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Notation

:= equal by definition;

µ measure on RN ;

B(x0, r) the open ball, B(x0, r) := {x ∈ RN : |x − x0| < r};

〈f, g〉 standard linear duality, 〈f, g〉 :=
∫

fg dµ;

BMOp
λ(µ) BMO space, see Section 1.1;

D a collection of dyadic cubes, see below;
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χ
Q

characteristic function (indicator) of the set Q;

�(Q) “size” of the cube Q ⊂ RN , i. e. the length of its side;

E
Q
, Ek averaging operators, see Section 4. For a cube Q, E

Q
f :=

(
µ(Q)−1

∫
Q

f dµ
)
·χ

Q
;

the operator Ek is defined by

Ekf :=
∑

Q∈D,
(Q)=2k

E
Q
f ;

∆
Q
, ∆k martingale difference operators, see Section 4: ∆k := Ek−1 −Ek; for a cube Q of

size 2k (�(Q) = 2k) define ∆
Q
f := χ

Q
· ∆kf ;

Eb

Q
, Eb

k weighted averaging operators, see Section 4: Eb

Q
f :=

(∫
Q

b dµ
)−1 ·

(∫
Q

f dµ
)
·bχ

Q
,

Eb
kf :=

∑
Q∈D,
(Q)=2k Eb

Q
f ;

∆b

Q
, ∆b

k weighted martingale difference operators, see Section 4: ∆b
k := Eb

k−1 − Eb
k; for a

cube Q of size 2k (�(Q) = 2k) define ∆b

Q
f := χ

Q
· ∆b

kf ;

f
Q
, 〈f〉

Q
average of the function f , f

Q
= 〈f〉

Q
:= µ(Q)−1

∫
Q

fdµ;

Π paraproduct, see Section 7.1

Cubes and dyadic lattices

Throughout the paper we will speak a lot about dyadic cubes and dyadic lattices, so let us
first fix some terminology. A cube in RN is an object obtained from the standard cube [0, 1)N

by dilations and shifts.
For a cube Q we denote by �(Q) its size, i. e. the length of its side. Given a cube Q one

can split it into 2N cubes Qk of size �(Q)/2: we will call such cubes Qk the subcubes (of Q)
of the first generation, or just simply subcubes.

For a cube Q and λ > 0 we denote by λQ the cube Q dilated λ times with respect to its
center.

Now, let us define the standard dyadic lattice: for each k ∈ Z let us consider the cube
[0, 2k)N and all its shifts by elements of RN with coordinates of form j · 2k, j ∈ Z. The
collection of all such cubes (union over all k) is called the standard dyadic lattice.

A dyadic lattice is just a shift of the standard dyadic lattice. A collection of all cubes
from a dyadic lattice D of a fixed size 2k is called a dyadic grid.

0. Introduction: main objects and results

The goal of this paper is to present a (more or less) complete theory of Calderón–Zygmund
operators on non-homogeneous spaces. The theory can be developed in an abstract metric
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space with measure, but we will consider interesting for applications case when our space is
just a subset of RN .

Let µ be a Borel measure on RN . Let d be a positive number (not necessarily integer)
and let the measure µ behave like d-dimensional measure:

µ(B(x, r)) � rd

for any ball B(x, r) of radius r with center at x. A Calderón–Zygmund kernel (of dimension
d) is a function K(s, t) of two variables satisfying

(i) |K(s, t)| � C|s − t|−d;

(ii) There exists α > 0 such that

|K(s, t) − K(s0, t)|, |K(t, s) − K(t, s0)| � C
|s − s0|α
|t − s0|d+α

,

whenever |t − s0| � 2|s − s0|
If d = N (N is the dimension of underlying space RN we have just classical Calderón–
Zygmund kernel.

We are interested in the question, when a Calderón–Zygmund operator (integral operator
with kernel K, Tf(x) =

∫
K(x, y)f(y)dµ(y)) is bounded in Lp(µ)?

0.1. Main results

Main results that we state below look like they are just copied from some classical book. But
let the reader not be misled, the results are completely new. We intentionally defined BMO
to preserve the statements of main results. However, the BMO we use is not exactly the
space the reader probably got used to. Actually, there is a whole plethora of BMO spaces
generalizing the classical BMO to the non-homogeneous situation from the point of view of
singular integral operators. There is one “more equal than others”—the RBMO of Xavier
Tolsa, which is discussed and used in Section 1.2. But we feel that—at least at this stage of
our understanding—it is a good idea to work with all definitions of BMO at once.

Our first two theorems deal with Calderón–Zygmund operators with antisymmetric ker-
nels.

Let us mention, that there is no canonical way to assign an operator to a general
Calderón–Zygmund kernel. We cannot just say that Tf(x) =

∫
K(x, y)f(y)dµ(y), because

for almost all x the functions K(x, . ) and K( . , x) are not integrable, not even locally in the
neighborhood of the singularity x.

However, if the kernel is antisymmetric (K(x, y) = −K(y, x)) there exists a canonical
way to define an operator.

Namely, since the kernel K is antisymmetric, we have (formally)

〈Tf, g〉 =

∫∫
K(x, y)f(y)g(x) dµ(x)dµ(y)

= −
∫∫

K(x, y)f(x)g(y) dµ(x)dµ(y),
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and so

〈Tf, g〉 =
1

2

∫∫
K(x, y)

[
f(y)g(x) − f(x)g(y)

]
dµ(x)dµ(y).

But for smooth (even Lipschitz) compactly supported functions the last expression is well
defined.

Namely, the integrand has the singularity bounded by C/|x − y|d−1 for x − y close to
0. By Comparison Lemma (see Lemma 2.1 below) such singularity is integrable (say, with
respect to x), so the integral is well defined.

So, for an antisymmetric kernel one can canonically define a bilinear form 〈Tf, g〉 for
compactly supported Lipschitz functions. The corresponding operator is called principal
value.

We think that unfortunately the terminology is confusing here, because principal value
also mean limε→0

∫
|x−y|>ε

K(x, y)f(y) dµ(y). We would prefer to use, for example, a term

canonical value, or canonical operator. Unfortunately, principal value is now a widely ac-
cepted term.

Similarly, one can also define for antisymmetric kernels the bilinear form 〈Tbf, bg〉, b ∈
L∞, as

〈Tbf, bg〉 =
1

2

∫∫
K(x, y)

[
f(y)g(x) − f(x)g(y)

]
b(x)b(y) dµ(x)dµ(y).

where b ∈ L∞.

Theorem 0.1 (T1-theorem). Let 1 < p < ∞. The canonical value of Calderón–Zygmund
operator T with antisymmetric kernel is bounded in Lp(µ) if and only if T1 belongs to BMO =
BMO(µ).

Moreover, the upper bound of the norm of T depends only on the dimensions N , d,
exponent p, Calderón–Zygmund constants of the kernel K and the BMO-norm of T1.

The definition of the space BMO is rather involved and require separate discussion. We
will discuss this space in details later in Section 1.1.

Although T1-theorem above gives a necessary and sufficient condition for a Calderón–
Zygmund operator T to be bounded, it is not always easy to verify the condition T1 ∈ BMO.
But sometimes it is just trivial to see that Tb ∈ BMO for some b ∈ L∞.

Let us call a bounded (complex-valued) function b weakly accretive (with respect to the
measure µ) if there exists δ > 0 such that for any cube Q

µ(Q)−1
∣∣∣∫

Q

b(s)dµ(s)
∣∣∣ � δ.

Note that if b is weakly accretive then |b| � δ µ-a.e.

Theorem 0.2 (Tb-theorem). Let 1 < p < ∞. The canonical value of Calderón–Zygmund
operator T with antisymmetric kernel is bounded in Lp(µ) if and only if Tb belongs to BMO =
BMO(µ).

Moreover, the upper bound of the norm of T depends only on the dimensions N , d,
exponent p, Calderón–Zygmund constants of the kernel K, constant δ from the definition of
weak accretivity, ‖b‖∞, and the BMO-norm of Tb.
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Similar Tb theorem in homogeneous case (measure µ is doubling) was used to prove
boundedness of the Cauchy Transform on Lipschitz curves.

The following two theorems should be treated as some kind of meta-theorems. As we
already mentioned above, there is no canonical way to define a Calderón–Zygmund operator
in general case, there are several possible interpretations, that we will discuss in Section 0.3.
And so for each interpretation of the Calderón–Zygmund operators, the Theorems 0.3, 0.4
below should be interpreted accordingly.

Theorem 0.3 (T1-theorem). Let 1 < p < ∞. A Calderón–Zygmund operator T is
bounded on Lp(µ) if and only if it is weakly bounded, and T1, T ∗1 belong to BMO = BMO(µ).

Weakly bounded in the simplest case means that there exist Λ � 1, C < ∞ such that
|〈Tχ

Q
, χ

Q
〉| � Cµ(ΛQ) for any cube Q. There are alternative definitions (not equivalent)

that would also work. We will discuss them later in Section 0.3.
Again, the estimate of the norm of T depends only on constants involved, namely the

dimensions N and d, the exponent p, the Calderón–Zygmund constants of the kernel, the
BMO-norms of T1, T ∗1, and the constant C from the definition of the weak boundedness.

Suppose we are given two weakly accretive functions b1 and b2.

Theorem 0.4 (Tb-theorem). Let 1 < p < ∞. A Calderón–Zygmund operator T is bound-
ed in Lp(µ) if and only if the operator b2Tb1 is weakly bounded and Tb1, T ∗b2 belong to
BMO = BMO(µ).

Again, the upper bound on the norm of T depends only on constants involved.
We postpone the discussion of weak boundedness to Section 0.3, and one can find a

more specific discussion in Section 11. The subtle point here is that the weaker one makes
the assumption of “weak boundedness”, the stronger assumptions of accretivity one should
require.

Our Tb-theorems are the extensions to the case of non-doubling measures of Tb-theorems
obtained by G. David, J.-L. Journé, and S. Semmes [5], [6], [7] for the Calderón-Zygmund
operators on RN with respect to Lebesgue measure. It was clear that such Tb theorems
apply to arbitrary spaces of homogeneous type, a general setting for singular integral theory
introduced by Coifman and Weiss [3]. In particular, the boundedness of Cauchy operator
on chord-arc curves could have been obtained directly from homogeneous Tb theorems.
(Notice that a more general case of Ahlfors-David curves required extra important ideas [4].)
The Calderón-Zygmund theory on homogeneous spaces acquired a new approach from the
work of M.Christ [2], where accretive system Tb theorem for homogeneous spaces has been
proved (the difference with Tb theorems of David, Journé, Semmes is in using a collection
of b’s instead of one such function). This allowed, for example, to obtain the boundedness
of Cauchy operator on Ahlfors-David curves from homogeneous Tb-theorems of Christ’s
type. More generally this allowed to obtain a Tb-proof of T. Murai’s [8] theorem which
characterized compact homogeneous sets of finite length on the plane for which the Cauchy
operator is bounded. So almost everything homogeneous became clear.

However, quite unexpectedly, the homogeneity is something one can dispense with. The
first results in this direction were dealing with Cacuhy integral operator. A version of
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T1-Theorem for the Cauchy integral operator in non-homogenious setting was proved inde-
pendently and using different methods by X. Tolsa [13] and by the authors [10]. Note, that
in [10] the case of more general Calderón–Zygmund operators was also treated.

An alternative and very interesting approach to T1-theorem for the Cauchy operator was
introduced by J. Verdera in [17].

Then in [11] Cotlar inequalities and weak type 1-1 estimates were proved for a bounded
in L2(µ) Calderón–Zygmund operators. In particular, this implied that, as in the classical
case, a bounded on L2 operator is bounded on Lp(µ), 1 < p < ∞. Thus, the theory of
Calderón–Zygmund operators on non-homogeneous spaces was almost complete.

Our T1 and Tb theorems complete the theory. Also, in [12] we prove a non-homogeneous
analog of Christ’s Tb theorem, which allows, for example, to extend Murai’s theorem and
to fully describe compacts of finite length on the plane for which the Cauchy operator is
bounded. The technique in [12] is the extension of technique we use in the present article.

So, the main goal of this article (as well as articles [11], [10] and some subsequent ones)
is to build a non-homogeneous theory for Calderón-Zygmund operators. There are several
possible applications of such theory, one is presented below in Section 0.2. Also, for the
motivations, see the introduction to [11].

0.2. An application of T1-heorem: electric intensity capacity

As a possible application of our non-homogeneous T1 theorem we will cite the following result
about so-called electric intensity capacity (also known as harmonic Lipschitz capacity). Let
us consider the following problem.

Suppose we have a compact K in R3. We want to find what maximal possible charge one
can put on K, such that the intensity of the resulting electric field is bounded by 1. Note,
that if we require the potential to be bounded by 1, we get usual capacity from physics. But
in engineering it is often very important to have intensity of the electric field bounded, so
our capacity has very good physical meaning.

In this problem we forbid negative densities.
Let us now formally state the problem. Given a compact K in RN , N � 3, consider the

class S of all subharmonic functions ϕ (−ϕ is the potential) in RN such, that

(i) ϕ is harmonic in RN \ K, ϕ(∞) = 0;

(ii) |∇ϕ(x)| � 1 for almost all (with respect to N -dimensional Lebesgue measure) x ∈ RN

(intensity is bounded by 1);

The electric intensity capacity (also known as positive harmonic Lipschitz capacity)
capei(K) of the compact K is defined as follows: every function ϕ ∈ S has asymptotic
ϕ(x) = Cϕ/|x|N−2 + o(1/|x|N−2) at ∞. Note, that in R3 the constant Cϕ is exactly the
charge on K. Define

capei(K) := sup
ϕ∈S

|Cϕ|.

To state our result we need to introduce one more capacity, the so-called operator capacity.
Given a Borel measure µ, consider the “Cauchy” transforms T µ

j , 1 � j � N , T µ
j f(x) :=
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∫
Kj(x, y)f(y)dµ(y), where Kj(x, y) = (xj − yj)/|x − y|N . Note that the kernels Kj are

antisymmetric Calderón–Zygmund kernels of dimension d = N − 1. Since the kernels are
antisymmetric, we have no problems defining the operator (just use canonical value).

The operator capacity capop(K) is defined by

capop(K) = sup{µ(K) : µ � 0, supp µ ⊂ K, ‖T µ
j ‖L2(µ)

� 1 for 1 � j � N};

here µ stands for a non-negative Borel measure.

Theorem 0.5. Both capacities capop and capei are equivalent, i. e. there exist constants c,
C, 0 < c � C,∞, depending only on dimension N , such that

c · capop(K) � capei(K) � C · capop(K).

As an immediate corollary of this result we obtain that the capacity capei is semiadditive,
i. e.

capei(K1 ∪ K2) � C · (capei(K1) + capei(K2)).

This follows immediately from the above Theorem 0.5 because for the capacity capop we
trivially have

capop(K1 ∪ K2) � capop(K1) + capop(K2).

Sketch of the proof of theorem 0.5. Let µ := ∆f =
∑N

j=1
∂2ϕ
∂x2

j
be the Riesz measure of

the function ϕ.
Since |∇ϕ(x)| � 1, it is an easy exercise on Green’s formula to check that µ(B) � CrN−1

for any ball of radius r. Indeed, let us apply the Green’s formula∫
Ω

(u∆v − v∆u)dV −
∫

∂Ω

(
u

∂v

∂n
− v

∂u

∂n

)
dS

to u ≡ 1, v = ϕ and Ω = B = B(x0, r). We get∫
B

dµ =

∫
B

∆ϕdV =

∫
∂B

∂ϕ

∂n
dS

Since |∂ϕ
∂n
| � |∇ϕ| � 1, the measure µ(B) is estimated by N − 1 dimensional measure of the

sphere ∂B, which is CNrN−1.
We know that the jth coordinate of the gradient ∇ϕ is given (up to a multiplicative

constant) by Kµ
j 1 =

∫
Kj(x, y)1dµ(y). From here we conclude that T µ

j 1 ∈ L∞, ‖T µ
j 1‖∞ � 1,

1 � j � N . Since L∞ ⊂ BMO, T1-theorem (Theorem 0.1) implies that the operators Tj are
bounded, and therefore

c · capop(K) � capei(K).

The inverse estimate is rather standard and well known (at least in the homogeneous
case). First of all, it was proved in [11] (for non-homogeneous case) that if a Calderón–
Zygmund operator T is bounded on L2(µ), then it is bounded on all Lp(µ), 1 < p < ∞, and,
moreover, it is of weak type 1-1. It was also proved there that in this case the truncated



0. Introduction: main objects and results 9

operators Tr (integrals are taken over the set |x − y| > r) are also bounded in Lp(µ),
1 < p < ∞ and are of weak type 1-1 uniformly in r.

Therefore, applying to the truncated Riesz Transforms the following theorem from [1],
see Theorem VII.23 there, we get the desired estimate.

Let M denote the space of all finite measures (signed, or complex) on a locally compact
Hausdorff space X .

Theorem 0.6. Let X be a locally compact Hausdorff space, and let µ be a Radon measure
on X, and T : M → C(X ) a bounded linear operator. Suppose, that the adjoint operator T ∗

is of weak type 1-1, that is there exists A < ∞ such that

µ{x : |T ∗ν(x)| > α} � Aα−1‖ν‖

for all α > 0 and ν ∈ M. Then for any Borel set E ⊂ X with 0 < µ(E) < ∞ there exists
h : X → [0, 1] satisfying

h(x) = 0 for all x /∈ E,∫
E

hdµ � µ(E)/2

and

‖T (hdµ)‖∞ � 4A.

0.3. How to interpret Calderón–Zygmund operator T?

Let us discuss here how one can interpret the above results, first of all how one can define
the operator T for general kernels. Let us remind, that for antisymmetric kernels we can
define the operator as canonical value, see Section 0.1.

The typical Calderón–Zygmund kernel (think, for example, of the kernel 1/(x − y) on
the real line R with Lebesgue measure) is such, that for almost all x the functions K(x, ·),
K(·, x) are not in L1, not even locally, in a neighborhood of the singularity x.

In the case of the kernel 1/(x − y) on the real line one can still define the operator on
smooth function with compact support if one interprets the integral

∫ ∞
−∞ K(x, y)f(y)dy as

principal value, i. e. as limit (as ε → 0) of

p.v.

∞∫
−∞

K(x, y)f(y) := lim
ε→0

∫
|y−x|>ε

K(x, y)f(y)dy.

However, if one considers a general Calderón–Zygmund kernel it is not clear why the principal
value exists.1

1We should mention here a remarkable result of X. Tolsa [15] that if a Cauchy integral f �→
∫

C
f(ξ)
ξ−z dµ(ξ)

is a bounded operator on L2(µ), then for any g ∈ L2(µ) the principal value exists µ-a. e.
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The classical way was to assume that the bilinear form 〈Tf, g〉 of the operator T (or of
the operator b2Tb1 in the case of Tb Theorem) is initially well defined for nice functions f ,
g, for example for f, g ∈ C∞

0 (C∞ functions with compact support) . In other words, the
bilinear form 〈Tf, g〉 is well defined and continuous (with respect to the topology of C∞

0 ) for
f, g ∈ C∞

0 .
One can replace here C∞

0 by the Schwartz class S of rapidly decaying C∞ functions: it
really does not matter.

The words that T is an integral operator with kernel K mean only that

〈Tf, g〉 =

∫∫
K(x, y)g(x)f(y) dµ(x)dµ(y) (0.1)

for compactly supported f , g with separated compact supports, when the integral is well
defined. Notice, that the kernel K does not determine the operator uniquely: for example
any multiplication operator f �→ ϕf is a Calderón–Zygmund operator with kernel 0.

This observation is a commonplace for specialists, but it can be really surprising for a
beginner.

Now we are going to give 3 ways to interpret a Calderón–Zygmund operator T with kernel
K. In all cases we assume that bilinear form of the operator T is defined for some class of
functions, and that for functions with separated compact supports equality (0.1) holds.

0.3.1. Bilinear form is defined on Lipschitz functions

Since for antisymmetric kernels the bilinear form 〈Tf, g〉 (or 〈b2Tb1f, g〉 for Tb-Theorem)
is well defined for Lipschitz functions f , g (see Section 0.1 above), it seems reasonable to
assume that this is the case for general kernels as well.

Weak boundedness in this case means the following two conditions:

(i) For all pairs of Lipschitz functions ϕ1, ϕ2 satisfying |ϕ1,2(x) − ϕ1,2(y)| �
L · |x− y|, supported by bounded sets D1, D2 respectively, and such that ‖ϕ1,2‖∞ � 1
the inequalities

|〈Tb1ϕ1, b2ϕ2〉| , |〈Tb1ϕ2, b1ϕ2〉| � CL · ‖b1‖∞ · ‖b2‖∞ · diam(D1) · µ(D2).

should hold for weakly accretive functions b1, b2 (this is for Tb-theorem, for T1-theorem
b1 = b2 = 1).

As Lemma 11.3 below shows, this is true for antisymmetric kernels.

(ii) Let σε be the function as on Fig. 1. For a cube Q let ρ
Q

be its Minkowsky functional

ρ
Q
(x) := inf{λ > 0 : λQ � x}

and let
σε

Q
(x) := σε(ρ

Q
(x)).

(Clearly σε

Q
is a Lipschitz function with Lipschitz norm at most C/(rε)).
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1 − ε 10

1

Figure 1: The function σε

We will require that for all cubes Q

|〈Tb1σ
ε

Q
, b2σ

ε

Q
〉| � Cµ(λ′Q)

for some λ′ � 1, uniformly in ε and Q.

Definitely, the last condition holds for antisymmetric kernels, since 〈Tbσε

Q
, bσε

Q
〉 = 0.

0.3.2. Bilinear form is defined for smooth functions

We do not think that it makes much sense in our situation to assume that the bilinear form
〈b2Tb1f, g〉 (or 〈Tf, g〉) is defined for smooth (say C∞

0 functions f and g. We really do not
see how additional smoothness (in comparison with Lipschitz functions) can help.

However, it is still possible to assume that the bilinear form is defined for C∞
0 functions.

In this case we have to assume more about functions b1, b2 in Tb-Theorem: we want them
to be sectorial. Let us recall that a function b is called sectorial if b ∈ L∞, and there exists
a constant ξ ∈ C, |ξ| = 1 such, that Re ξb � δ > 0.

The upside is that we can relax assumptions of week boundedness in this case. Namely,
Fix a C∞ function σ on [0,∞) such that 0 � σ � 1, σ ≡ 1 on [0, a] (0 < a < 1) and
σ ≡ 0 on [1,∞), see Fig. 2. Parameter a is not essential here, but we already have too
many parameters in what follows, so let us fix some a, say a = 0.9. For a ball B = B(x0, r)
let σ

B
(x) := σ(|x − x0|/r). Clearly, σ

B
is supported by the ball B and is identically 1 on

the ball 0.9B. We will require that for any concentric balls B1, B2 of comparable sizes, say
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a 10

1

Figure 2: The function σ

diam B1/2 � diam B2 � 2 diam B1 the following inequality holds

|〈Tσ
B1

b1, σB2
b2〉| � Cµ(B). (0.2)

where B is the largest of two balls B1, B2. We can even replace µ(B) by µ(λB), λ > 1 here.

0.3.3. Apriori boundedness

We feel that the most natural way to interpret the operator T is to think that we are not
given an operator T per se, but that the kernel K is “approximated” in some sense by
“nice” kernels Kε and we are interested when all operators Tε with kernels Kε are uniformly
bounded.

A typical example one should think of, is to consider truncated operators Tε

Tεf(x) :=

∫
|x−y|>ε

K(x − y)f(y) dµ(y)

Such truncated operators are clearly well defined on compactly supported functions. More-
over, for compactly supported f and g, diam(supp(f)) � A, diam(supp(g)) � A one has

|〈Tεf, g〉| � C(ε, A)‖f‖2‖g‖2 (0.3)

That will be our main way of interpretation. It was shown in [11] that under our assump-
tions about the measure and the kernel, if a Calderón–Zygmund operator T is bounded on
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Figure 3: Function Φε

L2(µ) (or on some Lp0 , 1 < p0 < ∞), then it is bounded on all Lp(µ), 1 < p < ∞, and the
maximal operator T#

T#f(x) = sup
ε>0

∫
|x−y|>ε

K(x − y)f(y) dµ(y).

is bounded on all Lp(µ) as well.
This implies that all truncated operators Tε are uniformly bounded, so it is indeed a

reasonable way to think about boundedness of T as about uniform boundedness of Tε.
So Theorem 0.3 can be interpreted in the following way: a sequence of truncated operators

Tε is uniformly bounded if and only if the sequence is weakly bounded (with uniform estimates)
and T1, T ∗1 ∈ BMO with uniform estimates on the norms.

