Notice that dF is very well conditioned because dF~! is small. We will
need just two digits of precision, and some crude bounds on the variation
of these matrices, to promote our example to a genuinely flat embedded
example via an effective Inverse Function Theorem. (Of course, I computed
these matrices to about 400 decimal places.) This method is a tried-and-true
one. For instance, it is similar in spirit (thought not in the details) to the
method in Matthew Ellison’s 2023 preprint [E].
Here is a quick corollary of our method.

Corollary 1.4 There exists a 6-dimensional open manifold of non-similar
8-vertex paper tori.

Proof: We can normalize our example so that the line of symmetry is the
Z-axis. We can then perturb our points symmetrically by changing the X
and Y coordinates but not the Z-coordinates. As long as the perturbation
is small enough, the Inverse Function Theorem selects Z-coordinates for us
which give a paper torus. We have 8 free parameters to play with and then
these are grouped into a 2-dimensional foliation under the action of similar-
ities of the XY-plane which fix the origin. A cross-section of this foliation
gives us our 6-dimensional open manifold of inequivalent 8-vertex paper tori.

)
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1.4

1.5

Paper Organization

In §2, we will prove Theorem 1.1.

In §3, we will scale our example from Equation 1 by a factor of 10%? to
get an integer example Q. We prove that € is 102-robustly embedded,
meaning that if we change any of 2y, 21, 22 by less than 10%® then the
result is still embedded.

In §4, we prove that Q is 1073°-flat, meaning that the deviation of each
cone angle from 27 is less than 10739

In §5, we prove an effective version of the Inverse Function Theorem.

In §6, we use the results from §2-5 to reduce Theorem 1.3 to a final
estimate on the derivatives of the Jacobian matrix dF discussed above.

In §7, we establish these estimates and thereby finish the proof of The-
orem 1.3.

In §8, an appendix, I show how to promote the proof of the Hull Lemma
to the proof of the Hull Theorem. Again, this is not needed for the
proofs of our results.

Computer Assistance

My proof is heavily computer assisted, though all the important calculations
are done with exact integer arithmetic. The reader can download the code
for Theorems 1.1 and 1.3 respectively at
www.math.brown.edu/~res/Java/SevenTorus.tar.
www.math.brown.edu/~res/Java/EightTorus.tar.

I used ChatGPT-40 in various ways to help me with this project. Since
this is my first time doing a project with the assistance of ChatGPT, I think
that this warrants some discussion. Here are the ways I used the program.

I used it to discuss high level mathematical ideas. The act of explaining
math to a tireless and enthusiastic listener was quite fun.

I used it to find typos and other glitches in the paper.

I used it to format data. If the computer printed out some numerical
data, I would paste it into ChatGPT and have it format the data in a
way that was usable either in the paper or in my computer programs.
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e [ used it to evaluate my code checking it, at least in a semantic way,
for errors. This mostly served as a sanity check for my programming.

One final thing I would like to say is that I did not allow ChatGPT to
compose prose for me or even to give me writing advice. I want to retain 100
percent of my own voice when I write something. ChatGPT was perfectly
happy to stick to fixing typos and inconsistencies in the writing.

Overall, I found ChatGPT to be an enthusiastic and friendly companion
as I worked.
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2 Proof of Theorem 1.1

2.1 Crofton’s Formula

Crofton’s Formula is a classic result from integral geometry. See [S]. It applies
to any rectifiable arc on the unit sphere S%. We just need this result for finite
unions of arcs of great circles, which we call spherical polygons.

The space of oriented great circles in S? is canonically bijective with 52
itself, and inherits a canonical probability measure o. Given a spherical
polygon 7 and a great circle C, we let #(C N ~) denote the number of
intersection points. (We can ignore the finitely many great circles for which
this is infinite.) Crofton’s formula is as follows.

length(y) = W/S#(C N~) do. (4)

At least for spherical polygons, this has a swift proof. Both sides of
Equation 4 are additive, so it suffices to prove the equation for a spherical
polygon that is just an arc of a single great circle. By continuity, it suffices
to prove the result for great circle arcs whose length is a rational multiple of
2m. By additivity once again, it suffices to prove Crofton’s formula for the
great circle itself. But then the formula is obvious.

2.2 Proof of the Main Theorem
Here is a well-known consequence of Crofton’s formula.

Lemma 2.1 Suppose v is a spherical polygon which is also a topological loop.
If v has length at most 27 then v lies in some hemisphere of S2.

Proof: Crofton’s formula says that some great circle C' intersects v at most
once. But then 7 lies in one of the two hemispheres defined by C. When ~
has length exactly 27 we can shorten v a bit by cutting a small corner off.
The shortened curve then lies in a hemisphere. Taking a limit as the cut
corner tends to 0 in length, we see that v itself lies in a hemisphere. #

Now suppose that €2 is a flat embedded 7-vertex polyhedral torus. Let H
be the convex hull of Q). Call a vertex of €2 interior if it does not lie in OH.

Given any vertex P of () let 2p denote the union of 6 triangles of {2 incident
to P.
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Lemma 2.2 Q) has an interior vertex.

Proof: Suppose that €2 does not have an interior vertex. By the Hull Lemma,
) has a vertex P such that all 6 triangles of €2 incident to P lie in 0H. Let
Qp be the union of triangles incident to P as above.

A support plane for H is a plane which intersects the boundary 0H and
is disjoint from the interior of H. Since the cone angle of €2 at P is 27, and
since Q0p C OH, we see that H cannot be strictly convex at P. Hence some
support plane through P intersects 2p in (at least) a line segment through
P that contains P in its relative interior. But then the intersection of 0H
with a small sphere centered at P is a spherical polygon consisting of two
arcs which connect the same pair of antipodal points.

Since the total length of ~ is 27, and since a great semicircle is the unique
path on S? of length at most 7 connecting two antipodal points, we see that
~v must be a union of two great semicircles. Hence ()p is contained in the
union of two planes whose intersection contains P.

