The 9-Vertex Complex Projective Plane

In the early days of topology, most of the objects of
interest were defined in terms of triangulations, de-
scribing a topological space as a union of finitely many
vertices, edges, triangles, and higher dimensional sim-
plexes identified in certain ways along their bound-
aries. A triangulation with a relatively small number
of simplexes, symmetrically placed, could make com-
putations easier and suggest new properties of the ob-
ject itself. Although subsequent approaches to alge-
braic topology have stressed other ways of defining
properties of topological spaces, the discovery of a
new particularly nice triangulation of an important
space can once again bring out relationships that lead
to new insights in different branches of mathematics.
In this article we describe such a triangulation for one
of the most significant objects in topology, the complex
projective plane.

In a triangulation each edge has two distinct vertices
and no two vertices determine more than one edge so
the minimum number of vertices in a triangulation of
a circle is three. In a triangulation of a surface or sur-
face-with-boundary, each triangle has three distinct
vertices and no three vertices determine more than one
triangle. Moreover, at most two triangles come to-
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gether at every edge. Since a cylinder has two edge
curves a minimal triangulation requires at least six ver-
tices and we can present a triangulation with precisely
six vertices. On the other hand, it is possible to give a
triangulation of the Mo6bius band with only five ver-
tices (Figure 1, on next page) so in a sense the twist in
the band makes it possible to triangulate using fewer
vertices than in the case of the untwisted cylindrical
band.

The boundary of the Mébius band is a pentagon and
every vertex is connected to every other vertex. By
adding a cone over the pentagon from a sixth point
we obtain a surface without boundary called the real
projective plane with six vertices, fifteen edges (con-
necting all distinct pairs of vertices) and ten triangles.
We denote this special triangulation by RP2. It can be
described by taking the icosahedral triangulation of the
2-sphere and then identifying opposite vertices, edges
and faces.

This triangulation RP2 has numerous special prop-
erties. Although it is not possible to construct any non-
self-intersecting real projective plane in ordinary Eu-
clidean 3-space, we can construct a one-to-one map-
ping of RP? into Euclidean 4-space by first building a
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Figure 1

5-vertex Mobius band in a 3-dimensional subspace and
then choosing the sixth vertex so that it does not lie in
the subspace.

For any triangulation with six vertices there is a nat-
ural way to obtain an embedding into the boundary of
a regular 5-simplex AS in R5. We number the vertices
of the triangulation of RPZ and of A® and let vertices
with the same indices correspond. If we extend this
mapping linearly over edges and triangles, we obtain
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an embedding of the real projective plane into 5-space
which we again call RP2.

This embedding has several important properties
which will guide us in our later investigation:

1. Symmetry—Any symmetry of the icosahedron will
determine a permutation of the vertices of RP2 and
therefore a symmetry of R® which preserves RPZ,

2. Duality—Three vertices of A® determine a triangle
of RP? if and only if the remaining three vertices
do not.

3. Tightness—Since RP? contains all edges of A® any
half-space of R® will divide RP; into at most two pieces.
Almost every height function on R® will have exactly
one maximum and one minimum when restricted to
RPZ. A surface with this property is called tight.

4. Secant-Tangency—Any chord joining two points of
RP? lies in one of the boundary 4-simplexes of A°. This
follows since any two triangles of RPZ have at least a
vertex in common.

Already in the last century, the geometer Veronese
described an algebraic mapping of the real projective
plane into R® with analogous properties. We view the
real projective plane as the unit sphere $? =
{(x0,x1,x2)|x2 + x2 + x3 = 1} in R® with antipodal points
identified, i.e. (xg,x1,x;) is identified with (—xg, —x1,
—xp). To find an embedding into R® first of all, we
choose six quadratic functions that take the same value
at antipodal points of S and define a mapping

(X0, %1,%2) = (33,063,%2, V2125, V2%, V2x0x7)

It is an easy algebraic fact that two distinct points of
S? have the same image if and only if they are anti-
podal so we have an embedding of RP? into R® which
we call RP2. Even though this mapping sends the real
projective plane into R, the sum of the first three co-
ordinates is 1 so the image lies in a five-dimensional
affine hyperplane. Just as RP? is situated in the
boundary of a regular 5-simplex, RP? is situated in a
4-sphere given by the intersection of the hyperplane
and the unit sphere, since

@22 + (2 + (B + (V2 + (V2 +
(V2xg)? = (3 + 3 + x3)? = 1
This algebraic embedding has the following prop-

erties:

1. Symmetry—Any rotation of R3 determines an iso-
metry of R® preserving RP2.

2. Duality—For any point of S?, say (0,0,1), the equa-
torial great circle (cos®,sin6,0) will be sent to a circle




doubly covered (cos?8,sin?6,0,0,0,V 2cos sing) lying in
the hyperplane where the third coordinate is zero.
This hyperplane supports RP? since the third coordi-
nate (x,)? is never negative so all of RP2 lies to one side
of the hyperplane. This circle is not the boundary of
any surface-with-boundary in RP2.

3. Tightness—Any hyperplane of R® separates RP2
into at most two pieces. Almost every height function
on R® restricted to RP2 will have exactly one maximum
and one minimum.

4. Secant-Tangency—Any chord joining two points of
RP? is parallel to a tangent line of RP2. (If we project
orthogonally to a 4-space and get an immersion, then
it will never have double points.)

These properties are very special and indeed each
of the properties 3 and 4 characterizes RP2 among all
smooth embeddings of RP? in R® not lying in an affine
hyperplane. Pohl and Kuiper have in fact shown that
any topological embedding of the real projective plane
into R® not lying in a hyperplane which has the tight-
ness property alone must either be RPZ or RP?, i.e.
~either this special triangulated example or the algebraic
Veronese embedding. (cf.[9])
~ With respect to the complex projective plane, the situ-
ation has been less satisfactory. Although much was
understood about the algebraic case, there was little
information about special triangulations.