There is a small technical problem with such interpretation: the truncated operators Tε

are not Calderón–Zygmund operators (their kernels do not satisfy the property (ii) above).
Fortunately, it is not a real problem, and we know at least two ways of coping with it.

First of all, two lemmas below where we use property (ii), namely Lemma 6.1 and Lemma
7.3 are true for truncated Calderón–Zygmund kernels as well: one just has to integrate a
positive function not over a cube, but over a “truncated” cube, and that can only yield a
better estimate.

Another possibility is to replace truncated operators by nicer regularizations of the op-
erator T , which have Calderón–Zygmund kernels. Namely, let

Φε(t) =

{
t/ε, t ∈ [0, ε]
1 t � ε,

see Fig. 3. Then the kernels Kε(x, y) := K(x, y)Φε(|x − y|) are clearly Calderón–Zygmund
kernels with uniform estimates on all Calderón–Zygmund constants.

It is also easy to see that for |x− y| � ε we have, |Kε(x, y)| � C/|x− y|d−1. So, applying
the Comparison Lemma below (see Lemma 2.1), we get that for measures with compact
support

∫
|Kε(x, y)| dµ(x) � C,

∫
|Kε(x, y)| dµ(y) � C, and by Schur Lemma the operators

with kernels Kε are bounded (but not necessarily uniformly in ε). Moreover, the same
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Figure 4: Function Φε,r

Comparison Lemma together with Schur Test imply that the Calderón–Zygmund operator
with kernel Kε and the corresponding truncated operator Tε differ by a bounded operator
(uniformly in ε).

One can also consider two-sided truncations Tr,ε of the operator T ,

Tr,εf(x) :=

∫
ε<|x−y|<r

K(x − y)f(y) dµ(y).

Such operators are clearly bounded. Moreover, such operators Tr,ε are uniformly bounded
(or Tr,ε1, T ∗

r,ε1 are uniformly in BMO) if and only if the corresponding property holds for all
one-sided truncations Tε.

However, it is possible that we only have information about truncations Tε for small ε.
Therefore, it makes sense to consider the case of one-sided truncations Tε separately. So,
we will prove the main results under the assumption of boundedness only on compactly
supported functions.

For two sided truncations one can also replace (without losing anything) the truncated
operator Tr,ε by a nicer regularization, for example by the integral operator with kernel
K(x, y)Φε,r(|x − y|), where Φε,r is the function on Fig. 4

There are several possible definitions of weak boundedness for regularized operators Tε

(or Tε,r).
The simplest is to call the operator T weakly bounded if there exist Λ � 1, C < ∞ such

that
|〈Tχ

Q
, χ

Q
〉| � Cµ(ΛQ)

for any cube Q.
Another possibility is to consider cube Q′ := aQ, (for some fixed a > 1), and require that

|〈Tχ
Q′ , χQ

〉| � Cµ(ΛQ), |〈Tχ
Q
, χ

Q′ 〉| � Cµ(ΛQ′)

One can also replace cubes by balls, to obtain two more definitions.
None of the four definitions above follows from another one (at least formally, we have

not constructed counterexamples), but any one of the definitions works if we assume apriori
boundedness on compactly supported functions.
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0.4. Plan of the paper

Section 1 is devoted to the discussion of different BMO spaces and relations between them.

In Section 2 we deal with necessity. We will prove that if a Calderón–Zygmund operator
T is bounded on Lp(µ), then for b ∈ L∞ we have Tb ∈ BMOp

λ(µ). In the same Section 2 we
will also prove that if Tb ∈ BMOp

λ(µ) for some p, 1 � p < ∞, then Tb ∈ RBMO(µ), and,
therefore, Tb ∈ BMOp

λ(µ) for all p, 1 � p < ∞. We would like to emphasize that for an
arbitrary function f the condition f ∈ BMOp

λ(µ), p < 2 doesn’t imply f ∈ BMO2
λ(µ), see

Section 1.1.1. But Tb is not an arbitrary function, it pocesses some additional regularity.

The rest of the paper is devoted to the sufficiency. We will only need to prove that the
operator T is bounded on L2(µ), because it was already proved in [11] that the boundedness
on L2(µ) implies the boundedness on all Lp(µ), 1 < p < ∞.

The idea of the proof is quite simple: consider a basis of “Haar functions” with respect
to the measure µ (or weighted “Haar functions” for Tb-theorem), and estimate the matrix
of the operator T in this basis. To simplify the notation, it is more convenient to use the
“coordinate-free” form of the decomposition with respect to the “Haar system”, the so-called
martingale difference decomposition.

In Sections 3–8 we introduce main technical tools and gather all necessary estimates. Let
us mention that in the Section 3 we prove a generalization of the famous Carleson Embedding
Theorem to weighted Triebel–Lizorkin spaces. Although we only need the classical case
p = 2, we think the theorem and its proof are of independent interest. However the reader
can skip this section if he wants, and use his favorite proof of the Carleson Embedding
Theorem.

Then we do all necessary (and rather standard) constructions estimates, such as decom-
posing functions into a martingale difference decomposition, estimating the matrix of the op-
erator, constructing paraproducts, getting the Carleson measure condition from Tb ∈ BMO.
All the ingredients should be very well known to a specialist, although non-homogeneity
(non-doubling) of the measure adds quite a bit of specifics.

Finally, in Sections 9, 10 we gather everything together to prove the theorems.

One of the main difficulties that appear when one works with non-doubling measures is
an absence of good estimates of 〈Tϕ

Q
, ψ

R
〉 for functions ϕ

Q
, ψ

R
supported by the cubes Q

and R respectively, when the cubes are close to each other. To overcome this difficulty we
use the averaging over random dyadic lattices and “pulling yourself up by the hair” trick.
One needs to use the trick several times to get the most general version of the theorem.

To give the reader better understanding of the trick, without losing him in technical
details, we first prove in Section 9 a weaker version of the Tb-theorem, where we use a stronger
condition of weak boundedness. Section 10 deals with the full version of the theorem.

In Sections 9, 10 we assume that the operator T is bounded on compactly supported
functions (one should think of the truncated operators Tε), i. e. |〈Tf, g〉| � C(A)‖f‖ · ‖g‖,
where A = max{diam(supp f), diam(supp g)}.

For many of the readers that will be enough, because, as we already discussed above, the
most natural way to interpret a Calderón–Zygmund operator T is to think of the sequence
of the truncated operators Tε.

And finally, in the last section (Section 11) we reduce everything to the case of truncated
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operators. We consider the most general case, when the bilinear form of the operator is
defined for smooth functions, or for Lipschitz functions, as in the case of the canonical value
of an antisymmetric operator. We show that if such an operator satisfies the assumptions
of our Tb-theorem, then the sequence of the truncated operators Tε also satisfies these
assumptions (uniformly in ε).

Section 11 has some common ideas with Section 2.3, and uses some lemmas from this
section, so it would be logical to place Section 11 right after section 2.3.

However, the section is rather long and technical. Since we think that for many it is
enough to just consider truncated operators Tε, we decided to put Section 11 at the very
end of the paper.

1. Definitions of BMO spaces

There are infinitely many different BMO spaces that can be used in our theorems.

In the classical case, when µ is N -dimensional Lebesgue measure in RN all of the defini-
tions below give well known classical BMO.

First of all, there is a two-parameter family of spaces BMOp
λ(µ), 1 � p < ∞, λ > 1,

defined below in Section 1.1. The spaces BMOp
λ(µ) are quite different from classical BMO:

in particular, John–Nirenberg inequality holds for such spaces.

Then, there is regular BMO space RBMO(µ), that was introduced by X. Tolsa, [14]. This
space is contained in ∩1�p<∞,λ>1BMOp

λ(µ) and it seems to be the most natural generalization
of the classical BMO.

So, what space should we use in our theorems. And the answer is: it doesn’t matter, one
can use any one of the above spaces!

The space RBMO seems to be the most natural analogue of the classical BMO. However
the condition T1 ∈ RBMO(µ) (or Tb ∈ RBMO(µ) ) is rather hard to verify. Therefore, let
us think that BMO in the statements of the results means one of the spaces BMOp

λ(µ).

1.1. BMOp
λ

Let 1 � p < ∞ and λ > 1. We say that a L1
loc(µ) function f belongs to BMOp

λ(µ) if for any
cube Q there exists a constant a

Q
such that

(∫
Q

|f − a
Q
|pdµ

)1/p

� Cµ(λQ)1/p,

where the constant C does not depend on Q. The best constant C is called the BMOp
λ(µ)

norm of f .

Using the standard reasoning from the classical BMO theory one can replace constant
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a
Q

in the definition by the average f
Q

= µ(Q)−1
∫

Q
fdµ. Indeed,

|f
Q
− a

Q
| =

∣∣∣µ(Q)−1

∫
Q

(f − a
Q
)dµ

∣∣∣
�

(
µ(Q)−1

∫
Q

|f − a
Q
|p

)1/p

� ‖f‖
BMOp

λ(µ)

(
µ(λQ)

µ(Q)

)1/p

,

and so if we replace a
Q

by f
Q

in the definition we just get an equivalent norm in BMOp
λ(µ).

Now, several observations about properties of BMO spaces.

First of all, trivial inclusions: BMOp2

λ (µ) ⊂ BMOp1

λ (µ) if p1 < p2 (Hölder inequality) and
BMOp

λ(µ) ⊂ BMOp
Λ(µ) if λ < Λ.

It is not so trivial, but we will show this just below, that both inclusions are proper.

Namely, the space BMOp
λ(µ) does depend on p for λ > 1.

Also, the space BMOp
λ(µ) does depend on λ. However, in the statement of the theorem

any λ > 1 would work.

And finally, BMOp
1(µ) (λ = 1) is a wrong object for our theory: boundedness of T does

not imply T1 ∈ BMO2
1(µ).

Notice, that one can introduce BMO spaces where averages are taken over balls, not over
cubes. But it is easy to see that if a function belongs to such “ball” BMOp

λ(µ) then it belongs
to the “cube” BMOp

Λ(µ) with Λ =
√

Nλ. So, in the statements of the main results one can
use “ball” BMO as well.

Also, it does not matter whether we considering closed or open cubes (balls) in the
definition of BMOp

1(µ). Formally, definitions with open cubes and with closed ones give us
different spaces (because the boundary can have non-zero measure), but if the BMOp

λ(µ)
condition is satisfied for open cubes, then for all closed ones the condition BMOp

Λ(µ) holds
true for any Λ > λ.

Strangely enough, we will be using the assumptions Tb ∈ BMOp
λ without requiring that

T maps b to locally integrable functions. The interpretation follows the classical one—see
Section 2 below.

This makes slightly difficult to interpret Tb ∈ RBMO, where RBMO is the “right” BMO
space found by Xavier Tolsa for non-homogeneous measures. The space RBMO is used in
Section 1.2, and it is extremely useful because the space RBMO has John-Nirenberg property
(unlike BMOp

λ—see the subsection below).

1.1.1. Example: BMOp
λ(µ) does depend on p.

Let us explain why BMOp
λ(µ) does depend on p. Notice that the Hölder inequality implies

that there is a trivial inclusion BMOp2

λ (µ) ⊂ BMOp1

λ (µ) if p1 < p2.

Let us have a careful look at the proof of the inclusion BMO2
λ(µ) ⊂ BMO1

λ(µ):∫
Q

|f − f
Q
|dµ �

(∫
Q

|f − f
Q
|2dµ

)1/2

µ(Q)1/2 � Cµ(λQ)1/2µ(Q)1/2.
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Clearly µ(λQ)1/2µ(Q)1/2 � µ(λQ), but since the measure µ is not doubling the inverse
inequality (with a constant) does not hold, and moreover, the gap can be huge. This can
lead to the following example.

Let µ be a measure on R defined by dµ = wdt where w = εχ
[0,1]

+χR\[0,1]
. Take f = χ

[0,1]
.

It is an easy exercise to show that

‖f‖
BMOp

λ(µ)
∼ ε1/p

(the interval I = [0 , 1 + ε] gives almost a supremum). Therefore the norms for different p
are not equivalent as ε → 0.

Now take a sequence εk ↘ 0 and a sequence of intervals Ik such that the intervals 2Ik

are disjoint. Put w =
∑

k εkχIk
+ χ

E
where E = R \ ∪kIk. We leave to the reader to check

that for dµ = wdt
BMOp2

λ (µ) � BMOp1

λ (µ), p1 < p2.

1.1.2. Example: BMOp
λ(µ) does depend on λ

Let us consider the following measure µ on R: on the intervals [−2,−1] and [1, 2] it is just
Lebesgue measure dx; on the interval [−1/2, 1/2] it is εdx where ε > 0 is small; everywhere
else µ is zero.

Define function f := ε−1/p(χ
[0,1/2]

− χ
[−1/2, 0)

). Then for λ � 2 we have

‖f‖
BMOp

λ(µ)
∼ ε−1/p

However,
‖f‖

BMOp
3(µ)

∼ 1.

Take a sequence εk → 0, and let µk, fk be the pair constructed above for ε = εk.
Put dµ(x) =

∑
k dµk(x − 10k), f(x) =

∑
k fk(x − 10k). Then clearly f ∈ BMOp

3(µ) but
f /∈ BMOp

λ(µ) with λ � 2.
We leave to the reader as an exercise to check that f ∈ BMOp

λ(µ) if λ > 2.

1.1.3. Example: T is bounded on Lp(µ) �=⇒ T1 ∈ BMOp
1(µ)

Let us notice that this was proved independently, using another method, by J. Verdera, [17].
Define measure µ on R as follows: on the intervals [1, 2] and [−2,−1] it is just Lebesgue

measure dx; on the intervals [−1,−1 + ε] and on [1 − ε, 1] it is 0.1 dx; everywhere else µ
is zero. Let T be the operator with kernel K(s, t) = 1/(t − s) (defined as principal value,
i. e. as limε

∫
|t−s|>ε

. . . ).

The operator T is bounded on Lp(µ), 1 < p < ∞, because the operator with kernel
1/(t− s) is bounded on Lp(R, dx) (the operator is just Hilbert Transform up to a constant).

On the middle third [1−2ε/3, 1− ε/3] of the interval [1− ε, 1] we can estimate (for small
ε) T1 � c log(1/ε) where c is some absolute constant

Similarly, on the middle third of the interval [−1,−1 + ε] we have T1 � −c log(1/ε).

This implies that the norm of T1 in BMOp
1(µ) is at least c

1/p
1 log(1/ε).
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Let again εk → 0, and let µk be the constructed above measures with ε = εk. We
leave to the reader as an easy exercise to check that for dµ(x) =

∑
k dµ(x − 10k) we have

T1 /∈ BMOp
1(µ). (It is trivial that T is bounded on Lp(µ).)

1.2. RBMO and related spaces with John-Nirenberg property

Let us remind that measure µ under consideration satisfies

µ(B(x, r) ≤ rd (1.1)

We will consider f ∈ L1
loc(µ) having the following property: for each cube Q there exists

a number fQ such that ∫
Q

|f − fQ| ≤ B1µ(ρQ) (1.2)

and such that for all cubes Q ⊂ R

|fR − fQ| ≤ B2 ·
(
1 +

∫
2R\Q

dµ(x)

|x − cQ|d
)

(1.3)

Such functions f will be called RBMO-functions, and the infimum of B1 + B2 can be called
RBMO-norm. Let us make four remarks.

First of all, if we change 2R to λR, λ > 1, the space does not change. This follows
immediately from (1.1).

Secondly, we can change the parameter ρ in (1.2) without changing the space. This
follows from the following important lemma (we repeat the proof of [14] for the convenience
of the reader).

Lemma 1.1. Let 1 < λ < ρ and let f ∈ RBMO in the sense that (1.2) and (1.3) are
satisfied. Then ∫

Q

|f − fQ| ≤ B(B1, B2, ρ, λ)µ(λQ).

Before proving the lemma, let us make a remark. Let Q, R be two cubes, we denote by
Q(R) the smallest cube concentric with Q and containing R. We call Q, R neighbors if the
size of Q(R) is at most 10 times the size of Q, and the size of R(Q) is at most 10 times the
size of Q. Given a function from RBMO (with its collection of fQ’s), it is easy to see from
(1.3) and (1.1) that, if Q and R are neighbors, then

|fQ − fR| ≤ B3. (1.4)

Let us also notice, that (1.3) can be replaced by

∀Q, R |fQ − fR| ≤ B4(1 +

∫
2R(Q)\Q

dµ(x)

|x − cQ|d
+

∫
2Q(R)\R

dµ(x)

|x − cR|d
). (1.5)
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Proof. It is convenient to think that ρ is a large number, and that λ is only slightly bigger
than 1. Fix a cube R in our Euclidean space RN , fix a first integer M greater than 2

ρ(λ−1)
,

and divide R into MN equal cubes Qi. Each Qi can be connected with R by a chain of
neighbors, and the length of the chain Li is bounded by a constant depending only on ρ, λ:
Li ≤ L = L(ρ, λ). In particular,

|fQi
− fR| ≤ B(B3, L) (1.6)

We know by (1.2) that ∫
Qi

|f − fQi
| ≤ B1µ(ρQi)

By (1.6) we can replace fQi
here by fR:∫

Qi

|f − fR| ≤ B(B1, B3, L)µ(ρQi)

Now let us sum up all these inequalities. Cubes Qi constitute a disjoint covering of R, and
cubes ρQi lie all in λR, and their multiplicity is bounded by C(d)ρ−d. This follows trivially
from the volume consideration. Thus, we have∫

R

|f − fR| ≤ B(B1, B3, ρ, λ)µ(λR),

and the lemma is proved.

Our third remark: we could have changed the definition by considering only cubes cen-
tered at the support of µ. Again this does not change the space. In fact, if we are given
a cube Q not centered at K := supp µ and such that 2Q intersects K we assign fQ by the
following rule: fix a point x ∈ K ∩ 2Q, and let R be the smallest cube centered at x and
4Q ⊂ R. Then put fQ := fR. The amount of ambiguity is very small, because any other R
(with a different center) will have almost the same fR by (1.4). If K ∩ 2Q = ∅, then we put
fQ = 0. It is easy to see that if a function f and its collection of fQ’s satisfy (1.2), (1.3) with
a certain ρ > 1 and only for cubes centered at K, then, by extending the collection of fQ’s
to all cubes as it has been done above, we obtain (1.2), (1.3) with a certain ρ′ > 1, which is
constant times bigger than ρ. But Lemma 1.1 claims the independence from ρ > 1. So our
remark follows.

And the fourth remark is that we could have replaced cubes by balls without changing
the space RBMO. This is an easy consequence of Lemma 1.1. By the way, the similar
lemma is true when cubes are changed to balls (just instead of disjoint covers we will have
the covers of finite multiplicity), which means that the correspondent “ball” space also allows
the change of ρ ∈ (1,∞) without changing the space.

Now we are ready to formulate the main result of this section: the John-Nirenberg
property of functions from RBMO. It has been proved by Tolsa in [14]. For the sake of
completeness we will prove this result.
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Theorem 1.2. Let f ∈ RBMO, let λ > 1, 1 ≤ p < ∞. Then for any cube Q∫
Q

|f − fQ|p ≤ B(λ, p, ‖f‖RBMO)(µ(λQ))p

To prove this result we will use the notion of doubling cube (exactly as in [14]). Fix any
α > 1 and β > αd (d is from (1.1)). Cube Q is called (α, β)-doubling (just doubling if it is
clear what are parameters, or when it does not matter) if

µ(αQ) ≤ βµ(Q) (1.7)

For a given Q we consider Qj := αjQ, j ≥ 0, and the first Qj which is (α, β)-doubling
is called Q′ (we omit parameters for the sake of brevity). We will use the notation Q′′ for
(αQ′)′. Every cube has a supercube which is (α, β)-doubling. This follows immediately from
(1.1).

On the other hand, if β > αN , (N is the dimension of the ambient space), then almost
every point of K = supp µ has a nest of cubes centered at it and shrinking to it such that
they are (α, β)-doubling.

Indeed, consider a cube Q, �(Q) = �, and let M := µ(3Q). Take a point x ∈ Q, and let
Qr

x be the cube of size α−r� centered at x.
Let us call the point x bad, if none of the cubes αkQr

x, 0 � k � r is doubling, then (since
2rQr

x ⊂ 3Q) µ(Qr
x) � M · β−r = M · (αN/β)rα−Nr = M · (αN/β)r Vol Qr

x.
Applying Besicovich Covering Lemma, we get that the set of all bad points x is covered

by the family of cubes Qr
xj

,
∑

j µ(Qr
xj

) � C(αN/β)r → 0 as r → ∞. This implies that µ
almost all points x have a doubling cube of size at most � centered at x. Since this is true
for arbitrary �, almost all points have a sequence of doubling cubes centered at this point
and shrinking to it.

Lemma 1.3. Let f ∈ RBMO, and let α > 1 and β > αd be fixed arbitrarily. Then

|fQ − fQ′| ≤ C(‖f‖RBMO, α, β)

Proof. Let Q′ = Qj := αjQ. Then∫
2Q′\Q

dµ(x)

|x − cQ|d
≤

∫
2Q′\Q′

... +

j∑
i=1

∫
Qi\Qi−1

... ≤ C + 2d

j∑
i=1

µ(Qi)

�(Qi−1)d

But µ(Qi) ≤ βi−jµ(Qj), and �(Qi−1)
−d ≤ αdαd(j−i)�(Qj)

−d. We plug these two inequalities
into a previous one to obtain a convergent geometric progression (remind that αd/β < 1.
The lemma is proved.

Lemma 1.4. If f ∈ RBMO with fixed B1, B2, ρ, then there exist numbers fQ and positive
numbers C ′, C ′′, C ′′′ dependent only on B1, B2, ρ, α, β, d, N such that

1

µ(ρQ)

∫
Q

|f − fQ| ≤ C ′ (1.8)
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|fQ − fQ′| ≤ C ′′ (1.9)

and

For all neighbors Q1, Q2 |fQ1 − fQ2 | ≤ C ′′′ (1.10)

There is nothing to prove—fQ’s are the numbers from the definition of RBMO, and
Lemma 1.3 completes the explanation.

Notice that one could have considered (1.8), (1.9), and (1.10) as the definition of the
“right” BMO space (we will see that John-Nirenberg property is satisfied under this defini-
tion). However, the disadvantage is that it would probably depend on two parameters: α, β.
Such a space should have been called BMO(α, β) (dependence on ρ does not exist—the ana-
logue of Lemma 1.1 applies). Being a scale of spaces (unlike RBMO which is one canonical
space) BMO(α, β) has the advantage that it can be described in the terms of averages of
our function over cubes (while RBMO involves some fQ, which, as the reader will see are
often not averages at all). Here is this description

For a function f let 〈f〉
Q

denote its average over Q, 〈f〉
Q

:= µ(Q)−1
∫

Q
fdµ.

Lemma 1.5. If f ∈ BMO(α, β) positive numbers A′, A′′, A′′′ such that

∫
Q

|f − 〈f〉Q| ≤ A′µ(αQ) (1.11)

|〈f〉Q − 〈f〉Q′| ≤ A′′µ(αQ)

µ(Q)
(1.12)

∀ neighbors Q1, Q2 |〈f〉(Q1)′ − 〈f〉(Q2)′| ≤ A′′′ (1.13)

And conversely, any function f satisfying (1.11), (1.12), and (1.13) belongs to BMO(α, β).