One of these two planes, II, contains at least 3 consecutive triangles of
(1p. But then II contains at least 5 vertices of €). Since the 1-skeleton of
the triangulation of €2 is the complete graph K-, we see that II contains an
embedded copy of K5. This contradicts the fact that K5 is not planar. &

Now we know that our flat embedded 7-vertex torus §2 has an interior
vertex P.

Lemma 2.3 The cone angle 8 at P exceeds 2.

Proof: We translate so that P is the origin. Let S? be the unit sphere. Let
6p denote the cone angle of Q2 at P. Let ¢(-) stand for length.

_ Let ©2p be the union of 6 triangles of (2 incident to P, as above. Let
Q2p denote the union of rays emanating from P whose initial portions are
contained in Qp. Let Lp = Qp NS We have 0p = ((Lp).

Since P is in the interior of the convex huﬂ of Q and since Q p contains
all the vertices of this convex hull, we see that {2p cannot lie in any halfspace
bounded by a plane through the origin. This means that Lp cannot lie in
any hemisphere of S?. By Lemma 2.1, we have ¢(Lp) > 27. Hence 0p > 27.

)

This completes the proof of the Main Theorem modulo the Hull Lemma.
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2.3 Proof of the Hull Lemma

We suppose that €) is an embedded 7-vertex polyhedral torus having 7 points
on its convex hull H. We can perturb so that the points are in general
position. This makes H into a triangulated solid polyhedron with 7 vertices,
15 edges, and 10 faces. One property we will use repeatedly is that ) is
neighborly: Every two vertices of €2 are joined by an edge in the triangulation.
In particular, every edge of H is an edge of the triangulation of €.

We call the 15 edges in OH the external edges. We call the remaining 6
edges internal edges. We say that an internal edge pattern is a choice of 6
distinguished edges from the 1-skeleton of the triangulation, normalized (by
symmetry) so that the first internal edge is (01). There are (250) = 15504
different internal edge patterns.

We say that an external triangle of 2 is one that lies in 0H, and an
internal triangle is one that does not. Each internal edge is incident to two
internal triangles.

Lemma 2.4 An internal triangle cannot be bounded by 3 external edges.

Proof: Suppose that such a triangle exists. Call it 7. If all three edges of
7 lie in OH and 7 ¢ OH then 7 separates H into two components, both of
which contain vertices of ) in their interior. Any path in H connecting two
such vertices must intersect 7. On the other hand €2 — 7 is path connected.
This is a contradiction. #

By Lemma 2.4, the internal edge pattern determines the set of internal
triangles and the set of external triangles. It is worth pointing out a triangle
of OH is not necessarily a triangle of 2. However, its boundary is one of the
35 three cycles contained in the 1-skeleton of the triangulation of €.

Since ) is neighborly, the degree of a vertex in the triangulation of OH is
just the number of external edges incident to that vertex, and this is the same
as 6 minus the number of internal edges incident to the vertex. In particular,
since H is a convex polyhedron and OH is triangulated, the degree of each
vertex in the triangulation of OH is at least 3. In other words, at most 3
internal edges are incident to the same vertex of (2. We eliminate all internal
edge patterns having fewer than 3 internal edges incident to some vertex.

Now we consider the remaining internal edge patterns. For each vertex
(q) we have the list {(¢,v;) | i = 1,..., K, } of K, external edges incident to
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q. We write K = K, and order these K = K, vertices cyclically according
to the link of (¢) in €. The link of L, of (¢) in OH is some permutation
(wy, ..., wk) of (v1, ..., vk).

Lemma 2.5 (Cycle Rule) In order to be a viable candidate for the link of
(q) in OH, the link (wy, ..., wg) must satisfy two properties.

1. (w;, wiy1) must be an external edge for alli. Indices are taken cyclically

2. The cycle (w1, ...,wx) must be a dihedral permutation of (v, ..., vk).

Proof: The necessity of Condition 1 is obvious. Condition 2 requires some
explanation. Let P be vertex (¢). Consider the picture in H at P. Since
the points are in general position, 0H is a proper convex cone near P. We
let TT be a plane parallel to a support plane through (¢) that just cuts off
a small corner of H near (q). Consider the intersection 0H NII. This is a
convex K-gon A, and the cyclic order of A is given by (wy, ..., wg).

Figure 2.1: A (black) and v (blue)

At the same time, and using the notation from the proof of Lemma 2.3,
let v = Qp NIL. The polygonal loop 7 is contained in the region bounded
by A and visits the vertices of A in the order (vy, ..., vk). Figure 2.1 shows
some examples, with v slightly moved off A to make the drawing more clear.
Note that if K < 6 then there will be some extra vertices to v as well; this
does not matter in the argument. If the permutation is not dihedral then ~
cannot be an embedded loop. But then (2p is not embedded, a contradiction.

)

Using the Cycle Rule (and our computer code) we eliminate all remaining
internal edge patterns except 6. These 6 are all the same up to combinatorial
isomorphism. Here is one of them.
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Figure 2.2: The one remaining pattern

Evidently, all 6 triangles incident to vertex (2) are external triangles. This
completes the proof of the Hull Lemma.
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3 Robust Embedding

3.1 The Example

Here is the list of faces in the triangulation shown in Figure 1.2.

[\

WWWNHNINNR, PR, OODOOOO
O UL O UL UL W N U W~ =
N IO NNk 0tOo O O W

Let Q be the example from Equation 1 scaled up by 1032. Here are the
coordinates, with row ¢ describing vertex ¢ for 1 =0, ..., 7.

