Show Extra Information Links
Hide Extra Information Links
Editorial Version
Chapter 8 : Coordinate Geometry
Study Questions and Projects
- What are geometric significants of complex number addition, scalar multiplication, and complex conjugate? What is the geometric representation of complex number multiplication?
- Complex numbers are used to describe surfaces in Euclidean 4-space. We can find formulas for ordinary functions of two variables x and y by expanding algebraic expressions involiving the imaginary unit i, for example z^2 = (x+iy)^2 = (x^2 - y^2) + 2xyi.
a) Find the comparable expressions for z^3 = (x+iy)^3 and z^4 = (x+iy)^4 . What patterns emerge?
b) Find expressions for 1/z and 1/z^2 using the fact that z = (x+iy) = x-iy. and zz = x^2 + y^2.
- What are n-tuple coordinates of the unit n-dimensional hypercube similar to 2,3, and 4 dimensional cases in "Coordinate Geometry"? How many vertices does it have? How coordinate system make counting vertices easier?
- In 2d, we can find a relation to change (x,y) in Cartesian Coordinate, to (r,θ) in Polar Coordinate. Also, a point (x,y,z) in 3d can be changed to Spherical Coordinate as well. Base on what you learn from "Coordinate for Circles and Spheres," Derive equations that change (x,y,u,v) in 4-dimensional Cartesian coordinate to a coordinate in 4-sphere system. What should be a good parameters in that system? How about a point (x1,x2,...,xn) in n-dimensional Cartesian Coordinate to a representation in n-sphere coordinate system?