Proof. We remarked already that Lemma 1.1 holds in the setting of BMO(α, β) (the proof
does not change at all). So, if f belongs to BMO(α, β), then in (1.8) we can replace ρ by α
by cost of may be changing a constant. Now

|〈f〉Q − fQ| ≤ C
µ(αQ)

µ(Q)

This follows immediately from (1.8). The same for Q′:

|〈f〉Q′ − fQ′| ≤ C
µ(αQ′)

µ(Q′)
≤ C(β)

Now (1.11) and (1.12) follow from these inequalities and from (1.8). To prove (1.13) we
write |〈f〉Q′ − fQ′| ≤ C for Q = Q1, Q2 and compare f(Q1)′ , f(Q2)′ : |f(Q1)′ − f(Q2)′| ≤ |fQ1 −
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f(Q1)′| + |fQ2 − f(Q2)′| + |fQ1 − f(Q2)|. The first two terms are bounded by (1.9). The third
term is bounded by (1.10).

Conversely, let f satisfy (1.11), (1.12), and (1.13). Put fQ := 〈f〉Q′ . Then∫
Q

|f − fQ| ≤
∫

Q

|f − 〈f〉Q| + |〈f〉Q − 〈f〉Q′|µ(Q) ≤ Cµ(αQ) (1.14)

Also (1.10) follows immediately from (1.13) by definition. So f belongs to BMO(α, β)
because, as we already pointed out, the constant α in the right part of (1.14) can be replace
by ρ (by changing C).

Remark. Let us emphasize that Lemmata 1.4 and 1.5 describe the same space. The change
of ρ > 1 in (1.8) does not change the space, and because of that the change of α to α′ ∈
(1, α) in the right parts of inequalities of Lemma 1.5 does not diminish the space. It is the
same BMO(α, β). But the dependence on α, β probably persists, because the definition
of doubling cube Q′ depends on these parameters. What we proved is that RBMO ⊂
BMO(α, β) for all parameters.

Now we are ready to prove Theorem 1.2. It follows immediately from the following
lemma.

Lemma 1.6. Let f satisfy all assumptions of Lemma 1.4 with certain ρ, C ′, C ′′, C ′′′. Then

µ{x ∈ Q : |f(x) − fQ| > t} ≤ D1µ(αQ) exp(−t/D2) (1.15)

where D1, D2 depend only on ρ, α, β, N, d, C ′, C ′′, C ′′′ but not on t.

Proof. Let us remind that Q′′ = (αQ′)′. Let L be a very large constant depending only
on ρ, α, β, m, C ′, C ′′, C ′′′, which will be chosen during the proof. Find n such that nL ≤
t < (n + 1)L. Consider all maximal q′ having the following properties: they are centered
at x ∈ Q, q′ ⊂ √

αQ, and |fq′ − fQ| > t. We can freely change ρ in (1.8), this implies

|〈f〉q′ − fq′| ≤ C µ(αq′)
µ(q′) ≤ C(β). This inequality and |fq′ − fQ| > L imply

|〈f〉q′ − fQ| > L/2

if L is large enough. In particular,

∫
q′
|f − fQ| ≥

L

2
µ(q′) (1.16)

Maximality of q′ implies that either |fq′′ − fQ| ≤ L, or, if it happened that q′′ is not in√
αQ, we can consider first qi := αiq′, which is not inside

√
αQ. Cube q′′ = qj for a certain

j. And j ≥ i. If j = i, then q′′ has a size comparable to Q and, thus, |fq′′ − fQ| ≤ C. If
j > i, then still |fqi

− fQ| ≤ C because the sizes are comparable. But also q′′ = (qi)
′ and so

|fq′′ − fqi
| ≤ C because of (1.9). So in all cases
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|fq′′ − fQ| ≤ L (1.17)

if L is large enough.
The choice of q′, the inequality |fq′′ − fq′| ≤ C, and (1.17) imply

L < |fq′ − fQ| ≤ 2L (1.18)

So,

{x ∈ Q : |f(x) − fQ| > t} ⊂ ∪q′{x ∈ q′ : |f(x) − fq′| > t − 2L ≥ (n − 2)L} (1.19)

where the union is taken over our maximal q′ chosen above.
From our cover by q′ of {x ∈ Q : |f(x) − fQ| > t} let us choose the subcover Qi of finite

multiplicity (by the theorem of Besicovitch).
Then, using (1.16), we conclude (C are different, but depend only on α, β, m, d, C ′, C ′′, C ′′′)

∑
i

µ(αQi) ≤ C(β)
∑

i

µ(Qi) ≤ C/L
∑

i

∫
Qi

|f − fQ| ≤ C/L

∫
√

αQ

|f − fQ| ≤

C/L

∫
√

αQ

|f − f√αQ| + |fQ − f√αQ|µ(
√

αQ) ≤ C/L µ(αQ) ≤ 1/2 µ(αQ),

if L is sufficiently large. The estimate before the last follows again by the fact that we can
freely change ρ > 1 in (1.8) if f ∈ BMO(α, β). Here we used ρ =

√
α.

Now we repeat our consideration for each Qi instead of Q. By (1.19) and the last
inequality we will get

µ{x ∈ Q : |f(x) − fQ| > t} ≤ (1/2)
n
2
−1µ(αQ)

which proves the lemma.

2. Necessary conditions

2.1. How to interpret condition Tb ∈ BMOp
λ(µ)

Even if we assume that operator T is bounded on L2(µ), it takes some time to define what
does it mean that T1 (or Tb for b ∈ L∞) belongs to BMO2

λ(µ). Since for infinite measures
µ, 1 /∈ L2(µ), and the expression T1 formally is not defined for such measures. However,
one can well make perfect sense of the above condition, even without assuming that T is
bounded.

We will need the following simple lemma, see also [11]. It means simply that if µ(B(x, r) �
rd, then radially symmetric singularities (like |x − x0|α) admit the same estimates as in the
case of Lebesgue measure in Rd. In particular, the singularity |x|−r is integrable at ∞ if
r > d and is integrable at 0 if r < d.
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Lemma 2.1 (Comparison Lemma). Let F � 0 be a decreasing function on (0,∞), and
let the measure µ satisfy µ(B(x0, r)) � rd (here d > 0) for a fixed x0 and for all r � 0. Then
for δ > 0 ∫

x:|x−x0|�δ

F (|x − x0|) dµ(x) � F (δ)δd + d

∞∫
δ

F (t)td−1dt.

In particular, for F (t) = t−d−α we have∫
x:|x−x0|�δ

|x − x0|−d−α dµ(x) � (d/α + 1)δ−α.

Proof. We can assume limt→∞ F (t) = 0, since otherwise we have ∞ in the right side and
the lemma is trivial. Clearly

∫
x:|x−x0|�δ

F (|x − x0|) dµ(x) �
F (δ)∫
0

µ({x : F (|x − x0| � t}) dt

�
F (δ)∫
0

[
F−1(t)

]d
dt = −

∞∫
δ

τ d dF (τ)

= τ dF (τ)
∣∣∣∞
δ

+d

∞∫
δ

F (τ)τ d−1 dτ � F (δ)δd + d

∞∫
δ

F (τ)τ d−1 dτ.

Let us suppose (for the case of Tb theorem) that bilinear form 〈Tb1f, b2g〉 of the operator
Mb2TMb1 (Mb stands for the operator of multiplication on b) is well defined for smooth (say
C∞) compactly supported f and g. Note, that the bilinear form is well defined for arbitrary
L2(µ) functions with separated compact supports.

Let ϕ be an arbitrary smooth function supported by a cube Q, satisfying
∫

ϕb2 dµ = 0.
Then we claim that the expressions 〈Tb1, b2ϕ〉 is well defined.

Lemma 2.2. Let ϕ = ϕ
Q

be a function supported by the cube Q and orthogonal to constants,

i. e. such that
∫

Q
ϕ dµ = 0. Then for x outside the cube Q

|(Tϕ
Q
)(x)| � C

�(Q)α

dist(x, Q)d+α
· ‖ϕ

Q
‖

L1(µ)

As one can see from the proof below the lemma holds for the truncated Calderón–
Zygmund operators Tr as well.
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Proof. Let y0 be the center of the cube Q. If dist(x, Q) � �(Q), then by property (ii) of
Calderón–Zygmund kernels

|Tϕ(x)| =
∣∣∣∫ K(x, y)ϕ(y) dµ(y)

∣∣∣
=

∣∣∣∫ [
K(x, y) − K(x, y0)

]
ϕ(y) dµ(y)

∣∣∣
=

∣∣∣∫ |y − y0|α
|x − y0|d+α

ϕ(y) dµ(y)
∣∣∣

� C
�(Q)α

dist(x, Q)d+α
· ‖ϕ‖

L1(µ)

If dist(x, Q) � �(Q) then we have trivial estimate using property (i) of Calderón–Zygmund
kernels

|Tϕ(x)| � C

dist(x, Q)d
· ‖ϕ‖

L1(µ)
� C

�(Q)α

dist(x, Q)d+α
· ‖ϕ‖

L1(µ)
.

Let ψ1 be a smooth compactly supported function, identically equal to 1 on 2Q, satisfying
0 � ψ1 � 1. Let ψ2 = 1 − ψ1.

The above Lemma 2.2, applied to the function ϕb2 and the operator T ∗, implies(
T ∗ϕb2

)
(x) � Cµ(Q)‖b2‖∞�(Q)α/ dist(x, Q)1+α.

Then, the Comparison Lemma (Lemma 2.1) implies∫ ∣∣∣(T ∗ϕb2

)
ψ2b1

∣∣∣ dµ � CCµ(Q)‖b2‖∞‖b1‖∞
∫

RN\2Q

�(Q)α

dist(x, Q)d+α
dµ(x) < ∞

so 〈Tψ2b1, ϕb2〉 is well defined.
Since by the assumption 〈Tψ1b1, ϕb2〉 is well defined (ψ1 is a smooth compactly supported

function), the expression 〈Tb1, ϕb2〉 is well defined as well.
It is not difficult to show that the above expression does not depend on a choice of the

function ψ1. One can also replace requirement ψ1 ≡ 1 on 2Q by ψ1 ≡ 1 on kQ for some
k > 1.

Now we can say that the condition Tb1 ∈ BMO2
λ(µ) means that for any cube Q

|〈Tb1, ϕb2〉| � C‖ϕb2‖L2(µ)
µ(λQ)1/2

for any smooth function ϕ supported by the cube Q and satisfying
∫

ϕb2 dµ = 0.
Notice, that if Tb1 is well defined, then the last condition means exactly that Tb1 ∈

BMO2
λ(µ).

Similarly, condition Tb1 ∈ BMOp
λ(µ) can be interpreted as

|〈Tb1, ϕb2〉| � C‖ϕb2‖Lq(µ)
µ(λQ)1/p
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(1/p + 1/q = 1) for all cubes Q and for all smooth function ϕ supported by the cube Q and
satisfying

∫
ϕb2 dµ = 0.

Notice, that if the bilinear form 〈b2Tb1f, g〉 is defined for Lipschitz compactly supported
functions, or simply for bounded compactly supported functions (as for truncated operators
Tε), we can assume that the above function ϕ belongs to the same class.

2.2. Necessary conditions

Theorem 2.3. Let a Calderón–Zygmund operator T be bounded on Lp(µ), 1 < p < ∞, and
let b ∈ L∞(µ), ‖b‖∞ � 1. Then Tb ∈ BMOp

λ(µ), and, moreover ‖Tb‖
BMOp

λ(µ)
is bounded

by a constant depending on the norm of T and the constants in the definition of Calderón–
Zygmund kernel.

Proof. Take g ∈ Lq(µ), (1/p + 1/q = 1) supported by a cube Q, and such, that
∫

g dµ = 0.
Here g = ϕb2 in terms of Lemma 2.2. Since we already know that T is bonded on Lp(µ), we
do not have to worry about smoothness.

Decompose b as
b = bχ

λQ
+ b · (1 − χ

λQ
) = b1 + b2.

It is easy to estimate

|〈b1, T ∗g〉| � ‖b‖p · ‖T‖ · ‖g‖q � ‖b‖∞ · µ(λQ)1/p · ‖T‖ · ‖g‖q.

Let us now estimate |〈b2, T ∗g〉|. By Lemma 2.2

|T ∗g(y)| � C
�(Q)α

dist(y, Q)d+α
· ‖g‖

L1(µ)
� C

�(Q)α

dist(y, Q)d+α
· µ(Q)1/p‖g‖

Lq(µ)

(the last inequality is just the Hölder inequality).
Using the Comparison Lemma (Lemma 2.1) we get

|〈b2, T ∗g〉| � Cµ(Q)1/p‖g‖
Lq(µ)

∣∣∣∣∣
∫

RN\λQ

�(Q)α

dist(y, Q)d+α
dµ(y)

∣∣∣∣∣ � Cµ(Q)1/p‖g‖q.

2.3. Tb ∈ BMO1
λ(µ) =⇒ Tb ∈ RBMO(µ) =⇒ Tb ∈ BMO2

λ(µ)

In this section we show that is does not matter what BMO space to pick. We will show
here, that if Tb belongs to the largest possible BMO space BMO1

λ(µ), then it belongs to
RBMO(µ) and, since the space RBMO satisfies John–Nirenberg property, see Theorem 1.2,
it belongs to the space BMO2

λ(µ).
Let us discuss how to interpret condition Tb ∈ RBMO. The problem is, that even if we

know that the operator T is bounded on Lp(µ), Tb is not defined generally. In Section 2.1 we
avoided this difficulty interpreting the condition Tb ∈ BMOp

λ(µ) by duality. Unfortunately,
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we do not know any such simple interpretation for the case of RBMO. So our interpretation
will be a bit more complicated.

Namely, given a cube G, we say that a function f belongs to RBMO(G, µ) if the inequal-
ities (1.2) and (1.3) defining RBMO hold for all cubes Q ⊂ R ⊂ G.

It is easy to say what does it mean that Tb1 ∈ RBMO(G, µ): consider a smooth compactly
supported function ϕ, 0 � ϕ � 1, such that ϕ(x) ≡ 1 on the cube 10G. Since 〈b2Tb1ϕ, f〉 is
defined for all smooth compactly supported f , the function Tb1ϕ is well defined.

We say that Tb1 belongs to RBMO(G, µ) if Tb1ϕ ∈ RBMO(G, µ). It is not difficult to
see that this condition does not depend on a choice of the cutoff function ϕ.

And finally, we say that Tb1 ∈ RBMO(µ) if Tb1 belongs to RBMO(G, µ) (with uniform
estimates on the norms) for all cubes G.

Clearly, if Tb1 ∈ RBMO(µ) then Tb1 ∈ BMOp
λ(µ) for all p ∈ [1,∞), λ > 1, in particular

Tb1 ∈ BMO2
λ(µ).

In this section we treat the apriori bounded case, i. e. the case when the operator T
is well defined on bounded compactly supported functions, one can think about truncated
operators Tε here.

Theorem 2.4. Let the bilinear form 〈Tb1f, b2g〉 be defined for bounded compactly supported
f and g. Let also b1 ∈ L∞ and let b2 ∈ L∞ be a weakly accretive function.

Suppose that Tb1 ∈ BMOp
λ(µ), for some p, 1 � p < ∞, and suppose that Mb2TMb1 is

weakly bounded, in the sense that there exist λ′ � 1, a < 1 such that

|〈Tb1χQ
, b2χaQ

〉| � Cµ(λ′Q), (2.1)

for all cubes Q.
Then Tb1 ∈ RBMO(µ) (and therefore Tb1 ∈ BMO2

λ(µ)).

Lemma 2.5. Under the assumptions of the previous theorem∫
Q

|Tb1χ2Q
|pdµ � Cµ(ΛQ),

where Λ = max(λ, λ′).

Proof. First of all notice, that if the weak boundedness condition (2.1) holds for some a < 1,
then it holds for any other values of a, probably with different C.

Fix a cube Q. Pick g ∈ L∞ supported by the cube Q, such that ‖g‖q = 1, where
1/p + 1/q = 1. We want to show that 〈Tb1χ2Q

, b2g〉 is bounded. So, let us assume that

a = 1/2.
Pick a constant c such, that

c

∫
Q

b2dµ =

∫
Q

b2gdµ,

i. e. such, that
∫

(b2g − cb2χQ
)dµ = 0.



2. Necessary conditions 29

Since
∣∣∣∫Q

b2dµ
∣∣∣ � δµ(Q) (b2 is weakly accretive),

|c| � δ−1µ(Q)−1

∫
Q

|b2g|dµ � δ−1µ(Q)−1‖b2‖∞‖g‖
Lq(µ)

µ(Q)1/p = δ−1‖b2‖∞ · µ(Q)−1/q,

and so ‖cχ
Q
‖

Lq(µ)
� C.

Therefore ‖b2 · (g − cχ
Q
)‖

Lp(µ)
� C + 1 and the condition Tb1 ∈ BMOp

λ(µ) implies

|〈Tb1χ2Q
, b2 · (g − cχ

Q
)〉| � Cµ(λQ) � Cµ(ΛQ).

We know (weak boundedness) that

|〈Tb1χ2Q
, b2χQ

〉| � Cµ(λ′2Q) � Cµ(ΛQ).

It follows that
|〈Tb1χ2Q

, b2g〉| � C,

and that is exactly what we need.

Proof of the theorem 2.4. Let Q ⊂ R ⊂ G. Property (ii) of Calderón–Zygmund kernels
and the Comparison Lemma 2.1 imply that for any cube Q ⊂ G the function ϕ := Tb1χ10G\2Q

is almost constant on Q, namely

|ϕ(x) − ϕ(x′)| � C, x, x′ ∈ Q.

The above Lemma 2.5 implies that for a
Q

= ϕ(c
Q
), where c

Q
is the center of the cube Q,∫

Q

|Tb1χ10G
− a

Q
|dµ � µ(Q)1/q

(∫
Q

|Tb1χ10G
− a

Q
|pdµ

)1/p

� Cµ(Q)1/qµ(ΛQ)1/p � Cµ(ΛQ).

Let us compare

|a
Q
− a

R
| = |(Tb1χ10G\Q)(c

Q
) − (Tb1χ10G\R)(c

R
)|

� |(Tb1χ10G\2Q
)(c

Q
) − (Tb1χ10G\2R

)(c
Q
)| + C.

Hence

|a
Q
− a

R
| � C +

∫
2R\2Q

|K(c
Q
, y)|dµ(y) � C

(
1 +

∫
2R\Q

dist(y, c
Q
)−ddµ(y)

)
.

Now we are going to prove analogue of Theorem 2.4 under the classical assumption of
weak boundedness

|〈Tb1χQ
, b2χQ

〉| � Cµ(λ′Q), λ′ > 1 (2.2)

for all cubes Q.
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Theorem 2.6. Let the bilinear form 〈Tb1f, b2g〉 be defined for bounded compactly supported
f and g. Let also b1 ∈ L∞ and let b2 ∈ L∞ be a weakly accretive function.

Suppose that Tb1 ∈ BMO1
λ(µ), for some p, 1 � p < ∞, and that Mb2TMb1 is weakly

bounded, in the sense that (2.2) holds for all cubes Q.

Then Tb1 ∈ RBMO(µ) (and therefore Tb1 ∈ BMO2
λ(µ)).

To prove the theorem we will need the following analogue of Lemma 2.5.

Lemma 2.7. Under the assumptions of the above Theorem 2.6∫
Q

|Tb1χ2Q
|pdµ � Cµ(ΛQ),

where Λ = max(2λ, 2λ′, 3).

If this lemma is proved, Theorem 2.6 follows immediately, one have to simply repeat the
proof of Theorem 2.4.

If one tries to repeat the proof of Lemma 2.5 to prove Lemma 2.7, he would encounter
one problem: at some point we need to estimate 〈Tb1χ2Q

, b2χQ
〉, and we only know that

〈Tb1χQ
, b2χQ

〉 is bounded.

The following two lemmas below help us to cope with this problem. In these two lemmas
| . | denotes a fixed norm in RN , and “ball” means the ball in this norm, B(x0, r) := {x ∈
RN : |x − x0| < r}. We will need the lemmas for the case when the norm | . | is �∞ norm,
|x| = max{|xk| : 1 � k � N}, so the “balls” are the cubes.

Lemma 2.8. Let B(x0, R) be a ball. There exists R0, R � R0 � 1.2R such that for all
s ∈ [0, 1.5]

µ(
{
x : R0 − Rs < |x − x0| < R0 + Rs

}
) � Csµ(B(x0, 3R)).

Proof. Define the measure ν on [0, 3R) as radial projection of the measure µ
∣∣ B(x0, 3R),

ν([0, t)) := µ(B(x0, t)), 0 � t � 3R.

Consider centered maximal operatorM , Mν(x) := sups>0
1
2s

ν((x−s, x+s)). It is well known
that M has weak type 1-1, i. e. that

meas1{x : Mν(x) > λ} � A

λ
ν[0, 3R), λ > 0,

where meas1 is one-dimensional Lebesgue measure on R and A is some absolute constant.
Therefore

Mν(x) >
10Aµ(B(x0, 3R))

R

on a set of length at most 0.1R. Therefore for some R0 ∈ [R, 1.2R] the inequality Mν(R0) �
10Aµ(B(x0, 3R))/R holds, that implies the conclusion of the lemma.
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Lemma 2.9. Let R0 be as above in Lemma 2.8, and let K be Calderón–Zygmund kernel.
Then ∫∫

B(x0,R0)×[B(x0,3R)\B(x0,R0)]

|K(x, y)| dµ(x)dµ(y) � C
√

µ(B(x0, R0))
√

µ(B(x0, 3R))

� Cµ(B(x0, 3R)).

Note, that the lemma is not true for arbitrary R0. We use the fact that the measure
behave regularly, as it is described in Lemma 2.8, in a neighborhood of the sphere S

R0
:=

{x : |x − x0| = R0}

Proof of Lemma 2.9. Consider

f(x) :=

∫
B(x0,3R)\B(x0,R0)

|K(x, y)| dµ(y).

Let x ∈ B(x0, R0) and let δ := dist(x, S
R0

), where S
R0

:= {x : |x − x0| = R0}. Clearly

f(x) �
∫

δ�|y−x|�5R

1

|y − x|d dµ(y),

and the Comparison Lemma (Lemma 2.1) implies

f(x) � 1 +

∫ 5R

δ

dt

t
� C log

R

δ
= C log

R

dist(x, S
R0

)
.

The Cauchy–Schwartz inequality implies

∫
B(x0,R0)

f(x) dµ(x) � Cµ(B(x0, R0)
1/2

( ∫
B(x0,R0)

log2 R

dist(x, S
R0

)
dµ(x)

)1/2

.

Since the measure of the strip {x ∈ B(x0, R0) : dist(x, S
R0

) < τ} is at most

C
τ

R
· µ(B(x0, 3R)),

see Lemma 2.8, we get∫
B(x0,R0)

log2 R

dist(x, S
R0

)
dµ(x) � Cµ(B(x0, 3R))

1

R

∫ R0

0

log2 R

τ
dτ � C ′µ(B(x0, 3R)).

We are done.
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Proof of Lemma 2.7. Let | . | denote the �∞ norm on RN , |x| = max{|xk| : 1 � k � N},
so a cube Q is just a ball in this norm Q = B(x0, R) = {x ∈ RN : |x − x0| < R}. Let
Q′ = B(x0, R0) be the cube (ball) from Lemma 2.8 above.

By Lemma 2.9 |〈Tb1χ2Q\Q′ , b2χQ′ 〉| � Cµ(3Q) � Cµ(ΛQ), so, since |〈Tb1χQ′ , b2χQ′ 〉| �
Cµ(λ′Q′) � Cµ(ΛQ), we have

|〈Tb1χ2Q
, b2χQ′ 〉| � Cµ(3Q) � Cµ(ΛQ) (2.3)

The rest of the proof is going exactly the same way as the proof of Lemma 2.5: take a
bounded function g supported by the cube Q, pick a number c such, that

c

∫
Q′

b2dµ =

∫
Q

gb2dµ.

As in Lemma 2.5 ‖c b2χQ′‖Lp(µ)
� C. The condition Tb1 ∈ BMOp

λ(µ) implies that

|〈Tb1χ2Q
, b2 · (g − cχ

Q′ )〉| � Cµ(λQ′) � Cµ(ΛQ),

and together with (2.3) this imply |〈Tb1χ2Q
, b2g〉| � Cµ(ΛQ).

3. Funny embedding theorem

As people familiar with proofs of classical T1 or Tb theorems can remember, Carleson Em-
bedding Theorem plays an important role there.