[+7550 (28 zeros) +6500 (28 zeros)  +980505715859 7793 5561 6538 2008 5693 ]
—4550 (28 zeros) +3450 (28 zeros) +990281624334 305429343176 15858328
—1700 (28 zeros) +11400 (28 zeros) +976538834703 12317624 18424567 2434
+4550 (28 zeros) —3450 (28 zeros) +990281624334 305429343176 15858328
—7550 (28 zeros) —6500 (28 zeros) +980505715859 7793 5561 6538 2008 5693
—0900 (28 zeros) +6650 (28 zeros)  +0000 00000000 00000000 0000 0000 0000
+1700 (28 zeros) —11400 (28 zeros) 4976538834703 12317624 184245672434
+0900 (28 zeros) —6650 (28 zeros)  +0000 00000000 000000000000 00000000

We let Q(zo, 21, 22) be the example obtained from € by replacing the first
3 entries in the third column by 2y, 21, 2z and then making the symmetric
replacements for the entries z4, 23, 26. (The symmetries zy = 24 and z; = 23
and zo = z are discussed in the paragraph after Equation 1.) So, in our
example, €1 is obtained by setting these variables to the respective 32-digit
integers we have listed.

There is one point we need to be clear on. We do not get Q(zo, 21, 22)
by scaling up what we called T'(zo, 21, z2) in the introduction. We get it by
scaling up T'(szp, 521, 522) where s = 10732,
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3.2 Main Result

Let 2, 21, 22 be as they are for 2. Given any ' = Q(z, 2, 25) we let
€ = Qf = max(|zg — 2, |21 — 21, |2 — 22). ()
We do not insist that z{, 21, z; are integers.

Definition: We say that € is K-robustly embedded if and only if ' is em-
bedded whenever | — Q| < K.

Here is our main result.

Lemma 3.1 (Robust Embedding) Q is 10%-robustly embedded.

Proof: We have 120 = 24 + 72 4 24 triangle pairs to consider. The first 24
are pairs having 0 vertices in common. The next 72 are pairs having 1 vertex
in common. The last 24 are pairs having 2 vertices in common. Given one of
these pairs (T, T1) we let k(Ty, T)) be the number of vertices the pair have
in common.

We let Tg denote the convex hull of the vertices of Tj that do not belong
to T7. Thus Tg is respectively a triangle, a segment, and a point when
k(Ty, T1) = 0,1,2. We define T1ﬁ in the same way.

Given a vector L, let |L| denote the max of the absolute values of its
coordinates. In practice we work with 16-digit integer vectors, giving us
|L| < 10'". We say that (T, T}) is A-separated if there exists a vector L with
|L| < 10'7 such that one of the following two equations holds

max L - T} <minL - T} — A, max LT/ <minL T} —X.  (6)

To be clear, we are taking the maximum and minimum dot product with L
over the triangles. That is,

max L - Tg =max L - p,
pET(i)1
and likewise for the other terms. By convexity, it suffices to take this maxi-
mum over the vertices. This makes for finite computations.

If | — Q] < K then no vertex of Ty or 71 moves by more than K, and at
most one of the coordinates changes. Hence, each dot product above changes
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by at most 10'K. Hence, if our original pair is A separated then the new
pair (7§, T7) is still X' separated, provided that

Ni=)X-(2x10"K > 0.
We show by direct calculation that all pairs are A-separated, where
A = 5112923953186065818296799992123421121146292290. (7)

This amounts to producing 120 specific vectors Ly, ..., L119 and then verifying
one of the two sides of Equation 6 when L; is tested against the (i)th pair. In
the next section we will explain how we produced these vectors, even though
logically speaking it does not matter how we produced them.

Our separation calculation shows that €2 is K-robustly embedded as long

as A
K < oo = 255, x 107

Therefore €2 is 10?8-robustly embedded. &

Remark: The Robust Embedding Lemma conforms pretty well to our pic-
tures in Figures 1.4 — 1.6. Abusing our terminology slightly, we would say
that our pictures indicate that the example T' from Equation 1 is a better
than 10~%-robustly embedded. Here we are scaling up by 1032

3.3 Producing the Vectors

Let (T1,T3) be one of the 120 triangle pairs. Our method depends on
k(Ty,T). We do one thing when k& = 2 and something else when k£ = 0, 1.
In all cases, the output of our construction is a vector L.

Our method is easier when k = 2. We describe that first. For 5 = 0,1
let n; be one of the two unit vectors perpendicular to the plane containing
T;. It turns out that ny and n; are never multiples of each other. There is
usually a descrepancy of at least 1072. We then have the two vectors

N + nq
V= —— . 8
== g £ ] ®)
We then set
L = floor(10%V4.). 9)
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We leave it to the reader to figure out why this would (very, very probably)
work. The rounding is the only step which introduces the miniscule chance
of the method not working. As we said above, our formal proof does not
require a justification for why the vectors work. They just have to work.

Remark: The fact that n; &~ ny in some cases suggests that perhaps there
is a more symmetric example fairly near to ours. In this particular construc-
tion, we are benefitting from the slight asymmetry in our example. We would
need to treat the case ny = 4ny specially because one of the two vectors in
Equation 8 is not defined.

Now we turn to the cases when k(7p,7T;) < 2. These cases are more fun.
We define
dlx)=22"—1, o =z —floor(x). (10)

The range of ¢ is [—1,1]. Next, we define

Wi,
Vn = )
[Wall

W, = (nvV2,nv3,nV5). (11)

The countable collection {V},} is dense in the unit sphere. This is nice because
we are looking for a good direction to use in order to separate Ty from T,
and the list Vj, Vi, V5, ... eventually samples all directions up to an arbitrarily
small error. Another nice feature of these pseudo-random vectors is that they
are easy to name explicitly.

For each pair (7p,77) we try to verify a numerical version of Equation 6
for our original example in Equation 1. We take A = .005 when k(75,77) =0
and A = .01 when k(7p,71) = 1. We found these “tolerances” by trial and
error. We wanted a healthy separating vector but we did not want to wait
too long (or forever) for our search to terminate.

For each pair, the search terminated with success. We then chose

L = floor(10°*V,,), (12)

where V,, is the first vector on our list that satisfies our Equation 6 with the
given tolerance.

For the reader who is interested in reproducing our vectors without re-
coding everything, we list out the indices of the vectors which worked for us.
Here is what we got for the 24 pairs having no vertices in common.
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1 4 4 10515 32202 32202

1409 8 7 10 32 32
11 326 15725 24 170004
1 1 183100 183100 24 1

Here is what we got for the 72 pairs having one vertex in common.

1 32202 32202 32202 1409 1409

1409 1 7910 8 10515 1
32202 10515 32202 7910 7910 32202
8 10515 1 1 1 32202
32202 1409 1 7910 1 1
8 32202 7910 1 1 10515
32202 32202 32202 10515 1 8
8 1 32202 10515 32202 32202

8 32202 7910 8 1 10515

8 32202 8 10515 32202 32202
32202 1 1 1 8 10515

10515 32202 32202 7910 32202 7910

These lists are meant to be read across and then down, like a page in a
book.

Remark: The repetition of some of the numbers on these lists is another
suggestion that perhaps there is a more symmetric example than ours that
is fairly nearby. In my opinion, the structure of these lists somewhat reflects
the geometry depicted in Figures 1.4 —1.6.
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4 Near Flatness

4.1 The Main Result

Let €2 be our integer flat torus from §3.1. Let 6; denote the cone angle of ) at
the (7)th vertex. We say that Q is e-flat if max; |0; — 27| < e. The maximum
is taken over all 8 cone angles. We have the exact coordinates of {2 and we
also have a high-precision version of the square root function and the arccos
function. Using 100 digits of accuracy in a direct angle calculation, we check
that Q is (7.26 x 1073%)-flat. For readers who are not satisfied with such a
calculation, we prove, just using rational arithmetic, the following slightly
weaker bound.

Lemma 4.1 (Near Flat) Q is 1070-flat.

4.2 Discussion

Here we discuss the idea behind the proof. Look again at Figure 1.3. This
shows a plot of the intrinsic flat structure on 2 up to an error of about
10716, Around each vertex V; we have 6 triangles T, ..., T5. These triangles
do not necessarily fit perfectly in the plane, but the error is so small that
you cannot tell from the naked eye. We compute these triangles numerically
using dot products, the square-root function, and the arccos function. We do
not care about the rigor of our calculation. Call the union of these 6 triangles
a flower. The (i)th flower corresponds to the (i)th star in €2, though only
approximately.

For our proof, we re-do the calculation of our 8 flowers using high precision
arithmetic and scaling, as follows:

1. We get 100 digit precision coordinates for the triangles.

2. We scale up the vertices by 1032,

3. We translate so that the central vertex is the origin.

4. We round all coordinates down to integers by taking floors.

This gives us integer models which approximate the geometry of the 8 stars
in €.
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Now something very nice happens. For our scaled-up models, these big
integer triangles fit together perfectly around a vertex. Put another way, for
each flower F' there are 6 integer vectors Vg, ..., V5 such that each of the 6
triangles in F' is defined by 2 cyclically consecutive vectors on the list. We
then compute the mismatch between the various dot products associated to
) and the corresponding dot products associated to the integer flowers, and
this gives us the Near Flat Lemma.

We will include all our flowers at the end of the chapter. For the purposes
of our proof, our method for producing the integer flowers is irrelevant. Log-
ically, all that matters is that we simply have these 8 lists of vectors which
we can compare to the picture in 2. Rather than compare the angles, we
compare the dot products which go into the calculation of the angles. We
finish off the argument by using the Lipschitz properties of the function that
converts between the relevant dot product ratio and the angle.

4.3 Rational Arithmetic

We perform integer arithmetic calculations using the Biglnteger class. These
are done exactly. Out of a slight laziness, and a desire for a transparent argu-
ment over a tedious exercise that anyone can perform, we will avail ourselves
of the BigDecimal class in Java, which is perfectly capable of computing the
ratios of 64 digit integers up to 100 digits of precision. Let us at least explain
how we might have implemented a pure integer verification.

Suppose we want to establish a bound like

*

a a

b b*

<e. (13)

where a, b, a*, b* are positive integers and € > 0. We would choose the smallest
integer N such that 1/N < e and then try to check that

Nlab* — ba™| < bb*. (14)

In practice we would compute € using the BigDecimal class, then round in
the correct direction to get N, and then use Equation 14. Logically, it does
not matter how we find N. All that matters is the existence of N. We did
not do this, but if some readers of this article protest, we will add it to our
code.
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4.4 The Proof

Let 7, be the (b)th triangle in the (a)th star of Q and let 7, be the (b)th
triangle in the (a)th integer flower. Let V,, and W,;, be the two vectors that
Tap defines. By this we mean that V,;, points from vertex a to the first other
vertex of 7., and Wy, points from vertex a to the second other vertex of 7.
(The torus is oriented, so we have no trouble defining “first” and ”second”
here.) We define V; and W, with respect to 7 in a similar manner. Let
0. and 07, respectively denote the angles of 7., and 77, at vertex (a).
When r > 0 we have

(V-W)(v-Ww)

0= ¢(T>, (b() = arccos( ())7 r= (V . V)(W . W)? (15>

We take the positive branch of the square root function here.
We have 48 = 8 x 6 pairs of triangles to check. We get the following
bounds which work uniformly for all these pairs:

L. r,r* e I:=[.00112,.77714] for all a,b.

2. |r—r*| < 1.07 x 10732,
3. V.W>0and V*-W* > 0.
Lemma 4.2 ¢ is 15-lipschitz on 1.