Here we present and prove a version of the theorem we need. We will use Theorem 3.1
below only with p = 2. In this case it is just the classical Carleson Embedding Theorem,
and any known proof (with obvious modifications) would work.

We think this theorem is of independent interest itself, so we will present the proof of
the general case.

Let D be a collection of dyadic cubes in RN . Let {a
Q
}

Q∈D be a collection of nonnegative

numbers, and let f
Q

be the average, f
Q

:= µ(Q)−1
∫

Q
f dµ. Consider a (non-linear) operator

S defined on, say, locally µ-integrable functions by

Sf(x) :=
( ∑

Q∈D
a

Q
f2

Q
χ

Q
(x)

)1/2

.

We are interested in the question of when this operator is bounded on Lp(µ), i. e. when
‖Sf‖

Lp(µ)
� C‖f‖

Lp(µ)
for all f ∈ Lp(µ)?

Theorem 3.1. The following statements are equivalent

(i) the operator S is bounded on Lp(µ);

(ii) sup
Q∈D

1

µ(Q)

∫
Q

(∑
R⊂Q

a
R
χ

R
(x)

)p/2

dµ(x) = C < ∞;
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(iii) the family {a
Q
}

Q∈D satisfies the following “Carleson measure condition”:

sup
Q∈D

1

µ(Q)

∑
R⊂Q

a
R
µ(R) = C1 < ∞.

Moreover, the constants C2/p, C1 and ‖S‖2 are equivalent in a sense of two sided estimates
with absolute constants.

When p = 2, condition (i) means that
∑

Q∈D a
Q
f2

Q
µ(Q) � C‖f‖2

L2(µ)
, and the theorem is

simply a dyadic version of the famous Carleson embedding theorem. For p �= 2 the theorem
can be interpreted as a result about embedding of Lp space into a weighted Triebel–Lizorkin
space.

Proof of Theorem 3.1. (i)⇒(ii). Take f = χ
Q
. Then∫

Q

(∑
R⊂Q

a
R
χ

R
(x)

)p/2

dµ(x) � ‖Sχ
Q
‖p

Lp(µ)
� ‖S‖p · ‖χ

Q
‖p

Lp(µ)
= ‖S‖p · µ(Q),

i. e. condition (ii) holds with C = ‖S‖p.
(ii)⇒(iii). If p � 2, the Hölder inequality implies

1

µ(Q)

∑
R⊂Q

a
R
· µ(R) =

1

µ(Q)

∫
Q

∑
R⊂Q

a
R
χ

R
(x)dµ(x)

�
(

1

µ(Q)

∫
Q

(∑
R⊂Q

a
R
χ

R
(x)

)p/2

dµ(x)

)2/p

� C2/p.

Let us now consider the case p < 2. First of all notice that in this case the inequality

Xp/2 − (X − ∆X)p/2 � p

2
Xp/2−1∆X (3.1)

holds for X, X − ∆X > 0.
For a cube Q let us define the function ϕ

Q
(x) :=

∑
R⊂Q a

R
χ

R
(x).

Let Qk, 1 � k � 2N , be the cubes of size �(Q)/2 contained in Q. Notice that for x ∈ Qk

we have ϕ
Qk

(x) = ϕ
Q
(x) − a

Q
, so the inequality (3.1) (with X = ϕ

Q
, ∆X = a

Q
) implies

ϕp/2

Q
(x) − ϕp/2

Qk
(x) � p

2
ϕp/2−1

Q
(x) · a

Q
for x ∈ Qk.

Integrating over Qk and summing up over k we get

1

µ(Q)

∫
Q

ϕp/2

Q
dµ � p

2
a

Q

1

µ(Q)

∫
Q

ϕp/2−1

Q
dµ +

2N∑
k=1

1

µ(Q)

∫
Qk

ϕp/2

Qk
dµ (3.2)
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Let us notice that 1
µ(Q)

∫
Q

ϕp/2−1

Q
dµ is bounded below. Indeed

1 � 1

µ(Q)

∫
Q

ϕ1−p/2

Q
dµ · 1

µ(Q)

∫
Q

ϕp/2−1

Q
dµ.

On the other hand, Hölder inequality implies

1

µ(Q)

∫
Q

ϕ1−p/2

Q
dµ �

( 1

µ(Q)

∫
Q

ϕp/2

Q
dµ

)2/p−1

� C2/p−1,

and so
1

µ(Q)

∫
Q

ϕp/2−1

Q
dµ � C1−2/p.

Therefore (3.2) implies

a
Q

� 2

p
Cp/2−1

( 1

µ(Q)

∫
Q

ϕp/2

Q
dµ −

2N∑
k=1

1

µ(Q)

∫
Qk

ϕp/2

Qk
dµ

)
.

Writing such inequalities for all dyadic cubes R ⊂ Q, multiplying them by µ(R) and summing
them up, we get∑

R⊂Q

a
R
µ(R) � 2

p
Cp/2−1

∫
Q

ϕp/2

Q
dµ � 2

p
Cp/2−1µ(Q)C =

2

p
Cp/2µ(Q),

which is exactly condition (iii).
(iii)⇒(i). To prove the implication we use the Bellman function method. What is Bellman

function and how to find it is discussed in great details in [9], so here our presentation will
be very sketchy.

Clearly, it is enough to consider only f � 0.
For a dyadic cube Q consider the averages

F
Q

:= µ(Q)−1

∫
Q

fpdµ, f
Q

:= µ(Q)−1

∫
Q

fdµ (3.3)

A
Q

:= µ(Q)−1
∑
R⊂Q

a
R
|R|, c

Q
:=

( ∑
R:R�Q

a
R
f2

R

)1/2

(3.4)

Our goal is to construct a function B = B(f ,F, c,A) of four real variables. We want the
function to be defined on the set

0 � f � F1/p, 0 � A � 1, c � 0.

We want it to satisfy

γcp � B(f ,F, c,A) � Γ · (F + cp) (3.5)
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where Γ � γ � 0 are some constants. We also want it to satisfy

B(f ,F, c,A) � 1

2

(
B(f1,F1, c1,A1) + B(f2,F2, c2,A2)

)
(3.6)

for any three sets of arguments satisfying

F =
1

2

(
F1 + F2

)
f =

1

2

(
f1 + f2

)
A =

1

2

(
A1 + A2

)
+a, c1 = c2 =

√
c2 + af2.

If we construct such a function B, we are done!
To show this, let us first notice that if a function B satisfies (3.6), then

B(f ,F, c,A) �
M∑

k=1

µkB(fk,Fk, ck,Ak) (3.7)

for any µk � 0 such that
∑

k µk = 1, and any M + 1 sets of variables satisfying

F =
M∑

k=1

µkFk f =
M∑

k=1

µkfk (3.8)

A =
M∑

k=1

µkAk + a, c1 = c2 = ... = c
M

=
√

c2 + af2. (3.9)

Suppose we are given a family {a
R
}

R∈D . Without loss of generality we can always assume
that its Carleson constant is 1, i. e. that

µ(Q)−1
∑
R⊂Q

a
R
µ(R) � 1 for all Q ∈ D

Clearly, it is enough to prove the implication (iii)⇒(i) for finite families, so we assume
that only finitely many a

R
are non zero and that a

R
= O for R �⊂ Q.

Fix this cube Q, and let Qn
k , k = 1, 2, . . . , 2Nn be the cubes of size 2−n�(Q) containing

in Q. Pick a nonnegative function f in Lp(µ). The condition (3.7) implies that

B(f
Q
,F

Q
, c

Q
,A

Q
) �

2N∑
k=1

µkB(f
Q1

k

,F
Q1

k

, c
Q1

k

,A
Q1

k

) ,

where f
Q
, F

Q
, c

Q
, A

Q
are the averages defined above in (3.3), (3.4), and µk := µ(Qk)/µ(Q).

Notice, that the averages satisfy (3.8), (3.9) with fk = f
Q1

k

, . . . , and a = a
Q
.

Let us apply this inequality for each cube Q1
k, then for each cube Q2

k etc. Going n
generation down we get

B(f
Q
,F

Q
, c

Q
,A

Q
) �

2Nn∑
k=1

µ(Qn
k)

µ(Q)
B(f

Qn
k
,F

Qn
k
, c

Qn
k
,A

Qn
k
) ,
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The inequality (3.5) implies

γ
1

µ(Q)

∫ 2Nn∑
k=1

(
c

Qn
k

)p
χ

Qn
k
(x) dµ(x) = γ

2Nn∑
k=1

µ(Qn
k)

µ(Q)
·
(
c

Qn
k

)p � Γ · F
Q

(c
Q

= 0 since a
R

= 0 for R �⊂ Q). Since the family {a
R
}

R∈D is finite, for sufficiently large n

the function
∑2Nn

k=1

(
c

Qn
k

)p
χ

Qn
k

coincide with |Sf |p. So we get

γ

µ(Q)

∫
|Sf |p dµ � Γ

µ(Q)

∫
Q

|f |p dµ,

which is exactly what we need.
So, to complete the proof we need to present a Bellman function B. Here is one of the

possible choices:

B(f ,F, c,A) := KF − f1+εcp−ε−1

(1 + A)ε
+ 2γcp,

where K > 0 is large and ε > 0 is small, such that p − ε > 1. The function B satisfies
estimates (3.5): the upper estimate is trivial, and the lower one hold for sufficiently large K
(it follows from Young’s inequality ab � ap/p + bp′/p′ with appropriate p).

Let us show that (3.6) holds. Since the function f1+ε/(1 + A)ε is convex, it is enough to
check that the term

f1+εcp−ε−1

(1 + A)ε

increases more than γcp when one replaces c �→ c′ =
√

c2 + af2, A �→ A − a.
Notice, that for any α > 0

C1(c
′)α−2af2 � (c′)α − cα � C2(c

′)α−2af2.

Therefore, all we need to show is the inequality

f1+ε(c′)p−ε−3af2︸ ︷︷ ︸
increase c first

+ f1+ε(c′)p−1−εa︸ ︷︷ ︸
decrease A then

� γ′(c′)p−2af2︸ ︷︷ ︸
increment of γcp

.

This inequality follows immediately from the Young inequality

xy � xr

r
+

yr′

r′

with r = 2/(1 − ε) and x = f (3+ε)(1−ε)/2c′(p−3−ε)(1−ε)/2.
There is also a simple way to see without computations, that Young inequality with some

r would work. First, notice that the sum of exponents of f and c′ is p for each term. Then,
compare exponents, say of f , of each term:

1 + ε < 2 < 3 + ε.



4. Martingale difference decomposition 37

4. Martingale difference decomposition

Fix a dyadic lattice D in RN . Just for our convenience we will consider only lattices
constructed of cubes with sides 2k, k ∈ Z (we consider cubes of all sizes, not only with a
fixed k).

Denote by Ek the averaging operator over dyadic cubes of size (length of the side) 2k,
namely Ekf(x) = µ(Q)−1

∫
Q

fdµ, where Q is a dyadic cube of size 2k containing x (for the

sake of definiteness, we consider cubes of the form x0 + [a, b)N). If Q is a cube of size 2k, we
denote by E

Q
f the restriction of Ekf to Q: E

Q
f = (µ(Q)−1

∫
Q

fdµ)χ
Q

= χ
Q
Ekf .

Let ∆k := Ek−1−Ek. Again for a dyadic cube Q of size 2k, denote by ∆
Q
f the restriction

of ∆kf to Q. Clearly, for any f ∈ L2(µ), the functions ∆
Q
f , Q ∈ D, are orthogonal to each

other, and for any fixed n

f =
∑

Q∈D,
(Q)�2n

∆
Q
f +

∑
Q∈D,
(Q)=2n

E
Q
f,

‖f‖2
L2(µ) =

∑
Q∈D,
(Q)�2n

‖∆
Q
f‖2 +

∑
Q∈D,
(Q)=2n

‖E
Q
f‖2.

For Tb theorem we need a weighted version of the above decomposition. Namely, let b
be a weakly accretive function. Define

Eb
kf(x) :=

(∫
Q

b dµ
)−1

·
(∫

Q

f dµ
)
· b(x),

where Q is the dyadic cube of size 2k containing x. Again for a cube Q of size 2k let
Eb

Q
denote the restriction of Eb

k onto Q. Similarly to the nonweighted case define operators

∆b
k := Eb

k−1−Eb
k, and let for a dyadic cube Q of size 2k the symbol ∆b

Q
f denote the restriction

of ∆b
kf onto Q.

Notice, that all operators Eb
k, Eb

Q
, ∆b

Q
, ∆b

k are (generally non-orthogonal) projections.

Notice also, that for any f ∈ L2(µ) the function ∆b

Q
f is always orthogonal to constants,

i. e.
∫

∆b

Q
f dµ = 0.

Similarly to the nonweighted case for any f ∈ L2(µ) one can write down a decomposition

f =
∑

Q∈D,
(Q)�2n

∆b

Q
f +

∑
Q∈D,
(Q)=2n

Eb

Q
f

(we discuss the convergence a bit later). Unfortunately, terms in this decomposition are not
orthogonal, so we cannot get such a nice formula for the norm ‖f‖

L2(µ)
as in non-weighted

case. Fortunately, the system of subspaces {Range ∆b

Q
: �(Q) � 2n}, {Range Eb

Q
: �(Q) =

2n} forms an unconditional basis in L2(µ), i. e. the following lemma holds.

Lemma 4.1. Let b be a weakly accretive function, and let n ∈ Z. Then, any f ∈ L2(µ) can
be decomposed as

f =
∑

Q∈D,
(Q)�2n

∆b

Q
f +

∑
Q∈D,
(Q)=2n

Eb

Q
f,



38

where the series converges in L2(µ). Moreover,

A−1‖f‖2

L2(µ)
�

∑
Q∈D,


(Q)�2n

‖∆b

Q
f‖2

L2(µ)
+

∑
Q∈D,


(Q)=2n

‖Eb

Q
f‖2

L2(µ)
� A‖f‖2

L2(µ)
,

where the constant A = A(b) depends only on b (more precisely on ‖b‖∞ and the constant δ
in the definition of weak accretivity).

Proof. If f =
∑

Q∈D,
(Q)=2−k c
Q
χ

Q
· b (the sum is finite), then the decomposition converges,

because the sum contains only finitely many terms. So, the decomposition converges on a
dense subset of L2(µ), and to prove the lemma we only need to prove the estimates.

Let us first prove the estimate from above. Notice that the estimate for the second sum
is trivial, so to prove the estimate it is enough to show that∑

Q∈D
‖∆b

Q
f‖2

L2(µ)
� C‖f‖2

L2(µ)
, (4.1)

or, equivalently ∑
k

‖∆b
kf‖2

L2(µ)
� C‖f‖2

L2(µ)
.

Notice that

∆b
kf = Eb

k−1f − Eb
kf =

[(
Ek−1b

)−1 · Ek−1f −
(
Ekb

)−1
Ekf

]
· b

=
(
Ek−1b

)−1·
[
Ek−1f − Ekf

]
· b + Ekf ·

[(
Ek−1f

)−1 −
(
Ekf

)−1] · b
=

(
Ek−1b

)−1
∆kf · b − Ekf · ∆kb

Ekb · Ek−1b

Since b ∈ L∞, and since b is weakly accretive,∑
k

∥∥(
Ek−1b

)−1
∆kf · b

∥∥2 � δ−2‖b‖2
∞ · ‖f‖2

L2(µ)
.

To estimate the second sum, notice, that according to Lemma 4.2 below, the family a
Q

:=

µ(Q)−1 · ‖∆
Q
b‖2

L2(µ)
, Q ∈ D, satisfies the Carleson measure condition (iii) from Theorem 3.1

above. Therefore Theorem 3.1 (for p = 2) implies∑
k

‖Ekf‖2

L2(µ)
· ‖∆kb‖2

L2(µ)
=

∑
Q∈D

‖E
Q
f‖2

L2(µ)
· ‖∆

Q
b‖2

L2(µ)
� C‖f‖2

L2(µ)
,

and we are done with the estimate from above.
Notice, that for p = 2 Theorem 3.1 is well-known: essentially it is a dyadic version of the

famous Carleson embedding theorem. One of the possible proofs can be found in [10], see
Proof of Theorem 3.1 there.

The estimate from below follows from a standard duality argument. First of all notice
that

(Ekb)
∗f =

(
Ekb

)−1 · Ek(bf) = b−1Eb
k(bf),
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and so
(
∆b

k

)∗
f = b−1∆b

k(bf) (here we use bilinear duality 〈f, g〉 =
∫

fg dµ). Since b, b−1 ∈
L∞, it follows from (4.1) that for any f ∈ L2(µ)∑

k

∥∥(∆b
k)

∗f‖2

L2(µ)
=

∑
k

∥∥b−1∆b
k(bf)‖2

L2(µ)
� C‖f‖2

L2(µ)
.

Take
f = Eb

nf +
∑
k�n

∆b
kf

(to avoid complications with the convergence, assume that the sum contains only finitely
many terms). Then

‖f‖2

L2(µ)
= 〈f, f〉 = 〈Eb

nf, (Eb
n)∗f〉 +

∑
k�n

〈∆b
kf, (∆b

k)
∗f〉

�
(
‖Eb

nf‖2

L2(µ)
+

∑
k

‖∆b
kf‖2

L2(µ)

)1/2

·
(
‖(Eb

n)∗f‖2

L2(µ)
+

∑
k

‖(∆b
k)

∗f‖2

L2(µ)

)1/2

The second factor is bounded from above by C‖f‖
L2(µ)

, so the first one is bounded from

below.
Since the estimate from below holds for all f in a dense set, it holds for all f ∈ L2(µ).

Now Lemma 4.1 is proved modulo the following simple lemma.

Lemma 4.2. Let f ∈ L∞. Define a
Q

:= µ(Q)−1 · ‖∆
Q
b‖2

L2(µ)
, Q ∈ D. Then the family

{a
Q
}

Q∈D satisfies the Carleson measure condition∑
R⊂Q

a
R
µ(R) � Cµ(Q), ∀Q ∈ D.

Proof. ∑
R⊂Q

‖∆
R
b‖2

L2(µ)
�

∫
Q

|b|2 dµ � ‖b‖2
∞ · µ(Q)

5. BMO2
λ(µ) and a Carleson Measure Condition

If the measure is doubling, functions in BMO can be characterized in terms of Carleson
measure condition on its Haar coefficients.

For general measures some characterization of this type is given in the lemma below.
For technical reasons, in what follows, it is convenient for us to consider two different

dyadic lattices, say D and D′. Suppose, the sides of cubes in both lattices are exactly 2−k,
k ∈ Z, and the lattices are shifted with respect to one another.
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Fix r large enough, so that 2r � 4λ. For a function ϕ and a dyadic cube Q ∈ D define

a
Q

= ab

Q
(ϕ) =

∑
Q′∈D′ : 
(Q′)=2−r
(Q)

dist(Q′,∂Q)�λ
(Q′)

‖∆b

Q′ϕ‖2

L2(µ)
.

Notice, that Q ∈ D, and the smaller cubes Q′ are taken from another dyadic lattice D′.

Lemma 5.1. Let b be a weakly accretive function. If ϕ ∈ BMO2
λ(µ), then for any n > 1 the

family {ab

Q
(ϕ)}Q∈D defined above satisfies the Carleson measure condition∑

R⊂Q

a
R

� Cµ(Q), ∀Q ∈ D.

Proof. It is sufficient to prove that for any dyadic cube Q ∈ D∑
Q′∈D′ : Q′⊂Q,

(Q′)�2−r
(Q)

dist(Q′,∂Q)�λ
(Q′)

‖∆b

Q′ϕ‖2

L2(µ)
� Cµ(Q) (5.1)

(all terms in the sum we want to estimate are contained in the above sum).
Consider the following Whitney type covering of the cube Q by cubes R ⊂ D′: Take

all cubes R ⊂ Q of size 2−r�(Q) such that dist(R, ∂Q) � λ�(R) (the assumption 2r � 4λ
guarantees that there exists at least one such R), then take the layer around them consisting
of all cubes of size 2−r−1�(Q) such that dist(R, ∂Q) � λ�(R), then the layer of cubes of size
2−r−2, etc..., see Fig. 5. Let us call the collection of such Whitney cubes W .

Pick a cube R ∈ W . By the definition of BMO2
λ(µ),∫

R

|ϕ − ϕ
R
|2 dµ � Cµ(λR)

Lemma 4.1 implies ∑
Q′∈D′,Q′⊂R

‖∆b

Q′ϕ‖2

L2(µ)
� Cµ(λR). (5.2)

Estimate (5.2) implies∑
R∈W

∑
Q′∈D′,Q⊂R

‖∆b

Q′ϕ‖2

L2(µ)
� C

∑
R

µ(λR). (5.3)

Since for any cube R from the Whitney type decomposition W we have dist(R, ∂Q) �
λ�(R), any point in Q is covered by at most M = M(N, λ) cubes λR, R ∈ W. Therefore∑

R µ(λR) � Mµ(Q).
To complete the proof of the lemma, it is enough to notice that the sum in the left side

of (5.3) coincides with the sum in (5.1)
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Figure 5: Whitney type decomposition of the cube Q (here N = 2, so cubes are squares).
There are four squares R of size 2−2�(Q) (here r = 2), around are squares of size 2−3�(R),
then squares of size 2−4�(R).

6. Estimates of 〈T∆b1
Qf, ∆b2

Rg〉 for disjoint Q and R

The idea of the proof of the main results is pretty simple. We would like to estimate
〈Tf, g〉. To do that, let us take two dyadic lattices D and D′, decompose f and g in martingale
difference decomposition given by Lemma 4.1, then estimate the matrix 〈T∆b1

Qf, ∆b2
R g〉, Q ∈

D, R ∈ D′, and conclude that the operator T is bounded.

Lemma 6.1. Let Q, R be two cubes, �(Q) � �(R), and let dist(Q, R) � �(Q). Let ϕ
Q
, ψ

R
∈

L2(µ) be functions supported by the cubes Q and R respectively. Suppose also that ϕ
Q

is
orthogonal to constants. Then

∣∣∣〈Tϕ
Q
, ψ

R
〉
∣∣∣ � C

�(Q)α

dist(Q, R)d+α
µ(Q)1/2µ(R)1/2‖ϕ

Q
‖

L2(µ)
‖ψ

R
‖L2(µ).
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Proof. Let s0 be the center of the cube Q. Then we get∣∣∣〈Tϕ
Q
, ψ

R
〉
∣∣∣ =

∣∣∣∣∫∫
K(t, s)ϕ

Q
(s)ψ

R
(t) dµ(s)dµ(t)

∣∣∣∣
=

∣∣∣∣∫∫
[K(t, s) − K(t, s0)] ϕQ

(s)ψ
R
(t) dµ(s)dµ(t)

∣∣∣∣
� C

∫∫ |s − s0|α
|t − s0|d+α

|ϕ
Q
(s)| · |ψ

R
(t)|dµ(s)dµ(t)

� C
�(Q)α

dist(Q, R)d+α
‖ϕ

Q
‖

L1(µ)
· ‖ψ

R
‖

L1(µ)

� C
�(Q)α

dist(Q, R)d+α
µ(Q)1/2µ(R)1/2‖ϕ

Q
‖

L2(µ)
‖ψ

R
‖L2(µ).

Definition 6.2. Let γ = α/(2α+2d), and so γd+γα = α/2. Let r be some positive integer
to be fixed later. Consider a pair of cubes Q and R, such that dist(Q, R) > 0. Suppose for
definiteness that �(Q) � �(R). We will call this pair singular if dist(Q, R) � �(Q)γ · �(R)1−γ,
and essentially singular if, in addition, �(Q) � 2−r�(R).

Definition 6.3. Let D(Q, R) denote the so called long distance between cubes:

D(Q, R) := dist(Q, R) + �(Q) + �(R) .

Lemma 6.4. Let T be a Calderón–Zygmund operator and let ϕ
Q
, ψ

R
∈ L2(µ) be func-

tions supported by the cubes Q and R respectively and normalized by ‖ϕ
Q
‖L2(µ) = µ(Q)−1/2,

‖ψ
R
‖L2(µ) = µ(R)−1/2. Suppose also that �(Q) � �(R) and that ϕ

Q
is orthogonal to constants.