Proof: We compute that

‘dgzﬁ B 1
dt|  2/t(1—1t)
Establishing our bound is the same as establishing that

1

225 — ——
4t(1— 1)

>0, Viel

Establishing this bound is a routine exercise in algebra (or calculus) which
we omit. &

Combining Lemma 4.2 with our calculations, and remembering that our
flowers have 6 triangles in them, we see that € is e-flat when

e=06x15x1.07 x 10732 < 1072,

This completes the proof of the Near Flat Lemma.
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4.5 The Integer Flowers

124788644050109876602825361295674
77712297261878079581593486900079
—70435981294870011898311359845207
—148148278556748091479904846745286
—98095839650912348417428186459704
53415963724939232100166950154753

[ 84465310291672221527450441188266
69550368811175622953657281341642
—34241316280724259280029981722340
—103791685091899882233687263063983
—88338793860668172702704004953884

L 44045801850979783812535215764631

[ 104677635440723967179988723412878

12034998257537687883214969911430
—94317081172076477932017348008492
—191630826036432582723537220778797
—97313744864356104791519872770305

L 32097662001199218957367514938600

151584388889297911866446233050267
56495441368939829023723230650622
—49223826337965360195502746428317
—124728889560435721214027036255644
—68579908206882346371371696550992
56148981353553374842655339704651

[ 199251097863976649156276288186992
161120818626134715906111075736407
—44330167652533400164597159444753
—102277745880424119662590582022408
—44113235471988020751569542690915
L 38130279237841933250165212450584

[ 206863556376741568622946129706945
3647481315941312863078263678069
—75789172382575842209671187858145
—116999860561305386939755847152992
—41210688178729544730084659294848
L 58216001420386574195913238485630

[188317304997339823174158679929020
17841734520938330693404444524334
—80328865359490685097501135729666
—69693027059078945150953187346448
93593941525210768327841471388803
L 163286968584289713478794658735251

[ 151584388889297911866446233050267
95435407535744537023790893345615
—56239231360498057885401519560362
—105719267706905189219225977078940
—56495441368939829023723230650623

L 95088947520358082842723002399644

0
70129923825301614779354253224291
186386084617464728269924163644524
116256160792163113490569910420232
—84460765042234115458262663828023
—89151222668009434223254123690615

0
103609612884589392577024128236871
108947382985381561571026048979621

5337770100792168994001920742749
—123183133805664642986337651698562
—101107834979521394561120290119996

0
83603513440581754781321562053477
54413409707656384418499405421507

—128131286236400952463466737043786
—182544695944057336881966142465293
—185561707945141208999189687748482

0
94715849040541184436182819641071
68639664650392174112843586146043
—3861320096243261090662872882149
—91317009315546418606880471182019
—87455689219303157516217598299871

0
97485840852430004244786950552576
121619286399136814961872050344316
—18451785319703080875434679167189
—116731435954750256516337414942322
—97485840852430004244786950552577

0
108826590670126188269802629065616
80117590481155307070115264260041
—65757376990228984547591251604189
—145874967471384291617706515864231
—115617091154199741307099293537955

0
103145915434133734843279705318812
26108658194654254413402678301333
—83662494202455064363150318793564
—210666025048595406864753841069280
—127003530846140342501603522275717

0
87455689219303157516217598299870
199072046789130364493850160222280
—26076184390149010323339233495028
—94715849040541184436182819641072
—94715849040541184436182819641072
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5 Effective Surjectivity

Here we prove a result which will help us use the Inverse Function Theorem
to promote our nearly flat embedded example €2 to an exactly flat embedded
example.

Let G : R® — R® be a smooth map. Let dG/|, denote the differential of
G at p. We call G cleanly expansive on a ball B if

1. dG|, is an expanding map at each p € B.
2. For any vector V € R? and any p, q € B we have dG/|,(V)-dG|,(V) > 0.

Here we are interpreting V' as being simultaneously in the tangent space at
p and at q.

Lemma 5.1 (Effective Surjectivity) Let B be the unit ball centered at
(0,0,0) and suppose that G(0,0,0) = (0,0,0). Suppose that G is cleanly
ezpansive on the unit ball B. Then B C G(B).

Proof: Let G : R®* — R? be amap which is cleanly expansive on the unit ball
B. We note first of all that G is locally invertible in an open neighborhood
of B. This follows from the Inverse Function Theorem and continuity. The
point here is that dG is nonsingular not just on B but in a neighborhood of
B.

We claim that G is injective. Suppose not. Suppose that pg # p; € B
are such that G(pg) = G(p1). Then we can find a line segment in B which G
maps to an arc v that starts and ends at the same point. This is impossible,
because all the tangent vectors of v (taken as 4 moves in one direction) have
positive dot product with the initial one 7/(0). This contradiction shows that
G is injective.

Now suppose, for the sake of contradiction, that B ¢ G(B). Let § < 1
be the infimum of radii » such that B,.(0) C G(B). By the Inverse Function
Theorem, we have § > 0. By compactness, there exists a point p € 9B such
that ||G(p)|| = 6. Let ¢ = G(p).

Consider the line segment § which connects ¢ to (0,0, 0), oriented so that
[ starts at ¢ and ends at (0,0,0). By the Inverse Function Theorem, we
can find small open neighborhoods U,, U, about p and ¢ respectively so that
G : Uy, — U, is a diffeomorphism. The intersection U, = U, N G(B) locally
lies on one side of G(JB). Since G(B) contains all of B;(0), the set U,
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contains all points of U, N 3 sufficiently close to ¢. Thus, if we choose some
initial arc 8 C 3 contained entirely in U, we have an inverse image a* C B
that starts at p and immediately moves into the interior of B.

We want to extend the length of * so that its inverse image o* is still
defined. Since G is a local homeomorphism at all points of B, this extension
is possible as long as a* remains in B. Could it happen that a* ever exits
B? Well, as we trace along 8 we come ever closer to the origin. So, if a* ever
exits B we would have produced a new point p* € 9B such that ||G(p*)|| < ¢.
This is impossible. Hence a* cannot exit B. But now we can continue the
process all the way, finding an arc o C B such that G(«) = .

One endpoint of « is p. Consider the other endpoint p’ of . We have
G(p') = (0,0,0). Since G is injective on B this forces p’ = (0,0,0). This
means that a connects a point on the unit sphere 9B to the origin. The
length of « is 1 and the length of 5 is § < 1. But then G would decrease
the arc length of o, contradicting the fact that G is cleanly expansive on B. #
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6 Healthy Expansion

6.1 The Proof Modulo the Expansion Lemma

In this section, we reduce the proof of Theorem 1.3 to an auxiliary lemma
we call the Expansion Lemma. After this, we reduce the Expansion Lemma
to one final bound on the derivatives of the matrix dF'. We call this final
bound the Crude Bound Lemma.

Let us recall the set-up from the previous chapter. Let G : R® — R? be
a smooth map. Let dG/|, denote the differential of G at p. We call G cleanly
expansive on a ball B if

1. dG|, is an expanding map at each p € B.
2. For any vector V € R® and any p, q € B we have dG/|,(V)-dG|,(V) > 0.

For the purposes of proving Theorem 1.3, we generalize the definition
slightly. We say that G is A-cleanly expansive on a ball B if the scaled map
AG is cleanly expansive on B. Let B,(v) denote the ball of radius r centered
at a point v.

Corollary 6.1 Let p,q € R be such that G(p) = q. Suppose that G is
A-cleanly expansive on B,.(p). Then Bs(q) C G(B,(p)) when s =r/\.

Proof: This follows from the Effective Surjectivity Lemma by translation
and scaling. &

Remark: Let us make sure that we have scaled things the right way. If \ is
large then we have to scale G up a lot for it to cover a reasonable-sized ball.
This means that it is harder for the image of G' to cover balls of a given size.
Our scaling law reflects this (rather than the opposite) phenomenon.

Now we turn our attention back to the proof of Theorem 1.3. Let 2 be
our example from §3.1. In the notation established in §3.1, we define

(I)(ZQ,Zl,ZQ) = 1032(90,91,92). (16)
Here (6, 01,0) are the cone angles at vertices 0, 1,2 respectively. Let
p= (20721722) S R3

denote the point corresponding to our example €.
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Lemma 6.2 (Expansion) The map ® is 100-cleanly expansive in the ball
of radius 10° centered at p.

Following this section we reduce the Expansion Lemma to one final bound,
which we call the Crude Bound Lemma.
Let ¢ = ®(p) € R*. By Corollary 6.1, we have

Biooo(q) C ®(Bigs(p)). (17)

But Q is 1073%-flat. This means that (2, 2m,27) lies in the cube of side-
length 2 x 1073% centered at (g, 6, 65). Basic geometrical properties of the
cube now imply that

(6o, 01, 05) — (27,27, 27)|| < 10 x 1073 = 107%.
Scaling up, we see that
lg — 10% (2w, 2, 27)|| < 10°, q = ®(p).
But now Equation 17 gives
10*2(27, 2, 27) C Biogo(q) C ®(Bigs (p)).

This tells us that there is some point p* € Bygs(p) such that, with the obvious

notation, (05, 07,0%) = (2,27, 27). But then the torus Q* corresponding to

p* is flat. Since 2 is 10?8-robustly embedded, we see that Q* is also embedded.
This reduces the proof of Theorem 1.3 to the Expansion Lemma.

6.2 Cleaning off the Problem

It remains only to prove the Expansion Lemma. So far we have been working
with the scaled up torus €2 defined in §3.1, but at this point in the proof 2
has served its purpose.

We would like to revert to our torus 7' defined in Equation 1 and we
would prefer to use the map F' defined in connection with T'. Let us discuss
how these objects compare. First, recall that p is the point corresponding to
our example Q. Let S : R® — R® be the map which dilates by 103 about
the origin. The point

corresponds to 7.
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By construction
F=S"10do0Ss. (18)

This means that the Expansion Lemma is true if and only if the following
lemma is true.

Lemma 6.3 (Expansion II) F' is 100-cleanly expansive in Byg-27(p).

Notice that we are working in an extremely small ball about p. Heuris-
tically, we expect dF' to be almost constant in this ball. Let us first analyze
the picture right at p. We repeat the formula for dF5 given in Equation 3, a
formula in which the first two digits of each entry are correct.

—0.91... +0.74... +0.39...
dF; = |+0.74... —1.92... +1.14... (19)
+0.39... +1.14... —0.06...

This is a routine calculation. Given the extremely low precision we need for
our proof, we will not rigorously justify our 2-digit calculation of dF;.

6.3 Reduction to a Crude Bound

We now define the matrix

~0.91 +0.74 -+0.39
M= |+0.74 —1.92 +1.14 (20)
+0.39 +1.14 —0.06

Let M denote the set of matrices such that each entry is within 1/20 of the
corresponding entry of M. Thus, for instance, the upper left entry lies in
[—.93, —.89].

At this point, we let B denote the ball of radius 10727 centered at p. This
is the final domain of interest to us. Below we will prove the following bound.

Lemma 6.4 (Crude Bound) Throughout B, we have

i

Corollary 6.5 dF|, € M for all ¢ € B.

oF
8zi8zj

< 10*, i,j €4{0,1,2}.
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Proof: Let m;;(q) denote the (i,7)th matrix entry of dF|, Equation 19
says that mgo(p) € [—.92, —.91], etc. Integrating the bound from the Crude
Bound Lemma along a rectilinear path that joins p to ¢ we see that

3 1
ii(q) —mij(P)] <3 x 107 x 10* = —— < —.

This bound implies our lemma. &

Lemma 6.6 For all points q1,q2 € B and all vectors V' we have

dF, (V) - dF,,(V) > 0.

Proof: Suppose this lemma is false. By continuity we can find a triple
q1, ¢, V such that V is a unit vector and

dF, (V) -dF,(V)=0.

Recalling that || - ||oc denotes the maximum absolute value of a matrix entry,
we write ]

dF’Qk = M + E, [ Bkl < 20
We have

(M(V) + E(V)) - (M(V) + E3(V)) = 0.

Rearranging this, we have
MV = —(E (V) + Ex(V)) - M(V) = Ey(V) - E5(V).

Now we observe that || M|« < 2. Combining our bounds on the entries of
E}. with the triangle inequality and the Cauchy-Schwarz inequality, we have

, 1 1 1 1 1 1 1
IMIDI? < SIMIV) + 105 < oMo + 15 < £+ 1 < 1
The vector W = M(V) is such that ||[W]] < 1/4 and |M~Y(W)|| = 1. But
this is only possible if one of the eigenvalues of M~! exceeds 4 in absolute
value. This is absurd. Since (as one readily computes) all eigenvalues of M
are greater than 1/2 in absolute value, all eigenvalues of M1 are less than
2 in absolute value. &

Now we study the matrices in M.
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Lemma 6.7 For every matrix M* € M, the differential dM* expands dis-
tances by at least a factor of 1/100.