Then ∣∣∣〈Tϕ
Q
, ψ

R
〉
∣∣∣ � C

�(Q)α/2�(R)α/2

D(Q, R)d+α
,

provided that dist(Q, R) � min(�(Q), �(R)) and the pair Q, R is not essentially singular.

Proof. Without loss of generality one can assume that �(Q) � �(R). If dist(Q, R) � �(R),
then D(Q, R) � 3 dist(Q, R); thus, the estimate from Lemma 6.1 implies∣∣∣〈Tϕ

Q
, ψ

R
〉
∣∣∣ � C

�(Q)α

D(Q, R)d+α
� C · �(Q)α/2�(R)α/2

D(Q, R)d+α
.

Now let us suppose that dist(Q, R) � �(R), but the pair Q, R is not singular. That
means

dist(Q, R) � �(Q)γ�(R)1−γ.

The estimate of Lemma 6.1 and the identity γd + γα = α/2 imply∣∣∣〈Tϕ
Q
, ψ

R
〉
∣∣∣ � C · �(Q)α

�(Q)α/2�(R)d+α/2
=

C · �(Q)α/2�(R)α/2

�(R)d+α
� C

�(Q)α/2�(R)α/2

D(Q, R)d+α
.
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Note that if we do not normalize the functions ϕ
Q

and ψ
R
, the estimate from Lemma

6.4 can be rewritten as∣∣∣〈Tϕ
Q
, ψ

R
〉
∣∣∣ � C

�(Q)α/2�(R)α/2

D(Q, R)d+α
µ(Q)1/2µ(R)1/2‖ϕ

Q
‖L2(µ)‖ψR

‖L2(µ).

The following theorem shows that the matrix {T
Q,R

}
Q∈D,R∈D′ defined by

T
Q,R

:=
�(Q)α/2�(R)α/2

D(Q, R)d+α
µ(Q)1/2µ(R)1/2,

generates a bounded operator on �2.

Theorem 6.5. Let the measure µ satisfy µ(Q) � C�(Q)d for all squares Q. Then for the
matrix {T

Q,R
}Q∈D,R∈D′ defined above, one has∑

Q∈D,R∈D′

T
Q,R

x
Q
· y

R
� C

(∑
Q∈D

x2

Q

)1/2( ∑
R∈D′

y2

R

)1/2

for any sequences of nonnegative numbers {x
Q
}

Q∈D , {y
Q
}

R∈D′ ∈ �2.

Proof. The symmetry of Q and R implies that it is enough to consider only the sum over
Q, R such that �(Q) � �(R). So we can just assume that T

Q,R
= 0 if �(Q) > �(R).

Let us “slice” the matrix {T
Q,R

}
Q∈D,R∈D′ . Namely, for any n = 0, 1, 2, . . . define the

matrix {T (n)

Q,R
}

Q∈D,R∈D′ by putting

T (n)

Q,R
=

{
T

Q,R
, �(Q) = 2−n�(R);

0, otherwise.

If we show that the norms of the operators T (n) decrease as a geometric progression, i. e.,
that ∑

Q∈D,R∈D′

T (n)

Q,R
x

Q
· y

R
� 2−nβC

(∑
Q∈D

x2

Q

)1/2 ( ∑
R∈D′

y2

R

)1/2

for some β > 0, then we are done.
We can split the matrices T (n) into layers T (n,k), where

T (n,k)

Q,R
=

{
T (n)

Q,R
, �(R) = 2k

0, otherwise

Clearly, the layers T (n,k) of T (n) do not interfere, therefore it is enough to estimate each layer
separately. So, it is enough to show that for any sequences of nonnegative x = {x

Q
}

Q∈D , y =

{y
R
}

R∈D′ ∈ �2,

〈T (n,k)x, y〉 =
∑

Q∈D,R∈D′


(Q)=2k−n,
(R)=2k

T (n,k)

Q,R
x

Q
y

R
� 2−nβC

( ∑
Q∈D


(Q)=2k−n

x2

Q

)1/2( ∑
R∈D′


(R)=2k

y2

R

)1/2

.
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One can rewrite the matrix T (n,k) as an integral operator. Namely, if we define

X :=
∑

Q∈D:
(Q)=2k−n

µ(Q)−1/2x
Q
χ

Q
, Y :=

∑
R∈D′:
(R)=2k

µ(R)−1/2y
R
χ

R
,

then

‖X‖2
L2(µ) =

∑
Q∈D:
(Q)=2k−n

x2

Q
, ‖Y ‖2

L2(µ) =
∑

R∈D′:
(R)=2k

y2

R
.

Now the estimate we need can be rewritten as∑

(Q)=2k−n


(R)=2k

T (n,k)

Q,R
x

Q
· y

R
=

∫∫
K

(n)
k (s, t)X(s) · Y (t)dµ(s)dµ(t) � C‖X‖L2(µ)‖Y ‖L2(µ) ,

where the kernel K
(n)
k (s, t) is defined by

K
(n)
k (s, t) =

∑
Q∈D:
(Q)=2k−n

R∈D′:
(R)=2k

T
Q,R

µ(Q)−1/2µ(R)−1/2χ
Q
(s)χ

R
(t).

Note that for each pair s, t, the sum has only one non-zero term, so the kernel K
(n)
k (s, t) can

be easily estimated:

K
(n)
k (s, t) � C2−nα/2 · 2kα

(2k + |t − s|)d+α
= C2−nα/2Kk(t − s),

where Kk(s) = 2kα/(2k + |s|)d+α. Using the Comparison Lemma (Lemma 2.1) one can show
that

sup
k

∫
Kk(s)dµ(s) � Const < ∞.

So, by the Schur Lemma the integral operators with kernels Kk(s−t) are uniformly bounded,
therefore the norms of the operators T (n,k) (and hence of T (n)) decrease as a geometric
progression, and we are done.

7. Paraproducts and the estimate of 〈Tϕ
Q
, ψ

R
〉

when Q ⊂ R

As usual in the theory of singular integral operators to estimate 〈Tϕ
Q
, ψ

R
〉 when Q ⊂ R,

one can use the so-called paraproducts. The classical construction will not work in our case
and we will slightly modify it.
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7.1. Paraproducts

Let b1, b2 be weakly accretive functions from the statement of Tb Theorem (Theorem 0.4).
Let r be a positive integer to be defined later (it is the same number we used in the definition
of essentially singular pairs, see Definition 6.2). We define a paraproduct Π = ΠT ∗ by

Πf :=
∑
R∈D′

∑
Q∈D:
(Q)=2−r
(R)
dist(Q,∂R)�λ
(Q)

(E
R
b2)

−1 · E
R
f · (∆b1

Q
)∗ T ∗b2.

If we are working with a “nice” operator T , then T ∗b2 is well defined. Note that even if
T ∗b2 is not well defined, we still can define (∆b1

Q
)∗T ∗b2 by duality as the function f satisfying

〈f, g〉 = 〈b2, T∆b1
Q

g〉 ∀g ∈ L2(µ).

Let us study the matrix of Π. Let Q ∈ D, R ∈ D′. Let ϕ
Q

and ψ
R

be functions of the
form

ϕ
Q
(x) =

∑
Q′∈D:Q′⊂Q

(Q′)=
(Q)/2

A
Q′ · χQ′ (x) · b1(x) , (7.1)

ψ
R
(x) =

∑
R′∈D′:Q′⊂R

(R′)=
(R)/2

B
R′ · χR′ (x) · b2(x) , (7.2)

where A
Q′ , B

R′ are some constants. Suppose also, that the functions ϕ
Q
, ψ

R
are orthogonal

to constants, i. e.
∫

ϕ
Q

dµ = 0,
∫

ψ
R

dµ = 0.
The above representation, together with orthogonality to constants means simply that

∆b1
Q

ϕ
Q

= ϕ
Q

and ∆b2
R

ψ
R

= ψ
R
. One should think of ϕ

Q
, ψ

R
as of terms in martingale

difference decompositions, ϕ
Q

= ∆b1
Q

f , ψ
R

= ∆b2
R

g, f, g ∈ L2(µ).

Notice that 〈ϕ
Q
, Πψ

R
〉 is non-zero only if Q ⊂ R, �(Q) < 2−r�(R). Moreover, there

should exist a dyadic cube S ∈ D′, �(S) = 2r�(Q), Q ⊂ S ⊂ R, and for this cube S the
inequality dist(Q, S) � λ�(Q) should hold. Let R1 ∈ D′ be the dyadic cube of size �(R)/2,
containing S (it may coincide with S).

In this case

〈ϕ
Q
, Πψ

R
〉 = 〈ϕ

Q
, (∆b1

Q
)∗T ∗b2〉BR1

= 〈Tϕ
Q
, b2〉BR1

(7.3)

where B
R1

is the corresponding constant B
R′ in (7.2).

Theorem 7.1. Let b1 and b2 be weakly accretive functions. If T ∗b2 ∈ BMO2
λ(µ), then the

paraproduct Π is bounded on L2(µ).

Proof. First of all notice that |E
R
b2| � 1/δ. Therefore Lemma 4.1 and standard duality

argument imply that it is sufficient to prove the following embedding theorem∑
R∈D′

|f
R
|2

∑
Q∈D:
(Q)=2−r
(R)
dist(Q,∂R)�λ
(Q)

‖(∆b1
Q

)∗ T ∗b2‖2

L2(µ)
� C‖f‖2

L2(µ)
;
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here f
R

denotes the average of f , f
R

:= µ(R)−1
∫

R
f dµ.

Let
a

R
=

∑
Q∈D:
(Q)=2−r
(R)
dist(Q,∂R)�λ
(Q)

‖(∆b1
Q

)∗ T ∗b2‖2

L2(µ)
.

Since b2 ∈ BMO2
λ(µ), Lemma 5.1 implies that the family {a

R
}

R∈D′ satisfies the Carleson
measure condition ∑

R′⊂R

a
R′ � Cµ(R).

Therefore the Carleson embedding theorem (Theorem 3.1) implies∑
R∈D′

|f
R
|2a

R
� C‖f‖2

L2(µ)
.

Since we know that the paraproduct Π is bounded, we only need to estimate the matrix
〈(T − Π∗)ϕ

Q
, ψ

R
〉, Q ∈ D, R ∈ D′.

Definition 7.2. Let Q, R be a pair of cubes. Suppose for the definiteness that �(Q) � �(R).
We call this pair singular if

dist(Q, ∂R) � �(Q)γ�(R)1−γ,

or
dist(Q, ∂Rk) � �(Q)γ�(Rk)

1−γ

for some subcube Rk ⊂ R of size 1
2
�(R); here γ = α/(2α + 2d), and so γd + γα = α/2. We

call the singular pair Q, R essentially singular if, in addition, �(Q) < 2−r�(R).

Note that the definitions are consistent with the ones we had for disjoint Q and R, see
Definition 6.2.

7.2. Estimates of the matrix

From here on we assume that r in the definition of essentially singular pairs is large enough,
such that 2r(1−γ) � λ. Suppose we have 2 dyadic cubes Q ∈ D, S ∈ D′, Q ⊂ S, �(Q) =
2−r�(S). Suppose also that dist(Q, ∂S) � �(Q)γ�(S)1−γ. Then the inequality 2r(1−γ) � λ
implies that

dist(Q, ∂S) � �(Q)γ�(S)1−γ = �(Q)2r(1−γ) � λ�(Q).

Therefore, if R is a dyadic cube of size at least 2�(S), Q ⊂ S ⊂ R, and the pair Q, R is not
singular, then 〈ϕ

Q
, Πψ

R
〉 is given by (7.3).

Let ϕ
Q
, ψ

R
be two functions of the form (7.1), (7.2), and let ϕ

Q
is orthogonal to constants.

Suppose also that the functions ϕ
Q
, ψ

R
are normalized in L2(µ):

‖ϕ
Q
‖2

L2(µ) = 1, ‖ψ
R
‖2

L2(µ) = 1.
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Let Rk ∈ D′, k = 1, 2, ..., 2N be the dyadic cubes of size �(R)/2 containing in R. Then
ψ

R
can be written as

ψ
R
(x) =

2N∑
k=1

Bk · χRk
(x) · b2(x)

Without loss of generality one can assume that Q ⊂ R1. Then (see (7.3)),∣∣∣〈(T − Π′ϕ
Q
, ψ

R
〉
∣∣∣ =

∣∣∣〈Tϕ
Q
, ψ

R
− B1b2〉

∣∣∣
� |B1| ·

∣∣∣〈Tϕ
Q
, (χ

R1
− 1)b2〉

∣∣∣ +
2N∑
k=2

∣∣∣〈Tϕ
Q
, Bk · χRk

· b2〉
∣∣∣

The first term is easy to estimate. Using property (ii) of Calderón–Zygmund kernels and
the orthogonality of ϕ

Q
to constants, we can write for x ∈ RN \ Q

|(Tϕ
Q
)(x)| � C

�(Q)α

dist(x, Q)d+α
· ‖ϕ

Q
‖L1(µ) � C

�(Q)α

dist(x, Q)d+α
· µ(Q)1/2

Applying the Comparison Lemma (Lemma 2.1) one can get

|〈Tϕ
Q
, (χ

R1
− 1)b2〉| �

∫
RN\R1

|Tϕ
Q
| · |B2| dµ � C

�(Q)α

dist(Q, ∂R1)α
· µ(Q)1/2.

Since ‖ψ
R
‖L2(µ) = 1, we have |B1| � µ(R1)

−1/2 and therefore

|B1| ·
∣∣∣〈Tϕ

Q
, (χ

R1
− 1)b2〉

∣∣∣ � C
�(Q)α

dist(Q, ∂R1)α
·
(

µ(Q)

µ(R1)

)1/2

.

The pair Q, R is not singular, which implies

dist(Q, ∂R1) � �(Q)γ�(R1)
1−γ � �(Q)1/2�(R1)

1/2,

and therefore

|B1| ·
∣∣∣〈Tϕ

Q
, (χ

R1
− 1)b2〉

∣∣∣ � C ·
(

�(Q)

�(R1)

)α/2 (
µ(Q)

µ(R1)

)1/2

.

To estimate 〈Tϕ
Q
, Bk χ

Rk
b2〉, k = 2, 3, ..., 2N , we can use Lemma 6.4. It implies (if we

take into account that in our case D(Q, R) % �(R), and that �(R1) = 1
2
�(R)) that

|〈Tϕ
Q
, Bk χ

Rk
b2〉| � C · �(Q)α/2

�(R)d+α/2
µ(Q)1/2µ(Rk)

1/2

� C ·
(

�(Q)

�(R)

)α/2 (
µ(Q)

�(R)

)1/2

� C ·
(

�(Q)

�(R)

)α/2 (
µ(Q)

µ(R1)

)1/2

So we have proved the following lemma.
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Lemma 7.3. Let r be large enough, such that 2r � 4λ (see Lemma 5.1) and 2r(1−γ) � λ.
Let Q ∈ D, R ∈ D′ be dyadic cubes, Q ⊂ R, �(Q) < 2−r�(R). Suppose also, that the pair
Q, R is not singular. Let ϕ

Q
and ψ

R
be functions of the form (7.1), (7.2), and let ϕ

Q
be

orthogonal to constants. Let also R1 ∈ D′ be the dyadic cube of size �(R)/2 containing Q
(clearly R1 ⊂ R). Then for the Calderón–Zygmund operator T ,

∣∣∣〈(T − Π∗)ϕ
Q
, ψ

R
〉
∣∣∣ � C ·

(
�(Q)

�(R)

)α/2 (
µ(Q)

µ(R1)

)1/2

‖ϕ
Q
‖

L2(µ)
‖ψ

R
‖

L2(µ)
.

Let the matrix {T
Q,R

}
Q∈D,R∈D′ is defined by

T
Q,R

=


(

�(Q)

�(R)

)α/2 (
µ(Q)

µ(R1)

)1/2

, Q ⊂ R, �(Q) < 2−r�(R);

0, otherwise,

where R1 is the subcube of R of the first generation (�(R1) = �(R)/2) containing Q.

Lemma 7.4. The matrix {T
Q,R

}
Q∈D,R∈D′ defined above, generates a bounded operator on

�2, i. e. ∑
Q∈D,R∈D′

T
Q,R

x
Q
· y

R
� C

(∑
Q∈D

x2

Q

)1/2( ∑
R∈D′

y2

R

)1/2

for any sequences of nonnegative numbers {x
Q
}

Q∈D , {y
Q
}

R∈D′ ∈ �2.

Proof. Let us “slice” the matrix {T
Q,R

}
Q∈D,R∈D′ . Namely, for n = r + 1, r + 2, r + 3, . . . ,

define the matrix {T (n)

Q,R
}

QD,R∈D′ by

T (n)

Q,R
=

{
T

Q,R
, �(Q) = 2−n�(R);

0, otherwise.

If we show that the norms of the operators T (n) decrease as a geometric progression, i.e.,
that ∑

Q∈D,R∈D′

T (n)

Q,R
x

Q
y

R
� 2−nβC

(∑
Q∈D

x2

Q

)1/2 (∑
Q∈D

y2

Q

)1/2

for some β > 0, then we are done.
We can split the matrices T (n) into layers T (n,k), where

T (n,k)

Q,R
=

{
T (n)

Q,R
, �(Q) = 2k

0, otherwise

Clearly, the layers T (n,k) of T (n) do not interfere; therefore it is enough to estimate each layer
separately.
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Note that the “rows” {T (n,k)

Q,R
: Q ⊂ R} (R is fixed, �(R) = 2k+n) are uniformly (in R)

bounded on �2:∑
Q:Q⊂R

(Q)=2k

(T (n,k)

Q,R
)2 � C ·

(
�(Q)

�(R)

)α ∑
R1:R1⊂R


(R1)=
(R)/2

∑
Q:Q⊂R1


(Q)=2k

µ(Q)

µ(R1)

= 2NC ·
(

�(Q)

�(R)

)α

= 2NC2−nα.

Note that the supports of the “rows” of T (n,k) are pairwise disjoint. Therefore the rows do
not interfere, and so the norm of T (n,k) is bounded by C2−nα/2. We are done.

8. Estimates of the regular part of the matrix

Let dyadic lattices D and D′ be given. A dyadic square Q in one lattice (say, in D) is
called “bad” if there exists a bigger square R in the other lattice (in D′ in this case), such
that the pair Q, R is essentially singular; otherwise the square is called “good”.

Let a function f ∈ L2(µ) be supported by a cube of size 2n. We call the function f
“good” (D-good) if ∆b1

Q
f = 0 for any “bad” square Q ∈ D, �(Q) < 2n.

If one replaces D by D′ and b1 by b2, he gets the definition of D′-good functions.
Here and in what follows, to avoid notation like (n,D, b1)-good function, we assume that

n is fixed and we will always associate dyadic lattice D with the function b1, and the lattice
D′ with b2.

In the following lemma we assume that r from the definition of completely singular pairs
(Definition 6.2) is given. As in Section 7.2 we assume that r is large enough, so 2r(1−γ) � λ
and 2r � 4λ.

Also, let two dyadic lattices D and D′ be fixed.

Lemma 8.1. Suppose T be a Calderón–Zygmund operator, such that Tb1, T
∗b2 ∈ BMO2

λ(µ),
where b1, b2 are weakly accretive functions from Theorem 0.4. Suppose also that

|〈Tb1χQ
, b2χR

〉| � Cµ(Q)1/2µ(R)1/2 (8.1)

for cubes Q, R of comparable size which are close, i. e. for Q, R such that 2−r � �(Q)/�(R) �
2r, dist(Q, R) � min(�(Q), �(R)).

Then, for any D-good function f and any D′-good function g (f, g ∈ L2(µ))(both sup-
ported by some cubes of size 2n) we have

|〈Tf, g〉| � C‖f‖
L2(µ)

‖g‖
L2(µ)

.

Proof. We can write the decomposition (see Lemma 4.1)

f =
∑

Q∈D,
(Q)�2n

Eb1
Q

f +
∑

Q∈D,
(Q)=2n

∆b1
Q

f
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and similarly for g

g =
∑

R∈D′,
(R)�2n

Eb2
R

g +
∑

R∈D′,
(R)=2n

∆b2
R

g

Let us estimate the sum
∑

Q∈D,R∈D′〈T∆b1
Q

f, ∆b2
R

g〉. First of all notice, that the condition

(8.1) implies
|〈T∆b1

Q
f, ∆b2

R
g〉| � C‖∆

Q
f‖L2(µ)‖∆R

g‖L2(µ) .

Therefore ∑
2−r
(R)�
(Q)�2r
(R)

dist(Q,R)�min(
(Q),
(R))

|〈T∆b1
Q

f, ∆b2
R

g〉|

� C
(∑

Q∈D
‖∆b1

Q
f‖2

L2(µ)

)1/2( ∑
R∈D′

‖∆b2
R

g‖2
L2(µ)

)1/2

= C‖f‖L2(µ)‖g‖L2(µ)

(finitely many bounded diagonals).
On the other hand, Lemma 6.4 and Theorem 6.5 imply that∑
2−r
(R)�
(Q)�2r
(R)

dist(Q,R)�min(
(Q),
(R))

|〈T∆b1
Q

f, ∆b2
R

g〉|

� C
(∑

Q∈D
‖∆b1

Q
f‖2

L2(µ)

)1/2( ∑
R∈D′

‖∆b2
R

g‖2
L2(µ)

)1/2

= C‖f‖L2(µ)‖g‖L2(µ)

So, we need to estimate the sums over �(Q) < 2−r�(R) and �(R) � 2−r�(Q). Due to
the symmetry of the conditions of the lemma, it is enough to estimate only the sum over
�(Q) � 2−r�(R).

It remains to estimate the sum∑

(Q)�2−r
(R)

〈T∆
Q
f, ∆

R
g〉 =

∑
Q⊂R


(Q)�2−r
(R)

. . . +
∑

Q∩R=∅

(Q)�2−r
(R)

. . . .

The second sum can be estimated by Lemma 6.4 and Theorem 6.5:∑
Q∩R=∅


(Q)�2−r
(R)

|〈T∆b1
Q

f, ∆b2
R

g〉|

�
∑

Q∩R=∅

(Q)�2−r
(R)

C
�(Q)α/2�(R)α/2

D(Q, R)d+α
µ(Q)1/2µ(R)1/2‖∆b1

Q
f‖

L2(µ)
‖∆b2

R
g‖

L2(µ)

� C‖f‖
L2(µ)

‖g‖
L2(µ)

(since the functions f , g are “good”, entries 〈T∆b1
Q

f, ∆b2
R

g〉 corresponding to essentially

singular pairs Q, R are zero, and all others can be estimated as above, see Lemma 6.4)
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To estimate the first sum, notice that Π has a very special “triangular” matrix. Namely,
in the sum 〈f, Πg〉 =

∑
Q,R〈∆b1

Q
f, Π∆b2

R
g〉 only the terms with Q ⊂ R, �(Q) � 2−r�(R) may

be non-zero. Thus∑
Q⊂R


(Q)�2−r
(R)

〈T∆b1
Q

f, ∆b2
R

g〉 =
∑
Q⊂R


(Q)�2−r
(R)

〈(T − Π∗)∆b1
Q

f, ∆b2
R

g〉 + 〈f, Πg〉.

We know that the paraproduct Π is bounded, so we have to estimate the sum. And the
estimate of the sum follows immediately from Lemmas 7.3 and 7.4.

The sums of terms with Eb1
Q

f or Eb2
R

g∑
Q∈D,
(Q)=2n

R∈D′

|〈TEb1
Q

f, ∆b2
R

g〉|,
∑

R∈D′,
(R)=2n

Q∈D

|〈T∆b1
Q

f, Eb2
R

g〉|

can be estimated similarly.
And finally, the sum ∑

Q∈D,
(Q)=2n

R∈D′,
(R)=2n

|〈TEb1
Q

f, Eb2
R

g〉|

is bounded because it contains at most 22N non-zero terms (let us remind that f, g are
supported on a cube of size 2n).

9. Tb Theorem with stronger weak boundedness

condition

In this section we will prove the following, weaker version of Tb Theorem (Theorem 0.4),
where we use a stronger version of the weak boundedness assumption. In this section we
assume that the operator T is well defined on compactly supported functions and satisfies
the conditions (0.3) above in the Introduction (one should think of the truncated operators
Tε here).