Proof: As in the previous proof, we write

1

M =M+FE Flloo < —.
YE, Bl < o

It suffices to prove that the eigenvalues of M + FE are all greater than 1/100
in absolute value. We suppose this is false and derive a contradiction. So,

there is some unit vector V' such that

1
M E =\ A< —.
V) +BV) =2V, ]\ < o

But then, by the triangle inequality,

1 1 1
MV <—+— < -.
1M )“_100+20 4

Now we have the same contradiction as in the previous proof. &

Lemma 6.6 and Lemma 6.7 combine to prove the Expansion Lemma II,
which in turn is equivalent to the Expansion Lemma. The only thing we have
not proved is the Crude Bound Lemma. Therefore, we have reduced Theorem
1.3 to the Crude Bound Lemma. We prove the Crude Bound Lemma in the
next chapter.
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7 The Crude Bound Lemma

7.1 Discussion

To finish the proof of Theorem 1.3, we only need to prove the Crude Bound
Lemma. Before getting to the proof, I want to discuss a certain robustness
in our argument. We have arranged things so that we need a bound of 10
on some partial derivatives. Had we worked with a 64 digit integer example
built from a 1070 flat object — something we certainly could have done — we
would have left ourselves needing to get a bound of about 10*® on the same
partial derivatives. Or we could have used a 128-digit example, and so on.

We mention this because we don’t want to give the reader the impression
that somehow Theorem 1.3 hinges on some fine points of our analysis in this
chapter. Our 32-digit example simultaneously gives us something that does
not require us to sweat too much over the final estimate and something which
lets us have relatively short data files.

7.2 Breaking Down the Terms

In this section we will break down the partial derivatives we need to estimate
into simpler expressions.

Recall that F(zg,z1,22) = (6o,01,62) is the map which computes how
each of the angles 6y, 01,605 depends on the values of 2y, z1, 20. We write the
(ij)th term in the Jacobian dF' as 0,6;.

We are considering symmetric variations. We do not just move (2o, 21, 22)
but also we move (z4, 23, 26) in a symmetric way. Thus, for instance

00,  00;
Dol = — + —L.
020 62’4
The other expressions expand in a similar way. When we take second deriva-
tives we get 4-term expressions. For instance
020, 020, 020, 0%,
J J + J + J

0010 =
o1% 02021 + Ozaz1  O0zpzz  0z423

Each 0; is a 6-term expression of terms of the form 6,5, where 0, is the angle
of triangle (¢, j, k) at vertex . Hence, 0;;0; is a 24-term sum of expressions

of the form
a2000!6

8zaazb ’

d(a,b,c,d,e) = (21)
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These expressions vanish when {a,b} Z {c,d,e}.
We call d(a, b, ¢, d, e) nice if ¢ € {a,b}. Otherwise we call the term mean.
Our terminology indicates our preference.

Lemma 7.1 FEvery mean term is a sum of at most 2 nice terms.

Proof: First consider terms of the form d(a,a,a,b,c). Using the relation
0, + 0, + 0. = 7 we have

d(a,a,a,b,c) = —0(a,a,b,c,a) —d(a,a,c,a,b).

The terms on the right are nice.

Given that d(a,b,c,d,e) = d(b,a,c,d, e), the only remaining mean terms
we have to treat are those of the form 9(b,a,a,b,c) and 9(b,a,a,c,b). We
will treat the first one. The second one has the same treatment.

Thinking of our partial derivatives as operators on the function 6.4, we
have the basic formula

0 n 0 N g 0

Dz. Ozg 0z
Geometrically, the variation we are considering simply translates the triangle
up or down along the Z-axis and changes none of the angles. Using this

relation, we have

d(b,a,a,b,c) = —09(b,b,a,b,c) — (b, c,a,b,c).

Both terms on the right are nice. #

In summary each partial derivative ;;0; is a sum of K nice terms of the
form 0(a,b,c,d,e) where K < 24 x 2 = 48. In view of this breakdown, it
suffices to show that

10(a, b, c,d,e)| < 10

for all nice terms.

7.3 Normalized Pairs of Vectors

To avoid overloading the variable names, we write vectors as V = (u, v, w).
We say that a pair (V3,V3) of vectors is normalized if they have the form

‘/1 = (Oavlawl)7 ‘/2 = (u27v2aw2)‘ (22)

36



We say that a torus 7" is relevant if it corresponds to a point in the ball
of radius 10727 about the point describing our example T in Equation 1.
We say that a pair of normalized vectors is relevant if it is obtained from a
triangle (Py, P1, P) in a relevant torus by the following procedure.

o Weset V/ =P, — Fyand V) = P, — F,.
e We rotate (V/,V3) about the Z-axis to get a normalized pair (V;, V3).

We mean to make this construction for all permutations of these points. Thus
each triangle in a relevant torus gives rise to 6 pairs of relevant vectors.

Let 9(Vi,V3) be the angle between V; and V,. If we have an arbitrary
pair of vectors we can rotate about the Z-axis so that they are normalized.
This rotation does not change the geometry of the triangle defined by these
vectors and it does not change the dependence of this geometry on the Z-
coordinate. For this reason, each nice term discussed in the previous section
has the form
B 0?9
N 8w¢8wj’

To finish the proof of the Crude Bound Lemma, we just need to prove for all
relevant pairs that

0;;0

i,je{1,2). (23)

|a%]19| < 10227 (Za.]) = (172)7 (17 ]-)a (272)

We don’t need to deal with the case (i, j) = (2, 1) because 0919 = 0129.

7.4 Concrete Formulas

Finally, we are at the point where we can get formulas. We have

ViV )
Vi) (Vs V)

This angle formula is more general than the one we considered in Equation
15. The expressions in Equation 23 are square roots of rational functions.
We find it convenient to set g;; = (9;;9)% and to show that g;; < 10* for all
relevant pairs and indices. Our bounds below will be much better than this.

¥ = arccos ( (24)

Lemma 7.2 For each relevant pair (Vi,Vs) of normalized vectors (in the
notation above) we have ||[Vi||, ||Vz|| € [0.8,2.4] and |us| > 0.005.
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Proof: The norm bounds are straightforward. We just list out the possi-
bilities in our example 7', then observe that any other relevant torus differs
from T by less than 10727 in each coordinate.

The bound on us is more subtle. For each “raw pair” (V/,Vy) associated
to our triangle we compute

a(Vi,V3) = |ujvy — uquy].

This quantity measures the area of the parallelogram spanned by our vectors
when we project them into the plane. In particular a(V{,Vy) = a(Vi, V2)
when (V, V3) is the normalized pair associated to (V{, Vy). We check directly
that |a(V/,V3)| > 0.02 for all relevant triangles. Hence

_ Jwaflon] _ eV, Vo)l _ Ja(V7, V5)[ 002

|U2| =

> 0.005.

vl ] |y 3

This completes the proof. &

Now we have three cases, which we treat in order of complexity. Let
gij = (0i0)%.
Case 1: We have
uvy

(u2(v? + w?) + (vowy — v1w2)2)3'

g2 = (25)

Write this expression as N/D. By Lemma 7.2 we have

N < (2.4)% < 10°, D > (0.005)%(0.8)% > 1071,
Hence g15 < 10%°,
Case 2: Next, we have

v3 (—2w (vowy — viws)3 + u3 (v + w?) (vivg — 2uw? + 3U1U}1’w2))2

(v} + wi)* (uz (v + wy) + (vowy — U1w2)2)3

gi1 =

(26)
Using the same notation as in Case 1 and using the bounds from Lemma 7.2
we find that
D > (0.005)%(0.8)7 > 10719,
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We expand N out completely and find that it has 32 terms, all coefficients
less or equal to 80 in absolute value, and maximum degree 16. This gives us

|N| < 32 x 80 x (2.4)'° < 10.

Putting together our bounds, we have g;; < 10%.

Case 3: Finally, we have

3

2
3, .4/,3 2 3

209w3 (Vowy — V3Wg)” + Uy (VyVg + Jviw we + 2wiws)

2( 4.2, 3 2 2 2 2 2 3 2

+ u3 (4vjwiws — 6vvawiw; + 3viwiwe (v + w3) + Vi (v — vaw3))

922 (u2 + v2 + wd)* (U202 4+ w2) + (vawy — vyw,)2)°

(27)
We use the same notation as above. Essentially the same calculation as in
Case 2 gives D > 107!6. When we expand N out completely, we see that
N has 55 terms, all coefficients less or equal to 124 in absolute value, and
maximum degree 16. Hence

IN| < 5x 124 x (2.4)' < 10%.

Hence gay < 10%.

This completes the proof of the Crude Bound Lemma, and thereby com-
pletes the proof of Theorem 1.3. An 8-vertex paper torus exists!
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8 Appendix: Proof of the Hull Theorem

We only needed the Hull Lemma for the proof of Theorem 1.1, but our
analysis gets us pretty close to the (unnamed) result from [BE] that a 7-
vertex embedded polyhedral torus cannot have all 7 vertices on its convex
hull boundary. We call this result the Hull Theorem. We build on the
argument from §2.3 and prove the Hull Theorem. We emphasize that this
argument is not needed for the proof of any other results in this paper. We
include it so as to give a proof of the beautiful result from [BE].

Given the work above, we just have to prove that the internal edge pat-
tern shown in Figure 2.2 does not correspond to an actual embedded 7-vertex
polyhedral torus €2. We repeat a small copy of the picture here for conve-
nience.

Y
T N
R e

\ - /\ L\ L/
!“"1"""‘?

o)
I\

2 3

Figure 2.2: The one remaining pattern

Suppose for the sake of contradiction that {2 exists.

We think of € as a subset of projective space P®. We can apply a pro-
jective transformation so that vertex (2) moves to the point [0:0:1: 0] at
infinity in P3. This point is “infinitely far away” along the Z-axis. We also
can arrange that the (now) rays (27) start at (j) and move downward (rather
than upwards) along the Z-axis, limiting on (2). We can do all this by a pro-
jective transformation that maps H — {(2)} into the affine patch, which we
identify with R?. Essentially, our normalization is a limit of examples in R®
in which (2) moves farther and farther down the Z axis.
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Now, H — {(2)} is still a convex subset in R®. It is like a hexagonal
prism that has been truncated at one end. Here is the crucial observation:
since H is convex, the projection of the hexagon (603541) into the X'Y-plane
is a convex hexagon. We can further normalize so that the projections of
(15) and (36) into the XY-plane are parallel line segments. We do this by
mapping the line [215] N [236] to a line at infinity which contains (2). Here
labc] is the plane containing the points (a) and (b) and (c).

Figure 2.3: Projection of part of 0H into the XY-plane

The 3-cycles (036) and (145) are both triangles on 0H. These are not
triangles of €). Every other triangle in 0H does belong to 0€). By convexity,
these two 3-cycles are bent downward. What we mean is that the plane
containing (036) has the rest of H beneath it. The same goes for the plane
containing (145).

The blue triangle in Figure 2.3 is (346). This is an internal triangle. We
can foliate this triangle by parallel line segments as shown in the figure. These
segments are parallel in space and they project to parallel segments in R>.
The red triangle in Figure 2.3 is (015). We make all the same constructions
for this internal triangle. We call these foliations red and blue, as in the
figure.

Say that a special plane is a plane in R whose projection to R? is a line
parallel to the projections of the red and blue foliations. One special plane
contains (15). In this plane, the red foliation is above the blue foliation.
Another special plane contains (36). In this plane, the blue foliation is above
the red foliation. So, by the intermediate value theorem, there is a special
plane for which these two foliations coincide. But then (015) and (346)
intersect. This contradicts the fact that €2 is embedded.

This completes the proof of the Hull Theorem.
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