Theorem 9.1. Let T be a Calderón–Zygmund operator such that Tb1, T ∗b2 are in BMO2
λ(µ)

for some weakly accretive functions b1, b2. Suppose also that 2r � 4λ and 2r(1−γ) � λ.
Suppose also, that

|〈Tb1χQ
, b2χR

〉| � Cµ(Q)1/2µ(R)1/2 (9.1)

for all cubes Q, R such that

�(R)/2 � �(Q) � 2�(R) and dist(Q, R) < 0.1 · min(�(Q), �(R))

(this assumption is a bit stronger than weak boundedness of b2Tb1).
Then the operator T is bounded on L2(µ).
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First of all notice, that the assumptions of the theorem imply that the inequality (9.1)
holds for all cubes, Q, R

2−r�(R) � �(Q) � 2r�(R) and dist(Q, R) < 0.1 · min(�(Q), �(R)),

of, course, with constant depending on r.
We will need this estimate for r satisfying

r � 1

γ
log2

(
29N24N

1 − 2−γ
A2

)
,

where A = max(A(b1), A(b2)), A(b1), A(b2) are equivalence constants from Lemma 4.1.
Note that it is an easy exercise to check that the condition (9.1) implies

|〈T∆b1
Q

f, ∆b2
R

g〉| � C‖∆b1
Q

f‖
L2(µ)

‖∆b2
R

g‖
L2(µ)

.

To prove the theorem we would like to estimate bilinear form 〈Tf, g〉. We already esti-
mated it for “good” functions f and g, see Lemma 8.1.

After we have proved the estimate for “good” functions, the question arises: ‘What
should we do about the “bad” ones?’ And the surprising answer is — nothing, just ignore
them! The point is that “bad” cubes are extremely rare, so we do not have to worry about
them.

Let us explain why.

9.1. Random dyadic lattice

Our random lattice will contain the dyadic cubes of standard size 2k (k ∈ Z), but will be
“randomly shifted” with respect to the standard dyadic lattice D0. The simplest idea would
be to pick up a random variable ξ uniformly distributed over RN and to define the random
lattice as ξ + D0. Unfortunately, there exists no such ξ and we have to act in a little bit
more sophisticated way.

Let us construct a random lattice of dyadic intervals on the real line R, and then define
a random lattice in RN as the product of the lattices of intervals.

Let Ω1 be some probability space and let x(ω) be a random variable uniformly distributed
over the interval [0, 1)N .

Let ξj(ω) be random variables satisfying P{ξj = +1} = P{ξj = −1} = 1/2. Assume also
that x(ω), ξj(ω) are independent. Define the random lattice D(ω) as follows:

(i) Let I0(ω) = [x(ω)− 1, x(ω)] ∈ D(ω). This uniquely determines all intervals in D(ω) of
length 2k where k � 0.

(ii) The intervals Ik(ω) ∈ D(ω) of length 2k with k > 0 are determined inductively: if
Ik−1(ω) ∈ D is already chosen, Ik(ω) is determined by the following rule: (Ik(ω))+ =
Ik−1(ω) if ξk(ω) = +1 and (Ik(ω))− = Ik−1(ω) if ξk(ω) = −1. By other words, at every
step we extend the interval Ik−1(ω) to the left if ξk(ω) = +1 and to the right otherwise.
Clearly, to know one interval of length 2k in the lattice is enough to determine all of
them.
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To get a random dyadic lattice in RN we just take a product of N independent random
lattices in R.

It is easy to check that the random lattice D(ω) in RN constructed in this way is uniformly
distributed over RN and satisfies the following

Equidistribution property: For x ∈ RN , k ∈ Z, the probability that dist(x, ∂Q) �
ε�(Q) for some cube of size 2k is exactly (1 − 2ε)N .

9.2. Bad cubes

Let D(ω) and D′(ω′) ( (ω, ω′) ∈ Ω × Ω ) be two independent random dyadic lattices, con-
structed above. We will call a cube Q ∈ D(ω) bad if there exists a cube R ∈ D′(ω′) of length
�(R) � �(Q) such that the pair Q, R is essentially singular. Otherwise we will call the cube
Q good.

The definition of bad cubes in D′(ω′) is the same (now we look for a bigger cube in D(ω)).

Lemma 9.2. Let r, γ be from the definition of essentially singular pairs, see Definition 6.2.
Then for any fixed ω and a cube Q ∈ D(ω) we have

P := Pω′{Q is bad } � 2N
2−rγ

1 − 2−γ
.

Proof. Given a cube Q ∈ D(ω) (ω is fixed) the probability P k that there exists a cube
R ∈ D′(ω′), Q ⊂ R, of size 2k�(Q) such that

dist(Q, ∂R) � �(Q)γ�(R)1−γ

can be estimated, see Fig. 6

P k � 1 −
(
1 − (2−k + 2−γk)

)N � 2N2−γk.

So, the probability P can be estimated

P =
∑
k�r

Pk � 2N
∑
k�r

2−γk = 2N
2−rγ

1 − 2−γ

9.3. With large probability “bad” parts are small

Consider functions f and g supported by some cube of size 2n. One can write down the
decomposition

f =
∑

Q∈D,
(Q)�2n

∆b

Q
f +

∑
Q∈D,
(Q)=2n

Eb

Q
f,

where the series converges in L2(µ), see Lemma 4.1.
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✻

❄
2−γk

✻❄2
−k

✻

❄

1

Figure 6: Estimate of probability Pk

Let us split f = fgood + fbad, where

fbad :=
∑

Q∈D, 
(Q)�2n

Q is bad

∆b1
Q

f .

Here “bad” means “D′-bad” where D′ = D′(ω′) is the other random dyadic lattice.

Similarly, one can decompose g = ggood + gbad, where

gbad :=
∑

Q∈D′, 
(Q)�2n

Q is bad

∆b2
Q

g ;

here “bad” means “D-bad”.

Let us estimate the mathematical expectation E‖fbad‖2
L2(µ) (taken over the random dyadic

lattices constructed above). To do that, let us consider (for a fixed dyadic lattice D) the
so-called square function S(x) defined for x ∈ Rn by

Sf(x) = SDf :=
∑

Q∈D:Q�x

(Q)�2n

‖∆b1
Q

f‖2
L2(µ)µ(Q)−1χ

Q

+
∑

Q∈D:Q�x

(Q)=2n

‖Eb1
Q

f‖2
L2(µ)µ(Q)−1χ

Q
.
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Clearly, ∫
RN

Sf(x)dµ(x) =
∑

Q∈D:Q�x

(Q)�2n

‖∆b1
Q

f‖2
L2(µ) +

∑
Q∈D:Q�x

(Q)=2n

‖Eb1
Q

f‖2
L2(µ) % ‖f‖2

L2(µ),

where % means equivalence in the sense of two-sided estimate, see Lemma 4.1. Note that∫
RN Sf(x)dµ(x) � A(b1)‖f‖2

L2(µ)
, where A(b1) is the constant from Lemma 4.1.

Consider the average square function EωSf(x) (for each x ∈ RN take the mathematical
expectation over all dyadic lattices D = D(ω)). Changing the order of integration, one can
see that

∫
RN EωSf(x)dµ(x) � A(b1)‖f‖2

L2(µ).

The (conditional, ω is fixed) probability Pω′ that a square Q is bad, is at most 2N 2−rγ

1−2−γ �
A−22−82−4N , where A = max(A(b1), A(b2), see Lemma 9.2, so

Eω′Sfbad(z) � A−22−82−4NSf(z).

Since

Eω′‖fbad‖2 � AEω′

(∫
Sfbaddµ

)
= A

∫
Eω′Sfbaddµ

� A−12−82−4N

∫
RN

Sfdµ � 2−82−4N‖f‖2
L2(µ),

we get Eω,ω′‖fbad‖2 = EωEω′‖fbad‖2 � 2−82−4N‖f‖2
L2(µ).

The probability that ‖fbad‖2
L2(µ) � 4·2−82−4N‖f‖2

L2(µ) cannot be more than 1/4, therefore

with probability 3/4 we have

‖fbad‖L2(µ) � 2 · 2−42−2N‖f‖L2(µ).

So, if we have two functions f and g and two random dyadic lattices D(ω) and D′(ω′),
then with probability at least 1/2 we have simultaneously

‖fbad‖L2(µ) � 2−32−2N‖f‖L2(µ), ‖gbad‖L2(µ) � 2−32−2N‖g‖L2(µ).

9.4. Pulling yourself up by the hair: proof of Theorem 9.1 under
apriori assumption that T is bounded

Let us now prove Theorem 9.1 under the assumption that we know apriori that T is bounded.
Let us pick functions f, g ∈ L2(µ), ‖f‖ = ‖g‖ = 1 such that |〈Tf, g〉| � ‖T‖/2. Since
compactly supported functions are bounded in L2(µ), we can always assume that both
functions are supported by some cube of size 2n.

Pick a dyadic lattices D, D′ such that

‖fbad‖L2(µ) � 2−32−2N‖f‖L2(µ) and ‖gbad‖L2(µ) � 2−32−2N‖g‖L2(µ) .

We can always pick such a lattice because, as we have shown above, a random pair of lattices
fits with probability at least 1/2.
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First of all, let us recall that by Lemma 8.1 we have the estimate

|〈Tfgood, ggood〉| � C‖fgood‖L2(µ)
‖ggood‖L2(µ)

.

We can write

|〈Tf, g〉| � |〈Tfgood, g〉| + |〈Tfbad, g〉|
� |〈Tfgood, ggood〉| + |〈Tfgood, gbad〉| + |〈Tfbad, g〉|.

We have

|〈Tfgood, ggood〉| � C‖fgood‖L2(µ)‖ggood‖L2(µ) � C‖f‖L2(µ)‖g‖L2(µ) � C,

|〈Tfgood, gbad〉| � 2−32−2N‖T‖, |〈Tfbad, g〉| � 2−32−2N‖T‖,

because ‖fbad‖L2(µ) � 2−32−2N , ‖fgood‖L2(µ) � ‖f‖L2(µ) � 1, and the same is true for g.
Therefore, since |〈Tf, g〉| � ‖T‖/2, and 2−2N � 1,

1

2
‖T‖ � C + 2 · 2−3‖T‖.

So ‖T‖ � 4C and we are done.

Remark 9.3. As one could see from the proof, to prove the limited version of Theorem 9.1,

it was enough to assume that r � 1
γ

log2

(
29A2

1−2−γ

)
. We will need the term 24N below, in the

proof of the full version of Theorem 9.1.

9.5. Pulling yourself up by the hair: proof of the full version of
Theorem 9.1

Now let us discuss what should we do to prove the theorem without the apriori assumption
that the operator T is bounded.

The easiest way to do that, is to restrict the operator T on a subspace where we know
that it is bounded.

For example, let us consider a fixed dyadic grid of cubes of size 2−n0 , and let a set X
consists of all functions f ∈ L2(µ), ‖f‖ � 1, constant on the grid and supported by a cube
of size 2n. Define

M(n0, n) = sup{|〈Tf, g〉| : f, g ∈ X}
(f , g can be supported by different cubes).

Clearly, if we show that M(n0, n) � C (C independent of n0, n), then we are done.
And it looks like everything works just fine in this case. The construction of random

dyadic lattices, for example, even gets simpler. We start with the fixed grid of cubes of size
2−n0 (base), and we want to construct grids of bigger cubes. There are 2N possibilities of
how to position a grid of size 2 · 2−n0 , and we assign each of the probability 2−N . For each
choice of the grid of size 2 · 2−n0 , there are 2N possibilities of how to arrange a grid of size
22 · 2−n0 : assign to each of them probability 2−N , etc.
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Pick functions f, g ∈ X such that |〈Tf, f〉| � M(n0, n)/2, split them into “good” and
“bad” parts, pick dyadic lattices that the norms ‖fbad‖, ‖gbad‖ are small, and pull yourself
out.

There is only one little problem here: fbad, gbad are not in X anymore: their support can
become bigger. However this problem is not hard to take care of.

Namely, support of fbad cannot be too big. Let R be a cube of size 2n, supporting f .
Then (for any dyadic lattice D) R can be covered by at most 2N dyadic cubes Qk ∈ D,
�(Qk) = 2n. Therefore fbad and fgood are supported by the union of the cubes Qk.

Similarly, gbad is supported by a union of at most 2N cubes Q′
k, �(Q′

k) = 2n.

As in the proof of the limited version of Theorem 9.1, we split the functions into good
and bad parts, and write the estimate

|〈Tf, g〉| � |〈Tfgood, g〉| + |〈Tfbad, g〉|
� |〈Tfgood, ggood〉| + |〈Tfgood, gbad〉| + |〈Tfbad, g〉|.

We have

|〈Tfgood, ggood〉| � C‖fgood‖L2(µ)‖ggood‖L2(µ) � C‖f‖L2(µ)‖g‖L2(µ) � C.

Since fbad is supported by 2N cubes of size 2n, we can split it into sum of 2N functions, such
that each function is supported by a cube of size 2n. Therefore

|〈Tfbad, g〉| � 2N2−32−2NM(n0, n) � 1

8
M(n0, n),

because ‖fbad‖L2(µ) � 2−32−2N Similarly, since both fbad and ggood are supported by 2N cubes
of size 2n,

|〈Tfgood, gbad〉| � (2N)22−32−2NM(n0, n) =
1

8
M(n0, n)

because ‖fgood‖L2(µ) � ‖f‖L2(µ) � 1, and ‖gbad‖L2(µ)
� 2−32−2N . Therefore, since |〈Tf, g〉| �

M(n0, n)/2, we get

1

2
M(n0, n) � C + 2 · 1

8
M(n0, n).

Therefore, M(n0, n) � 4C

10. Proof of the full version of Tb-Theorem

Now we are in a position to prove Tb-theorem (Theorem 0.4). Again, we first consider
a special, simpler case of the theorem (see Section 10.1 below), and then treat the general
case.
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10.1. Special case of Tb-theorem: weak boundedness on parallel-
epipeds

Let us first consider a special case, namely, let us suppose that we have a stronger assumption
of weak boundedness, namely

|〈Tχ
Q
b1, χQ

b2〉| � Cµ(Q) for any parallelepiped Q.

Let us remind, that we assume that we have some kind of an apriori estimate on the
norm of the operator T (for example, we have a sequence of regularized operators), and we
would like to get an estimate depending only on quantities in the theorem (independent of
the parameter of regularization). Let us point out also that in a subsequent Section 11 we
will get rid of the assumption of apriori boundedness of T (at least sometimes). But now, in
this Section 10.1 T is always already bounded (one should think of two-sided truncations of
a Calderón–Zygmund operator), and we are proving only the correct estimate of its norm.

The case of weaker apriori boundedness assumption, when T is bounded on compactly
supported functions (one-sided truncations), is treated in Section 10.3

We can pick a functions f, g ∈ L2(µ), ‖f‖ = ‖g‖ = 1 such that 〈Tf, g〉 � 3
4
‖T‖. As

above we can assume that each function is supported by a cube of size 2n. As in the previous
section we can split the functions in the “good” and “bad” parts, and write the estimate

|〈Tf, g〉| � |〈Tfgood, g〉| + |〈Tfbad, g〉| (10.1)

� |〈Tfgood, ggood〉| + |〈Tfgood, gbad〉| + |〈Tfbad, g〉|.

As we have shown in the previous section (Section 9), we can pick dyadic lattices D and
D′ such that ‖fbad‖L2(µ) � 2−32−2N , ‖gbad‖L2(µ) � 2−32−2N , and therefore

|〈Tfgood, gbad〉| + |〈Tfbad, g〉| � 1

4
‖T‖ (10.2)

Unfortunately, now we cannot estimate |〈Tfgood, ggood〉| � C, because in the sum∑
Q∈D,R∈D′

〈T∆b1
Q

f, ∆b2
R

g〉

we have infinitely many terms with Q and R of comparable size such that Q ∩R �= ∅. And
we do not have any estimate for such terms!

10.1.1. Idea of the proof

Let us remind, that in the weak version of Tb-theorem (Theorem 9.1), we did not have any
good estimate for terms where the pair Q, R is essentially singular. We dumped these terms
into “bad” parts of the functions, and we were able to “pull ourselves out by the hair”. We
will try to do the same trick with |〈Tfgood, ggood〉| now.

Namely, we want to get the estimate

|〈Tfgood, ggood〉| � C +
1

4
‖T‖. (10.3)
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Together with (10.1), (10.2) this implies

|〈Tf, g〉| � 1

2
‖T‖ + C.

Since |〈Tf, g〉| � 3
4
‖T‖, we get

1

4
‖T‖ � C,

and we are done!
To estimate |〈Tfgood, ggood〉| it is enough to estimate∑


(Q),
(R)�2n

|〈T∆b1
Q

f, ∆b2
Q

g〉| (10.4)

over all cubes Q, R of comparable size

2−r�(Q) � �(R) � 2r�(Q),

where r the same as in Theorem 9.1. Here ∆b1
Q

f should be replaced by Eb1
Q

f if �(Q) = 2n,

and similarly for R. Let us recall that since f is supported by a cube of size 2n there are at
most 2N terms Eb1

Q
f , �(Q) = 2n in the decomposition of f , and similarly for g.

If in the above sum (10.4) we consider only the terms such that the cubes Q and R are
separated (dist(Q, R) � ε min(�(Q), �(R)), ε > 0), then the sum is bounded by a constant
C = C(ε). Therefore, we only need to estimate the sum over all cubes Q, R such that
dist(Q, R) < ε min(�(Q), �(R)), and ε > 0 can be as small as we want. Of course, the
estimate of ‖T‖ we finally obtain, will increase as e → 0, but we are not after the optimal
estimate, so we can stop at arbitrary small ε.

To estimate the sum (10.4), over all cubes of comparable size (2−r�(Q) � �(R) � 2r�(Q)),
dist(Q, R) < ε min(�(Q), �(R)), it is convenient to write it in a different form. Namely, we
can rewrite the layer

∆b1
k f =

∑
Q∈D, 
(Q)=2k

∆b1
Q

f, k � n

as
∆b1

k f =
∑

Q∈D, 
(Q)=2k−1

c
Q
(f)b1, k � n,

where c
Q
(f) are some constants. We can write

f =
∑
k�n

fk =
∑
k�n

∑
Q∈D, 
(Q)=2k

c
Q
(f)b1,

where the “top layer” fn =
∑

Q∈D, 
(Q)=2n c
Q
(f)b1 is given by given by fn = Eb1

k f .
Let us remind the reader that by Lemma 4.1,

A−1‖f‖2

L2(µ)
�

∑
k

‖fk‖2

L2(µ)
� A‖f‖2

L2(µ)
,
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where the constant A = A(b1) depends only on the accretive function b1.
Similarly

∆b2
k g =

∑
R∈D′, 
(R)=2k

∆b2
R

g =
∑

R∈D′, 
(R)=2k−1

c′
R
(g)b2 , k � n

and
g =

∑
k�n

gk =
∑
k�n

∑
R∈D′, 
(R)=2k

c′
Q
(g)b2,

To estimate the sum (10.4) it is enough to estimate the sum∑
k∈Z

∑
Q,R

|c
Q
(f)c′

R
(g)〈Tχ

Q
b1, χR

b2〉|

over all Q ∈ D, R ∈ D′, such that �(Q), �(R) � 2n, 2−n�(Q) � �(R) � 2n�(Q), dist(Q, R) �
10 max(�(Q), �(R)).

Since for each cube Q there finitely many (at most C(N, r)) cubes R ∈ D′ satisfying the
above condition, and since for separated cubes Q, R (i.e. for cubes such that dist(Q, R) �
ε min(�(Q), �(R)) we have the estimate |〈Tχ

Q
b1, χR

b2〉| � Cµ(Q)1/2µ(R)1/2, it is enough to

consider the pairs Q, R satisfying dist(Q, R) < ε min(�(Q), �(R)).

10.1.2. “Cutting out” the “bad” part fk
b

For a cube Q let δ
Q

:= (1+2ε)Q\(1−2ε)Q, see Fig. 7. For a fixed point x ∈ Rn and fixed k,

let pε be the probability that x ∈ δ
R

for some cube R ∈ D′(ω′), 2k−r � �(R) � 2k+r, where
D′(ω′) is the random dyadic lattice constructed above in Section 9. Note, that pε does not
depend on k, and that pε → 0 as ε → 0. Of course, if we consider the random dyadic lattice
D(ω), we get the same probability pε. Note, that one can compute the probability pε, but
we only need the fact that it can be arbitrarily small.

For a cube Q ∈ D let Qb be its “bad” part,

Qb = Q
⋂( ⋃

R ∈ D′

2−k
(Q) � 
(R) � 2k
(Q)

δ
R

)
.

For a function f ∈ L2(µ) define “bad” parts fk
b of fk as follows,

fk
b :=

∑
Q∈D, 
(Q)=2k

c
Q
(f)χ

Qb
b1 ;

here we use subscript “b” instead of “bad” to avoid the confusion with fbad.
Let us estimate the mathematical expectation Eω′

(∑
k ‖fk

b‖2

L2(µ)

)
over all random lattices

D′(ω′) (the lattice D = D(ω) is fixed). First of all notice that for a fixed x ∈ Rn

Eω′|fk
b (x)|2 � pε|fk(x)|2,
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Figure 7: The set δ
Q

(the shaded one)

where pε is the probability that a point x belongs to δ
R

for some cube R ∈ D′(ω′) of fixed
size 2k, see above. Therefore, changing the order of integration we get

Eω′
(∑

k�n

‖fk‖2

L2(µ)

)
=

∑
k�n

∫
RN

E|fk
b (x)|2 dµ(x)

� pε

∑
k�n

∫
RN

|fk(x)|2 dµ(x)

= pε

∑
k�n

‖fk‖2

L2(µ)
� pεA(b1)‖f‖2

L2(µ)
,

where A(b1) is the equivalence constant from Lemma 4.1.
Since the above inequality holds for any dyadic grid D = D(ω), we get for the mathe-

matical expectation E = Eω,ω′

E
(∑

k�n

‖fk
b‖2

L2(µ)

)
� pεA(b1)‖f‖2

L2(µ)
= pεA(b1),

Similarly, for “bad” parts gk
b of the functions gk

gk
b :=

∑
R∈D′, 
(R)=2k

c′
R
(g)

∑
Q∈D, 
(Q)=2k

δ
Q
∩R �=∅

χ
δ
Q
∩R

b2 ,

we get

E
(∑

k�n

‖gk
b‖2

L2(µ)

)
� pεA(b2)‖g‖2

L2(µ)
= pεA(b2),
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So, for A = max(A(b1), A(b2)) we can estimate the probability

Pω,ω′

{∑
k�n

‖fk
b‖2

L2(µ)
� 8Apε

}
� 1

8
,

and similarly for g. So, with the probability at least 1− 1/4− 1/4− 1/8− 1/8 = 1/4 we get

‖fbad‖2

L2(µ)
� 2−32−2N , ‖gbad‖2

L2(µ)
� 2−32−2N (10.5)

and ∑
k�n

‖fk
b‖2

L2(µ)
� 8Apε ,

∑
k�n

‖gk
b‖2

L2(µ)
� 8Apε . (10.6)

10.1.3. Estimates of |〈Tχ
Q
b1, χR

b12〉|

Take two dyadic lattices D and D′ such that all the above inequalities hold (with probability
at least 1/4 random lattices would fit).

Consider two squares Q ∈ D, R ∈ D′, 2−k�(Q) � �(R) � 2k�(Q), dist(Q, R) <
ε min(�(Q), �(R)), see Fig. 8. We would like to estimate

|〈Tχ
Q
b1, χR

b1〉|.

Consider first the case when the cubes Q and R are in general position, as on Fig. 8: the
estimate for cases when Q ∩ R = ∅ or one of the cubes contains the other can be done
similarly.

Let ∆ := Q ∩ R, Qsep = Q \ ∆ \ δ
R

(the square Q without ∆ and without the shaded
part on Fig. 8), sep means separated (from R and from ∆). Let also Q∂ = Q \∆ \Qsep (the
shaded part of Q on Fig. 8). Symbol ∂ here means boundary, i. e. this set touches R and ∆.
Note that Q∂ ⊂ Q ∩ δ

R
.

Similarly, let us split R as R = Rsep ∪ R∂ ∪ ∆, where all sets are disjoint. Then

〈Tχ
Q
b1, χR

b2〉 = 〈Tχ
Q
b1, χRsep

b2〉 + 〈Tχ
Q
b1, χR∂

b2〉 + 〈Tχ
Q
b1, χ∆

b2〉

The first two terms are easy to estimate: since Q and Rsep are separated,

|〈Tχ
Q
b1, χRsep

b2〉| � Cµ(Q)1/2µ(Rsep)
1/2 � Cµ(Q)1/2µ(R)1/2

(the constant C here of course depend on ε). The second term can be estimated as

|〈Tχ
Q
b1, χR∂

b2〉| � ‖T‖ · ‖χ
Q
b1‖L2(µ)

‖χ
Rb

b2‖L2(µ)
,

because R∂ ⊂ Rb.
To estimate the last term, let us write it as

〈Tχ
Q
b1, χ∆

b2〉 = 〈Tχ
∆

b1, χ∆
b2〉 + 〈Tχ

Q∂
b1, χ∆

b2〉 + 〈Tχ
Qsep

b1, χ∆
b2〉
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Figure 8: Cutting out the bad part. The sets Q∂ and R∂ are the shaded parts of the squares
Q and R respectively.
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The first term is bounded by Cµ(Q)1/2µ(R)1/2 by assumption of the theorem. The other
two can be estimated as above (measure of Q∂ is small, and Qsep and ∆ are separated), so
summarizing all we get

|〈Tχ
Q
b1, χR

b2〉| � Cµ(Q)1/2µ(R)1/2

+ ‖T‖
(
‖χ

Q
b1‖L2(µ)

‖χ
Rb

b2‖L2(µ)

+ ‖χ
Qb

b1‖L2(µ)
‖χ

R
b2‖L2(µ)

)

10.1.4. Final estimates

We know that ∑
|c

Q
(f)|2‖χ

Qb
b1‖2

L2(µ)
=

∑
‖fk

b‖2

L2(µ)
� 8Apε∑

|c′
R
(g)|2‖χ

Rb
b2‖2

L2(µ)
=

∑
‖gk

b‖2

L2(µ)
� 8Apε ,

and that ∑
|c

Q
(f)|2µ(Q) � C‖f‖2

L2(µ)
= C∑

|c′
R
(g)|2µ(R) � C‖g‖2

L2(µ)
= C .

Since for a cube Q ∈ D there are at most M(N, r) cubes R ∈ D′, 2−r�(Q) � �(R) �
2r�(Q), such that dist(Q, R) � ε min(�(Q), �(R)), we get, using Cauchy–Schwartz inequality∑

|c
Q
(f)c′

R
(g)| · |〈Tχ

Q
b1, χR

b2〉|

� C‖f‖ · ‖g‖ + M(N, r)‖T‖
((∑

k�n

‖fk
b‖2

)1/2√
A‖g‖ +

√
A‖f‖ ·

(∑
k�n

‖gk
b‖2

)1/2
)

� C‖f‖ · ‖g‖ + M(N, r)A · 4
√

2pε‖T‖‖f‖‖g‖ = C + M(N, r)A · 4
√

2pε‖T‖,

where the sum is taken over all Q ∈ D, R ∈ D′ such that �(Q), �(R) � 2n, 2−r�(Q) � �(R) �
2r�(Q), dist(Q, R) < ε min(�(Q), �(R)).

As we said above, this is enough to get the estimate

|〈Tfgood, ggood〉| � C + 4A
√

2εM(N, r)‖T‖ (10.7)

(of course, C here depend on ε). Taking sufficiently small ε such that 4A
√

2εM(N, r) < 1
4
,

we get

|〈Tfgood, ggood〉| � C +
1

4
‖T‖,

and we are done.
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10.2. Tb-theorem under apriori assumption that T is bounded

Now we are going to prove the full version of the Tb-theorem (Theorem 0.4), assuming that
the operator T is bounded. The case when the operator is only well defined for compactly
supported functions is treated later in Section 10.3.

We are going to prove the theorem under the assumption that weak bounded means that
for some Λ > 1 the inequality |〈Tχ

Q
b1, χQ

b2〉| � Cµ(ΛQ) holds for all cubes Q.

To do this we need to modify a little the estimate of |〈Tχ
Q
b1, χR

b2〉|, where Q and R are
intersecting cubes of comparable size.

The construction is going on as above. Let us recall that we have picked f , g in L2(µ),
‖f‖

L2(µ)
= ‖f‖

L2(µ)
= 1 such that |〈Tf, g〉| � 3

4
‖T‖, and we now want to estimate |〈Tf, g〉|.

First we pick r in the definition of essentially singular pairs such, that with large proba-
bility the norms ‖fbad‖L2(µ)

, ‖gbad‖L2(µ)
are small, which implies the estimate

|〈Tfgood, gbad〉| + |〈Tfbad, g〉| � 1

4
‖T‖

for any dyadic lattice where the norms are small, cf (10.2). Also, with large probability
(at least 1/4), not only the norms of “bad parts” of f and g are small, but also the sums∑

k ‖fk
b‖L2(µ)

and
∑

k ‖gk
b‖L2(µ)

are small, see (10.5), (10.6).

Take sufficiently small ε such that 4A
√

2εM(N, r) < 1
4
. Here, as above, M(N, r) is the

upper bound on the number of cubes R ∈ D′, of comparable size with a given cube Q
(2−r�(Q) � �(R) � 2r�(Q)) and such, that dist(Q, R) � ε min(�(Q), �(R)).

So, let us now we have ε fixed, as well as two dyadic lattices D and D′ such that inequal-
ities (10.5), (10.6) hold.

10.2.1. Cutting out more of bad stuff

Fix now two intersecting cubes R and Q of comparable size ((2−r�(Q) � �(R) � 2r�(Q))).
Fix size

s = (10Λ)−1ε min(�(Q), �(R)),

and “drop” on the set ∆ := Q∩R a random grid G of cubes of size s. We want this random
grid to be uniformly distributed over RN , for example we can take a fixed grid and consider
all its shifts by ξ(ω), where ξ is a random vector uniformly distributed over the cube [0, s)N .

For ε′ > 0 let Gε′ be ε′s-neighborhood of the boundaries of the cubes in the grid G. Then
for a fixed point x ∈ RN the probability that x ∈ Gε′ is ϕ(ε′), where ϕ(ε′) → 0 as ε′ → 0.
(Again, here one can write a formula for ϕ(ε′), but we only need the fact that ϕ(ε′) → 0).

Clearly, the mathematical expectation E(µ(Gε′ ∩∆) = ϕ(ε′)µ(∆), so with positive prob-
ability µ(Gε′ ∩ ∆) � ϕ(ε′)µ(∆). So, for a given ε′ (and ∆) one can always find at lest one
grid G such that the above inequality holds.

10.2.2. Estimates of |〈Tχ
Q
b1, χR

b2〉|

To estimate |〈Tχ
Q
b1, χR

b2〉| Let us split the cubes Q and R into 3 parts. As above, define

Qsep by Qsep := Q \ ∆ \ δ
R
, where let us recall δ

Q
:= (1 + 2ε)Q \ (1 − 2ε)Q, see Fig. 7.



66

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

Qsep

Q

Rsep

R

∆
Q

Figure 9: Cutting out the bad part. Q∂ is the shaded part.
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∩ ∆

R
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Q

∆
R

∆

Figure 10: The intersection ∆ := Q∩R and the grid Gε′ (grid of small squares). ∆
Q

and ∆
R

are rectangles bounded by thick lines, ∆ is the rectangle, bounded by thinner line. Notice
that boundary of the intersection ∆

Q
∩ ∆

R
goes along the grid Gε′ .

In the definition of Q∂ is the main difference with the previous case. We want it now
to be almost δ

R
∩ Q, see Fig. 9. By “almost” we mean the following. We want that the

boundary hyperplanes of Q∂ that lie inside ∆ do not cut the cubes of the grid G, but go
along the boundaries of the grid, see Fig. 10. One can always pick such hyperplanes such
that the distance to the corresponding (parallel) side of R is between ε�(R)/2 and ε�(R).
It is possible, because we assumed that the size s of the cubes of the grid G is at most
(10Λ)−1ε�(R).

So, that is how we defined Q∂, and let us call the rest ∆
Q
, ∆

Q
:= Q \ Qsep \ Q∂, see

Fig. 9. Note also that Q∂ ⊂ Qb.
Let us now estimate

〈Tχ
Q
b1, χR

b2〉 = 〈Tχ
Q
b1, χRsep

b2〉 + 〈Tχ
Q
b1, χR∂

b2〉 + 〈Tχ
Q
b1, χ∆

R
b2〉

The first two terms are easy to estimate: since Q and Rsep are separated,

|〈Tχ
Q
b1, χRsep

b2〉| � Cµ(Q)1/2µ(Rsep)
1/2 � Cµ(Q)1/2µ(R)1/2

(the constant C here of course depend on ε). The second term can be estimated as

|〈Tχ
Q
b1, χR∂

b2〉| � ‖T‖ · ‖χ
Q
b1‖L2(µ)

‖χ
Rb

b2‖L2(µ)
,

because R∂ ⊂ Rb.
To estimate the last term, let us write it as

〈Tχ
Q
b1, χ∆

R
b2〉 = 〈Tχ

∆
Q

b1, χ∆
R

b2〉 + 〈Tχ
Q∂

b1, χ∆
R

b2〉 + 〈Tχ
Qsep

b1, χ∆
R

b2〉
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Clearly we have the estimates

|〈Tχ
Q∂

b1, χ∆
R

b2〉| � ‖T‖ · ‖‖χ
Qb

b1‖L2(µ)
‖χ

R
b2‖L2(µ)

and
|〈Tχ

Qsep
b1, χ∆

R
b2〉| � Cµ(Q)1/2µ(R)1/2

since Qsep and ∆
R

are separated.

Now we only need to estimate the first term. Let us denote ∆′
Q

:= ∆
Q
∩ Gε′ , ∆̃

Q
:=

∆
Q
\ Gε′ , and similarly for ∆

R
. Then

〈Tχ
∆

Q
b1, χ∆

R
b2〉 = 〈Tχ

∆′
Q

b1, χ∆
R

b2〉 + 〈Tχ
∆̃

Q

b1, χ∆′
R

b2〉 + 〈Tχ
∆̃

Q

b1, χ
∆̃

R

b2〉 (10.8)

The first two terms are easy to estimate:

|〈Tχ
∆′

Q

b1, χ∆
R

b2〉| � ‖T‖ · ‖χ
∆′

Q

b1‖L2(µ)
‖χ

∆
R

b2‖L2(µ)

� ‖T‖ · ‖b1‖∞‖b2‖∞ · µ(∆′
Q
)1/2µ(∆

R
)1/2

� ‖T‖ · ‖b1‖∞‖b2‖∞ ·
√

ϕ(ε′) · µ(∆
Q
)1/2µ(∆

R
)1/2

� ‖T‖ · ‖b1‖∞‖b2‖∞ ·
√

ϕ(ε′) · µ(Q)1/2µ(R)1/2,

and similarly

|〈Tχ
∆̃

Q

b1, χ∆′
R

b2〉| � ‖T‖ · ‖b1‖∞‖b2‖∞
√

ϕ(ε′)µ(Q)1/2µ(R)1/2.

And the last term 〈Tχ
∆̃

Q

b1, χ
∆̃

R

b2〉 is bounded by a

C · µ(∆) � C · µ(Q)1/2µ(R)1/2,

where the constant C depends on the parameters in the theorem, as well as on ε, r, ε′.
Indeed, the set ∆̃

Q
∪ ∆̃

Q
consists of finitely many disjoint parallelepipeds Sk (most of which

are cubes). Moreover, the set ∆̃
Q

is just a union of some of these parallelepipeds, and

similarly for ∆̃
R
.

Since any two disjoint parallelepipeds S1 and S2 are separated, and b1, b2 ∈ L∞, we have

|〈Tχ
S1

b1, χS2
b2〉| � Cµ(S1)

1/2µ(S2)
1/2 � Cµ(Q)1/2µ(R)1/2

If a parallelepiped S belongs to both ∆̃
Q

and ∆̃
R
, then it must be a cube, see Fig. 10.

Then by the assumption of weak boundedness

|〈Tχ
S
b1, χS

b2〉| � Cµ(ΛS) � Cµ(∆) � Cµ(Q)1/2µ(R)1/2.

Since the number of the parallelepipeds Sk is bounded above by a constant depending only
on r, ε, Λ, ε′, then taking the sum over all the parallelepipeds we get the desired estimate.
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Summarizing all we get

|〈Tχ
Q
b1, χR

b2〉| � C1µ(Q)1/2µ(R)1/2

+ ‖T‖
(
‖χ

Q
b1‖L2(µ)

‖χ
Rb

b2‖L2(µ)

+ ‖χ
Qb

b1‖L2(µ)
‖χ

R
b2‖L2(µ)

)
+ C2‖T‖ ·

√
ϕ(ε′) · µ(Q)1/2µ(R)1/2.

Here only the last term is new in comparison with the estimate (10.7) from Section 10.1.

10.2.3. Final estimates

Acting as in the previous section (i. e. taking the sum over all Q, R, see above), we can get
the estimate

|〈Tfgood, ggood〉| � C + 4A
√

2εM(N, r)‖T‖ + C ′‖T‖ ·
√

ϕ(ε′);

here again, only the last term is new.
Let us remind the reader, that ε was chosen to be small enough, such, that the second

term is bounded by ‖T‖/4.
Let us also remind the reader that

3

4
‖T‖ � |〈Tf, g〉| � 1

4
‖T‖ + |〈Tfgood, ggood〉|.

So, if we pick ε′ to be sufficiently small, such that C ′√ϕ(ε′) � 1/8, we get

3

4
‖T‖ � C +

1

4
‖T‖ +

1

4
‖T‖ +

1

8
‖T‖,

and therefore ‖T‖ � 8C.
We are done!

10.3. Full Tb theorem

Now let us discuss the proof of the full version of Tb theorem. We need to relax the as-
sumption that T is bounded, i. e. to replace it by a weaker assumption that for compactly
supported functions f , g,

|〈Tf, g〉| � C(A)‖f‖
L2(µ)

‖g‖
L2(µ)

,

where
A = max

{
diam(supp f), diam(supp g)

}
.

The definition of weak boundedness remains the same as in Section 10.2
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To prove the theorem under the above assumptions, we combine ideas from Sections 9.5
and 10.2.

Namely, let us introduce a set X consists of all functions f ∈ L2(µ), ‖f‖ � 1, supported
by a cube of size 2n (each function can be supported by its own cube, so X is not a linear
space). Define

M(n) = sup{|〈Tf, g〉| : f, g ∈ X}
(f , g can be supported by different cubes).

Clearly, if we show that M(n) � C (C independent of n), then we are done.
Pick functions f, f ∈ X such that |〈Tf, g〉| � 3

4
M(n). Acting as in Section 9.5 split the

functions f and g into “good” and “bad” parts, then get the estimates

|〈Tfbad, g〉| � 2N2−32−2NM(n) � 1

8
M(n),

and

|〈Tfgood, gbad〉| � (2N)22−32−2NM(n) =
1

8
M(n).

Then, acting as in Section 10.2 we get the estimate

|〈Tfgood, ggood〉| � C + 4A
√

2εM(N, r)M(n) + C ′M(n) ·
√

ϕ(ε′).

Note, that crucial part of the above estimate, is the estimate of |〈Tχ
Q
b1, χR

b2〉|. Since
by the construction both χ

Q
and χ

R
are supported by cubes of size 2n, one does not need

to change anything in reasoning, except replacing ‖T‖ by M(n).
We leave the rest and all details to a reader as an easy exercise. One does not need even

to change constants.

10.4. Remarks about other weak boundedness conditions

All the results of the above Sections 10.2, 10.3 remain true if we consider a different weak
boundedness condition

|〈Tb1χλQ
, b2χQ

〉| � Cµ(ΛQ)

for some Λ � λ > 1. Such kind of weak boundedness appears when we regularize (con-
sider truncations of) Calderón–Zygmund operators, defined initially on Lipschitz or smooth
functions, see Section 11 below.

Clearly, if the above condition holds for some λ > 1, it holds for all λ ∈ (1, Λ), so we can
assume that λ is as close to 1 as we want.

The only modification one has to to to the proof concerns Section 10.2.2. One just has
to cut off different neighborhoods of the grid G (see Section 10.2.1) from the cubes Q and
R. For example, cut Gε′ off R, but cut only Gε′/2 off Q.

More precisely, doing estimate (10.8) one has to define ∆′
R
, ∆̃

R
exactly as they were

defined, but put ∆′
Q

:= ∆
Q
∩ Gε′/2 , and ∆̃

Q
:= ∆

Q
\ Gε′/2 .

The rest of the proof remains the same.
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11. Apriorization.

In this section we are going to consider the case when the bilinear form is defined for
smooth functions or for Lipschitz functions, as in Sections 0.3.2 and 0.3.1 respectively.

We are going to reduce these cases to the case when we have apriori bounds on T . Namely,
first we are going to show that if Tb1 ∈ BMOp

λ(µ) for some p, 1 � p < ∞ (in particular, if
Tb1 ∈ BMO1

λ(µ)), and the operator T is weakly bounded, then Tb1 ∈ RBMO, and therefore
Tb1 ∈ BMO2

λ(µ)
Then we show that under the same assumptions the condition Tb1 ∈ BMO2

λ(µ) implies
Tεb1 ∈ BMO2

Λ(µ) (for some Λ > λ) for all truncated operators Tε with uniform estimates on
BMO norms, and that the truncated operators Mb2TεMb1 are weakly bounded (with uniform
estimates on constants).

11.1. Bilinear form is defined for smooth functions

We assume that bilinear form 〈Tb1f, b2g〉 of the operator Mb2TMb1 is well defined for all
smooth (say, C∞) compactly supported f and g.

We consider the following version of the weak boundedness assumption. Fix a C∞ func-
tion σ on [0,∞) such that 0 � σ � 1, σ ≡ 1 on [0, a] (0 < a < 1) and σ ≡ 0 on [1,∞), see
Fig. 2. Parameter a is not essential here, but we will already have too many parameters in
what follows, so let us fix some a, say a = 0.9.

For a ball B = B(x0, r) let σ
B
(x) := σ(|x − x0|/r). Clearly, σ

B
is supported by the ball

B and is identically 1 on the ball 0.9B. We will require that for any ball B,

|〈Tσ
B
b1, σ2B

b2〉| � Cµ(3B), |〈Tσ
2B

b1, σBb2〉| � Cµ(3B). (11.1)

Parameters 3 ad 2 are not essential here, and can be replaced by any numbers β > α >
1/a > 1. In classical theory even a stronger version of this condition is assumed, see [1], p.
49. We should also mention that for antisymmetric kernels (when the operator is treated as
principal value, or we should say, canonical value) and b1 = b2 = b this condition holds, see
Corollary 11.4 below.

Let us recall that a function b is called sectorial if b ∈ L∞, and there exists a constant
ξ ∈ C, |ξ| = 1 such, that Re ξb � δ > 0.

Theorem 11.1. Let bilinear form 〈Tb1f, b2g〉 be defined for smooth (C∞) compactly sup-
ported functions, and let Tr be truncated operators. Suppose also that for a function b1 ∈ L∞

and a sectorial function b2, the estimate (11.1) holds for any ball B.
Then the condition Tb1 ∈ BMOp

Λ(µ) (for some p, 1 � p < ∞) implies that Tb1 ∈
RBMO(µ) (and therefore, Tb1 ∈ BMO2

Λ(µ)).

Theorem 11.2. Let T be a Calderón–Zygmund operator (with bilinear form 〈Tb1f, b2g〉 be
defined for smooth (C∞) compactly supported functions), and let Tr be truncated operators.
Suppose also that for a function b1 ∈ L∞ and a sectorial function b2, the estimate (11.1)
holds for any ball B. Then the condition Tb1 ∈ BMO2

Λ(µ) implies

Trb1 ∈ BMO2
Λ(µ),
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uniformly in r, where Λ = 14λ.
Moreover,

|〈Tb1χΛQ
, b2χQ

〉| � Cµ(ΛQ)

for all cubes Q.

As we said above, the estimate (11.1) holds for antisymmetric Calderón–Zygmund oper-
ators. Namely, let K be an antisymmetric Calderón–Zygmund kernel (K(x, y) = −K(y, x)).
Let T be the corresponding operator defined in the sense of principal value (or, we better
say, canonical value), i. e.

〈Tbf, bg〉 =
1

2

∫∫
K(x, y)

[
f(y)g(x) − f(x)g(y)

]
b(x)b(y) dµ(x)dµ(y).

for Lipschitz compactly supported f and g.

Lemma 11.3. Let ϕ1, ϕ2 be Lipschitz functions |ϕ1,2(x) − ϕ1,2(y)| � L · |x − y|, supported
by bounded sets D1, D2 respectively, and such that ‖ϕ1,2‖∞ � 1. Then for b ∈ L∞

|〈Tbϕ1, bϕ2〉| � CL · ‖b‖2
∞ · diam(D1) · µ(D2).

Proof. Notice that

|ϕ1(y)ϕ2(x) − ϕ1(x)ϕ2(y)| = |ϕ1(y)ϕ2(x) − ϕ1(y)ϕ2(y) + ϕ1(y)ϕ2(y) − ϕ1(x)ϕ2(y)|
� |ϕ1(y)(ϕ2(x) − ϕ2(y))| + |ϕ2(y)(ϕ1(x) − ϕ1(y)|
� 2L|x − y|.

By property (i) of Calderón–Zygmund kernels we have for the function

F (x, y) = K(x, y) ·
[
ϕ1(y)ϕ2(x) − ϕ1(x)ϕ2(y)

]
· b(x)b(y)

the estimate |F (x, y)| � CL · ‖b‖2
∞ · |x − y|−d+1. One can estimate

|〈Tbϕ1, bϕ2〉| �
∫∫

D1×D2

|F (x, y)| dµ(x)dµ(y) +

∫∫
D2×D1

|F (x, y)| dµ(x)dµ(y)

The Comparison Lemma (Lemma 2.1) implies∫
D1

|F (x, y)| dµ(x) � C ′L · ‖b‖2
∞ diam(D1).

Integrating once more over D2 with respect to dµ(y) we get∫∫
D1×D2

|F (x, y)| dµ(x)dµ(y) � C ′L diam(D1)µ(D2) .

The second integral can be estimated similarly, one only has to change the order of integra-
tion.
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Corollary 11.4. For the antisymmetric operator T defined above as canonical value the
inequality

|〈Tbσ
B1

, bσ
B2
〉| � Cµ(B2)

(b ∈ L∞) holds for concentric balls B1 ⊂ B2 of comparable diameter, diam B2 � 2 diam B1.

Proof. Let r be the radius of the ball B1. The functions σ
B1,2

are Lipschitz function with

norms at most C/r, i. e.

|σ1(x) − σ1(y)| � C

r
|x − y|, |σ2(x) − σ2(y)| � C

r
|x − y|,

and the result follows trivially from Lemma 11.3.

The next lemma holds for an arbitrary integral operator (whose bilinear form 〈Tf, g〉 is
defined on smooth functions with compact supports) with kernel K satisfying |K(x, y)| �
C|x − y|−d. We are going to apply it later to the operator (Mb2TMb1)

∗ where T is the
Calderón–Zygmund operator.

Lemma 11.5. Suppose the operator T satisfies

|〈Tσ
B
, σ

2B
〉| � Cµ(3B)

for any B.
Then for any two concentric balls B1 ⊂ B2 of radii r and R respectively, R/r � 2

|〈Tσ
B1

, σ
B2
〉| � C ·

(
µ(3B1) + µ(B1) log

R

r

)
(11.2)

Remark 11.6. Clearly, in the conclusion of the lemma one can replace σ
B2

by χ
B2

: the result
will be the same.

Remark 11.7. In what follows the exact expression C ·(1+log R
r
) for the multiplier at µ(3B1)

in the estimate is not essential. What is essential, that this expression depends only on the
ratio R/r (which will be large but fixed in what follows), but does not depend on the ratio
µ(B2)/µ(B1), which can be arbitrary large, because the measure µ is not doubling.

Proof of Lemma 11.5. First, we can assume that R > 1.2r, because otherwise the con-
clusion is trivial.

Let x0 be the center of the balls B1, B2. Denote σ1,2 := σ
B1,2

, and let ϕ := σ
2B1

, ψ := 1−ϕ.

Then
〈Tσ1, σ2〉 = 〈Tσ1, ϕ〉 + 〈Tσ1, ψσ2〉

because ϕσ2 = ϕ.
By the assumption

|〈Tσ1, ϕ〉| � Cµ(3B1).

The second term is also easy to estimate. Due to the estimate on the kernel K∣∣[Tσ1

]
(x)

∣∣ � Cµ(B1)

dist(x, B1)d
=

Cµ(B1)

(|x − x0| − r)d
,
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where x0 is the center of the balls B1, B2. Since ψ(x) = 0 for |x − x0| < 1.8r, we can write

|〈Tσ1, ψσ2〉| �
∫

1.8r�|x−x0|<R

Cµ(B1)

(|x − x0| − r)d

�
∫

1.8r�|x−x0|<R

Cµ(B1)13d

|x − x0|d
� C ′µ(B1) log

R

r

Adding the estimates, we get the desired conclusion.

Let us remind the reader, that in the following lemma BMO means “ball” BMO, i. e. all
averages are taken over balls, not over the cubes.

Let us also remind the reader, that a function f is called sectorial if f ∈ L∞ and there
exists ξ ∈ C, |ξ| = 1, such, that Re ξf � δ

Lemma 11.8. Let T be a Calderón–Zygmund operator and let b1 ∈ L∞, and let b2 be a
sectorial function. Suppose also that

|〈Tb1σ2B
, b2σB〉| � Cµ(3B)

for any concentric balls B ⊂ B′. Suppose also that Tb1 ∈ BMOp
λ(µ), λ � 2 for some p,

1 � p < ∞.
Then for a ball B ∫

B

|Tb1σB |
p dµ � Cµ(B).

where B = (2λ)B.

Proof. The idea of the proof is quite simple. First of all notice that the assumption λ � 2
is not a restriction. The condition Tb1 ∈ BMOp

λ(µ) implies that Tb1 restricted to the ball
B, belongs “up to an additive constant” to Lp(µ

∣∣ B), and the weak boundedness (11.1) will
imply that the constant is not too big.

Let g be a smooth function supported by the ball B, ‖ϕ‖
Lq(µ)

= 1, 1/p + 1/q = 1. We

want to estimate |〈Tb1χB , b2g〉|.
Pick a constant c such, that

c

∫
2B

σ
2B

b2dµ =

∫
B

b2gdµ,

i. e. such, that
∫

(b2g − cb2σ2B
)dµ = 0.

Since b2 is sectorial,
∣∣∣∫2B

σ
2B

b2dµ
∣∣∣ � δµ(B), and we have

|c| � δ−1µ(B)−1

∫
B

|b2g|dµ � δ−1µ(B)−1‖b2‖∞‖g‖
Lq(µ)

µ(B)1/p = δ−1‖b2‖∞ · µ(B)−1/q,

Since |σ
2B

| � 1 and b2 is sectorial,∫
|σ

2B
|qdµ �

∫
|σ

2B
|dµ � δ−1

∣∣∣∫ σ
2B

b2dµ
∣∣∣.



11. Apriorization. 75

On the other hand we know that

|c| ·
∣∣∣∫

2B

σ
2B

b2dµ
∣∣∣ =

∣∣∣∫
B

b2gdµ,
∣∣∣ � ‖b2‖∞‖g‖

L2(µ)
µ(B)1/p = ‖b2‖∞µ(B)1/p.

Combining this with the above estimate for |c| we get

|c|q
∫

|σ
2B

|qdµ � |c|q−1|c| · δ−1
∣∣∣∫ σ

2B
b2dµ

∣∣∣ � C1/qµ(B)−(q−1)/qµ(B)1/p = C1/q,

i. e. ‖cσ
2B

b2‖Lq(µ)
� C.

Therefore for ϕ = g − cσ
2B

we have ‖ϕ‖
Lq(µ)

� C + 1 and
∫

ϕb2dµ = 0.

Then
〈Tb1, ϕb2〉 = 〈T (1 − σB)b1, ϕb2〉 + 〈Tb1σB , b2ϕ〉

Since the supports of ϕ and 1 − σB are separated, using Lemma 2.2 (for balls instead of
cubes) and the Comparison Lemma (Lemma 2.1) we can estimate the first term

|〈T (1 − σB)b1, b2ϕ〉| � C‖ϕ‖
L1(µ)

� Cµ(B)1/p‖ϕ‖
Lq(µ)

= Cµ(B)1/p

We know, that Tb1 ∈ BMOp
λ(µ), therefore

|〈Tb1, b2ϕ〉| � Cµ(2λB)1/p‖ϕ‖
Lq(µ)

(ϕ is supported by 2B). It follows that

|〈Tb1σB , b2ϕ〉| � Cµ(2λB)1/p‖ϕ‖
Lq(µ)

.

Lemma 11.5 implies that |〈Tb1σB , b2σB〉| � Cµ(3B) � Cµ(B), so

|〈Tb1σB , cb2σB〉| � C ′µ(B)µ(B)−1/q � C ′µ(B)1/p,

thus
|〈Tb1σB , b2g〉| � Cµ(B)1/p.

We are done.

Proof of Theorem 11.1. follows the lines of the proof of Theorem 2.4 with only modi-
fication that one have to use Lemma 11.8 instead of Lemma 2.5. We leave details to the
reader.

Proof of Theorem 11.2. Fix some ball B. First of all notice, that we need to prove the
conclusion of the theorem only for small r, say for r < 0.1 diam(B).

Indeed, let r � 0.1 diam(B). Then∣∣(Trb1χ2B
(x)

)∣∣ � C

rd
µ(2B) � C ′,

and so ∫
B

|Trb1χ2B
|2 dµ � C ′µ(B).
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On the other hand, for ϕ supported by the ball B and satisfying
∫

ϕ dµ = 0 we have (cf
Lemmas 2.2, 2.1)

|〈Tr(1 − χ
2B

), ϕ〉| � C‖ϕ‖
L1(µ)

� Cµ(B)1/2‖f‖
L2(µ)

, (11.3)

(this inequality holds for all r) so for r � 0.1 diam(B) we even have inclusion in BMO2
1(µ).

So, let us suppose that r < 0.1 diam B. Define B0 := 7B, and let B := 2λB0 = ΛB.
We want to show that ∫

B

|Trb1σB |
2dµ � Cµ(B). (11.4)

This would imply Trb1 ∈ BMO2
λ(µ), because as we already know for any ϕ supported by the

ball B and satisfying
∫

ϕ dµ = 0 we have (cf (11.3))

|〈Tr(1 − χB), ϕ〉| � C‖ϕ‖
L1(µ)

� Cµ(B)1/2‖ϕ‖
L2(µ)

.

The condition (11.4) also implies the weak boundedness condition |〈Tb1χΛB
, b2χB

〉| �
Cµ(ΛB), so if we prove (11.4), we are done.

To prove the inequality (11.4) we are going to apply a modification of what we called
“the Guy David trick” in [11, Section 4]

Let x ∈ B and r < 0.1 diam B be fixed. Consider a sequence of balls Bj = B(x, rj),
rj = 2Jr. Let µj := µ(Bj). Let n be the smallest number such that either µn � 2 · 3dµn−1

or B ⊂ Bn.
Let R = rn−1 = 3n−1r. Let us estimate the difference∣∣∣[Trb1σB

]
(x) −

[
T3Rb1σB

]
(x)

∣∣∣ �
∫

Bn\B0

|K(x, y)b1(y)σB(y)|dµ(y)

� C
n∑

j=1

∫
Bk\Bk−1

|K(x, y)|dµ(y) =
n∑

j=1

Ij

Let us recall now that |K(x, y)| � A|x − y|d, and therefore

Ij � A
µj

rd
j−1

= A
µj

rd
j−1

, j = 1, . . . , n.

By the construction µj � [2 · 3d]j+1−nµn−1 for j = 0, . . . , n − 1 and therefore

n−1∑
j=1

Ij � A

n−1∑
j=1

µj

rd
j−1

� A · 2 · 3d

n−1∑
j=1

2j−k � A · 2 · 3d.

The last term can be estimated In � Aµn/r
d
n−1 � C and therefore∣∣∣[Trb1σB

]
(x) −

[
T

3R
b1σB

]
(x)

∣∣∣ � C.
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Now we want to estimate
∣∣[T

3R
b1σB

]
(x)

∣∣. If we stopped because B ⊂ Bn, then 3R �
diam B/2 and in this case we know that

∣∣[T
3R

b1σB
]
(x)

∣∣ � C. Therefore we now can assume
that µn � 2 · 3dµn−1, i. e. we are now in the doubling situation!

Let σ := σ
B(x,1.2R)

, so σ ≡ 1 on Bn−1 = B(x, R).

Denote A :=
∫

b2σdµ, and let us compare
[
T

3R
b1σB

]
(x) to the average

V (x) := V
R
(x) := A−1

∫
b1σ

[
Tb1σB

]
dµ. (11.5)

Since b2 is sectorial, A � δµ(B(x, R)) and therefore

|V
R
(x)| � 1

δ · µ(B(x, R))

∫
B(x,1.2R)

|b1σ
[
Tb1σB

]
| dµ

� µ(B(x, 3R))

δ · µ(B(x, R)
· ‖b2‖∞ · M̃ |χ

B(x,1.2R)
· Tb1σB |

� δ−12 · 3d‖b2‖∞ · M̃ |χ
B0

· Tb1σB |,

where M̃ is the maximal operator,

M̃f(x) := sup
r>0

µ(B(x, 2.5r))−1 ·
∫

B(x,r)

|f(y)| dµ(y)

(in the last inequality we replaced χ
B(x,1.2R)

by χ
B0

because B(x, 1.2R) ⊂ B0).

We know, that the operator M̃ is bounded on L2(µ), see Lemma 3.1 in [11].
We have

[T
3R

b1σB ](x) − V
R
(x) =

∫
B\B(x,3R)

b1σB [T ∗δx] dµ(y)

− A−1

∫
σb2 ·

[
Tb1 · (1 − χ

B(x,3R)
)σB

]
dµ

− A−1

∫
σb2

[
Tb1 · χB(x,3R)

σB
]
dµ

=

∫
B\B(x,3R)

b1σB ·
[
T ∗(δx − A−1σb2)

]
dµ

− A−1

∫
σb2·

[
Tb1χB(x,3R)

]
dµ

We know that
∫

δx − A−1σb2 dµ = 0, and therefore the first term is bounded by

C|A|−1‖σb2‖L1(µ)
� C ′.

The second term also can be estimated by Lemma 11.5 (see Remark 11.6) by

A−1C · µ(B(x, 1.22R)) � A−1C · µ(B(x, 3R))

� A−1 · C · 2 · 3d · µ(B(x, R)) � δ−1C · 2 · 3d.
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Summarizing everything we get for x ∈ B the estimate∣∣[Trb1σB
]
(x)

∣∣ � C1 + C2M̃ |χ
B0

· Tb1σB |.

By Lemma 11.8 for p = 2

‖χ
B0

· Tb1σB‖
2

L2(µ)
� Cµ(B).

Since the operator M̃ is bounded on L2(µ),∫
B

∣∣[Trb1σB
]
(x)

∣∣2 dµ(x) � Cµ(B),

and we are done!

Lemma 11.9. The modified maximal function operator M̃ is bounded on Lp(µ) for each
p ∈ (1, +∞] and acts from L1(µ) to L1,∞(µ).

Proof. The boundedness on L∞(µ) is obvious. To prove the weak type 1 − 1 estimate, we
will use the celebrated

Vitali covering theorem. Let X be a separable measure space with measure. Fix some
R > 0. Let E ⊂ X be any set and let {B(x, rx)}x∈E

be a family of balls of radii 0 < rx < R.
Then there exists a countable subfamily {B(xj, rj)}∞j=1 (where xj ∈ E and rj := rxj

) of
disjoint balls such that E ⊂ ∪jB(xj, 2.5rj) (2.5 can be replaced by 2 + ε, ε > 0 here).

For the proof of the Vitali covering theorem, we refer the reader to his favorite textbook
in geometric measure theory.

Now, to prove the lemma, fix some t > 0. Pick R > 0 and consider the set E of the
points x ∈ supp µ for which

M̃ (R)f(x) := sup
0<r<R

1

µ(B(x, 3r))

∫
B(x,r)

|f | dµ > t.

For every such x, there exists some radius rx ∈ (0, R) such that∫
B(x,rx)

|f | dµ > tµ(B(x, 3rx)).

Choose the corresponding collection of pairwise disjoint balls B(xj, rj). We have

µ(E) �
∑

j

µ(B(xj, 3rj)) � 1

t

∑
j

∫
B(xj ,rj)

|f | dµ �
‖f‖

L1(µ)

t
.

It remains only to note that M̃ (R)f ↗ M̃f as R → +∞.
The boundedness on Lp(µ) for 1 < p < +∞ follows now from the Marcinkiewicz inter-

polation theorem.
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11.2. Bilinear form is defined for Lipschitz functions.

In this section we assume that the bilinear form 〈b2Tb1f, g〉 is well defined for compactly
supported Lipschitz functions f , g.

Let | . | denote the “�∞-norm” on RN , |x| := max{|xk| : 1 � k � N}, so the “balls” in
this norm are just cubes. We fixed the “�∞-norm” on RN because we have to use cubes in
the definition of weak accretivity. The results of this section hold for arbitrary norm | . |, if
weak accretivity means that the averages over the balls in this norm are large.

By weak boundedness in this case we mean the following two conditions:

(i) For all pairs of Lipschitz functions ϕ1, ϕ2 satisfying |ϕ1,2(x) − ϕ1,2(y)| � L · |x −
y|, supported by bounded sets D1, D2 respectively, and such that ‖ϕ1,2‖∞ � 1 the
inequalities

|〈Tb1ϕ1, b2ϕ2〉| , |〈Tb1ϕ2, b1ϕ2〉| � CL · ‖b1‖∞ · ‖b2‖∞ · diam(D1) · µ(D2).

should hold for weakly accretive functions b1, b2 (this is for Tb-Theorem, for T1-
Theorem b1 = b2 = 1).

As Lemma 11.3 above shows, this is true for antisymmetric kernels.

(ii) Let σε be the function as on Fig. 1. For a ball (cube) Q = Q(x0, r) = {x ∈ RN :
|x − x0| � r} let

σε

Q
:= σε(|x − x0|/r).

(Clearly σε

Q
is a Lipschitz function with Lipschitz norm at most C/(rε)).

We will require that for all cubes Q

|〈Tb1σ
ε

Q
, b2σ

ε

Q
〉| � Cµ(λ′Q)

for some λ′ � 1, uniformly in ε and Q.

Definitely, the last condition holds for antisymmetric kernels, since 〈Tbσε

Q
, bσε

Q
〉 = 0

Theorem 11.10. Let T be a Calderón–Zygmund operator, such, that the bilinear form
〈Tb1f, b2g〉 be defined for for Lipschitz compactly supported f and g. Suppose that T is
weakly bounded as above.

If Tb1 ∈ BMOp
λ(µ) for some p ∈ [1,∞), λ > 1, then Tb1 ∈ RBMO(µ) (and therefore

Tb1 ∈ BMO2
λ(µ)).

Theorem 11.11. Let T be a Calderón–Zygmund operator as in the previous theorem, b1 ∈
L∞, and let b2 be a weakly accretive function. If Tb1 ∈ BMO2

λ(µ), then for truncated operators
Tr we have Trb1 ∈ BMO2

Λ(µ), Λ = 14λ with uniform estimate on the norms. Moreover, the
weak boundedness condition

|〈Tεb1χ2Q
, b2χQ

〉| � Cµ(3Q)

holds for all cubes Q.
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Let us recall that weakly accretive means µ(Q)−1
∣∣∣∫Q

b dµ
∣∣∣ � δ for all cubes Q. Let us

also recall that | . | means the ‘�∞-distance” |x − y| := ‖x − y‖∞ := max{|xk − yk| : 1 � N}
on RN , and the theorem implies that for “cubic” truncated operators T c

r ,

T c
r f(x) :=

∫
‖x−y‖∞>r

K(x, y)f(y) dµ(y)

we have T c
r ∈ BMO2

Λ(µ) (with uniform estimates on norms). However, since the differences
Tr − T c

r (Tr is the usual truncating, where one integrates over the set ‖x − y‖2 > r) are
uniformly bounded, the same holds for Tr.

The proof of the theorem is very similar to the proof of Theorem 11.2. Let us introduce
functions σε as on Fig. 1. We denote σ := σ0.1.

For a cube (ball in the norm | . |) B = B(x0, r) let σε

B
:= σε(|x − x0|/r). Clearly σε

B
is a

Lipschitz function with Lipschitz norm 1/(rε).
Let us recall that the function σε is defined on Fig. 1, and when we skip ε, σ denotes σ0.1.

Let us also remind the reader, that for a ball B = B(x0, r), we define σε

B
(x) := σε(|x−x0|/r).

Lemma 11.12. Let Mb2TMb1 be weakly bounded, as it was defined in the beginning of this
section, and let λ′ be the blow up constant in the definition of weak boundedness, i. e.

|〈Tb1σ
ε

Q
, b2σ

ε

Q
〉| � Cµ(λ′Q)

for all cubes Q (uniformly in ε and Q).
Given R > 0 let R0, R � R0 � 1.2R be as above in Lemma 2.8. Then for all ε > 0

|〈Tb1σB(x0,3R)
, b2σ

ε

B(x0,R0)
, 〉| � Cµ(B(x0, ΛR)),

where Λ = max(1.2λ′, 3), and C does not depend on ε.

Proof. Since Mb2TMb1 is weakly bounded

|〈Tb1σ
ε

B(x0,R0)
, b2σ

ε

B(x0,R0)
〉| � Cµ(B(x0, λ

′R0)) � Cµ(B(x0, ΛR)),

so it remains to estimate

〈Tb1 · (σB(x0,3R)
− σε

B(x0,R0)
), b2σ

ε

B(x0,R0)
〉 = 〈Tψb1, ϕb2〉,

where ψ := σ
B(x0,3R)

− σε

B(x0,R0)
, ϕ := σε

B(x0,R0)
.

Split ψ = ψ1 + ψ2 as on Fig. 11. Then

〈Tb1ψ, b2ϕ〉 = 〈Tb1ψ1, b2ϕ〉 + 〈Tb1ψ2, b2ϕ〉.

Since ‖ϕ‖∞ � 1, ‖ψ1‖∞ � 1, and the functions ϕ and ψ1 are supported by B(x0, R0) and
B(x0, 3R) \ B(x0, R0) respectively, the first term can be estimated by Lemma 2.9:

|〈Tb1ψ1, b2ϕ〉| � Cµ(B(x0, 3R)).
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By condition (i) of the definition of weak boundedness the second term can be estimated
as

|〈Tb1ψ2, b2ϕ〉| � C · 1

εR0

· R0 · µ({x : dist(x, S
R0

) < εR0}),

where S
R0

:= {x : |x − x0| = R0}; here diam(supp ϕ) � 2R0, and ψ2 is supported by the

“annulus” {x : dist(x, S
R0

) < εR0}. Lemma 2.8 implies that

µ({x : dist(x, S
R0

) < εR0}) � Cε · µ(B(x0, 3R)),

and therefore |〈Tb1ψ2, b2ϕ〉| � Cµ(B(x0, 3R)).

To prove Theorem 11.11 we need the following analogues of Lemmas 2.5, 2.7, 11.8.

Lemma 11.13. Under the assumptions of Theorem 11.11, for any cube Q∫
Q

|Tb1χ2Q
|pdµ � Cµ(ΛQ),

where Λ = max(2λ, 2λ′, 3)

Proof. Pick a ball (cube) B(x0, R). Lemma 11.12 implies that

|〈Tb1χB(x0,2R
, b2σ

ε

B(x0,R0)
〉| � Cµ(B(x0, ΛR))

uniformly in ε. Taking limit as ε → 0 we get

|〈Tb1χB(x0,2R)
, b2χB(x0,R0)

〉| � Cµ(B(x0, ΛR)). (11.6)

Now we just repeat the proof of Lemma 2.5.
Let g be a smooth (Lipschitz) function supported by the ball B(x0, R) and such that

‖g‖q = 1, 1/p + 1/q = 1. Pick a constant c such that

c

∫
B(x0,R0)

b2dµ =

∫
b2gdµ

so that
∫

(b2g − cb2χB(x0,R0)
)dµ = 0.

Weak accretivity of b2 implies2
∣∣∣∫B(x0,R0)

b2dµ
∣∣∣ � δµ(B(x0, R0)), therefore

c| � δ−1µ(B(x0, R0)
−1

∫
|b2g|dµ � Cµ(B(x0, R0)

−1‖g‖qµ(B(x0, R))1/p � Cµ(B(x0, R0)
−1/q,

so ‖cχ
B(x0,R)

‖q � C. Then ‖b2 · (g − cχ
B(x0,R)

‖ � C + 1, and the condition Tb1 ∈ BMOp
λ(µ)

implies

|〈Tb1χB(x0,2R)
, b2 · (g − cχ

B(x0,R0)
)〉| � Cµ(B(x0, 2λR)) � Cµ((B(x0, ΛR)).

This inequality together with estimate (11.6) implies |〈Tb1χB(x0,2R)
, b2g〉| � Cµ(B(x0, ΛR),

and that is exactly what we need.

2There is a little detail here: In the definition of weak accretivity we deal with cubes that are obtained
from the cube [0, 1)N by shifts and dilations, but our cube (ball) B(x0, R0) is an open one. However, Lemma
2.8 implies that the measure µ of the boundary of the ball B(x0, R0) is 0, so this does not present a problem.
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R0 R0 + εR0

εR0 εR0

0

1

ϕ ψ1

ϕ

ψ2

1

0

0

1
ϕ := σε

B(x0,R0)
ψ := σ

B(x0,3R)
− σε

B(x0,R0)

Figure 11: Splitting of the function ψ.
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Proof of Theorems 11.10 and 11.11. The proof of Theorem 11.10 follows the proof of
theorem 2.4 without any modifications. One only have to use the above Lemma 11.13 instead
of Lemma 2.5

The proof of Theorem 11.11 follows the proof of Theorem 11.2, only instead of Lemma
11.5 one has to use Lemma 11.13. We leave all the details to the reader.
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para-accretive et interpolation, Rev. Mat. Iberoamer., 1 (1985), p. 1-56.

[8] T. Murai A real variable method for the Cauchy transform, and analytic capacity Lect.
Notes in Math., 1307, Springer-Verlag, Berlin, 1988.

[9] F. Nazarov and S. Treil, The hunt for a Bellman function: applications to estimates
of singular integral operators and to other classical problems in harmonic analysis, St.
Petersburg Mathematical Journal, 8(1996), No 5, 32–162.

[10] F. Nazarov, S. Treil, and A. Volberg, Cauchy Integral and Calderón-Zygmund operators
on nonhomogeneous spaces, International Math. Research Notices, 1997, No 15, 103–
726.

[11] F. Nazarov, S. Treil, and A. Volberg, Weak type estimates and Cotlar inequalities for
Calderón-Zygmund operators on nonhomogeneous spaces, International Math. Research
Notices, 1998, No 9, p. 463–487.

[12] F. Nazarov, S. Treil, and A. Volberg, Accretive system Tb theorem of M.Christ for
non-homogeneous spaces, Preprint, p. 1-40, MSU, 1999.

[13] X. Tolsa, L2 boundedness of the Cauchy integral operator for continuous measures, Duke
Math. J., 98:2(1999), 269–304.

[14] X. Tolsa, BMO, H1 and Calderón-Zygmund operators for non doubling measures,
Preprint, Univ. de Barcelona, 1999, p. 1–54.

[15] X. Tolsa, Cotlar’s inequalty and the existence of principal values for the Cauchy integral
without the doubling condition, J. Reine Angew. Math., 502(1998), 1999–235.



REFERENCES 85

[16] X. Tolsa, Littlewood–Paley theory and the T (1) theorem with non-doubling measures,
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