To define CP? we start with the collection of triples
of complex numbers (zg,z1,2,) in C3 with zgZ, + z;Z; +
2yZ, = 1 and we identify two triples if one can be ob-
tained from the other by multiplying by ¢, a complex
number of modulus 1. Algebraic geometers have
studied the complex algebraic embedding of CP? cor-
responding to the Veronese embedding. Of more in-
terest here is a real algebraic embedding of this space
given by Mannoury [10] in 1900, using coordinate
functions analogous to those of the Veronese embed-
ding;:

(Zo,Zl,Zz) - (2020,2121,2222, \/52122, \/EZ220, \/EZOEI)

As before we can show that two triples have the same
image if and only if they differ by multiplication by a
complex number of modulus 1, so we get an embed-
ding of CP? which we denote by CP2.

Note that the first three coordinates are real and the
last three are complex, so CP3 can be considered as an
embedding into R®. Since the sum of the first three
coordinates is 1, the image of the embedding lies an
8-dimensional affine hyperplane which we denote by
R®. The points of CP2 all lie at distance 1 from the
origin in R® so CP3 actually lies in a 7-sphere in the 8-
dimensional hyperplane.

As in the case of RP3 we have several special prop-
erties of this embedding.

1. Symmetry—Any unitary transformation of C* de-
termines an isometry of R® which preserves CP2.

2. Duality—The set opposite a point such as (0,0,1) in
C® will be a collection of (zy,z;,0) with zgZy + 22, = 1
and (zq,z1,0) identified with (e'%z;,e%z;,0). This is
mapped into the hyperplane where the third coordi-
nate is zero, which supports CP2.

Moreover, the mapping (zo,21,0) — (2¢Z,21Z1,0,0,0,
\/52021) send the 3-sphere {z¢Zy + z2Z; = 1}in C? = R*
to a 2-sphere in such a way that two vectors have the
same image if and only if they differ by multiplication
by a complex number of modulus 1. This map of the
3-sphere to the 2-sphere is the famous Hopf mapping
described in [7]. This image 2-sphere is not the
boundary of any 3-manifold-with-boundary in CP2.

3. Tightness—The intersection of CP? with any half-
space is both connected and simply-connected. Almost
any height function when restricted to CP2 has exactly
one maximum and one minimum and no critical points
of Morse index 1 or 3, and this is the condition for a
tight embedding of CP2.

4. Secant Tangency—Any secant line joining two
points of CP3 is parallel to a tangent line of CP2.

Recently Kuiper [8] has shown that tightness char-
acterizes CP2 among all smooth embeddings, i.e. any
tight smooth embedding of CP? into R® not lying in an
R7 must be the image of CP2 under an invertible pro-
jective transformation. In the same publication, Kuiper
asks if there are non-differentiable embeddings of CP?
into R® with the tightness property (problem 12).

What about a triangulation of CP? that would have

similar properties as CP7, much as RP2 and RP? share

corresponding properties? Until recently there was no
such good triangulation of the complex projective
plane. We now tell how such a triangulation was
found and how its properties have been determined.

In 1980 the first named author set out to try to find
a triangulation of CP? which would sit in the boundary
of the 8-simplex A% in R® in much the same way that
CP3 sits in a 7-sphere in R8. This in particular meant
that the number of vertices of such a triangulation
should be «y = 9. Since the triangulation would have
the tightness property, all (3) = 36 possible edges
should be used so a;, the number of 1-simplexes,
should be a; = 36. Moreover, since CP? is simply-
connected, with no non-contractible 1-dimensional
curves, the desired tightness condition indicates that
the intersection of CP? with any half-space of R8
should be simply-connected as well, and this implies
that all () = 84 2-simplexes of A® should be included
in the triangulation so a, = 84.

However, at this point one must take account of a
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sphere. This will exhibit both M} and CP3 as realiza-
tions of the mapping cone of the Hopf mapping from
$® to S? and this leads to a correspondence between
the points of these two 4-manifolds. This process be-
comes clearer if we first look at the analogous situation
for RPZ and RPZ. It turns out in both the real and the
complex cases there are technical difficulties involved
in carrying over arguments from the smooth situation
to the case of triangulated manifolds and simplical
mappings. We will not be able to go into detail here
as we present the general description of this proof.

Thus far we have been considering RP? as the 2-
sphere S$? with opposite points identified. Another
useful way to describe this space is to start with R?
and add a “line at infinity”” consisting of one abstract
point for each family of parallel lines in R?. This is
topologically the same as taking an open unit 2-disc
D? and identifying to a point the intersection of any
line through the origin with the boundary of the disc.
This identification is just the antipodal identification
on the disc, and we may consider RP? as a realization
of the mapping cone of the mapping h : S' — R U {=}
which sends each point (x,y) of S! to x/y if y # 0 and
which sends (1,0) and (—1,0) to the point at infinity.

The triangulation RPZ has a duality property that
opposite to any 2-simplex spanned by three vertices
(e.g. 123) there is a non-boundary 1-cycle given by the
other three vertices and the corresponding edges, (e.g.
3(456)). Opposite to each A% in RPZ there is the
boundary of another triangle in A® not lying in RPZ.
Any point of RPZ not lying either in A> = 123 or in the
boundary of A? = 456 can be expressed uniquely as ¢
times a point of A% plus (1 — f) times a point of 9A2,
Any level set corresponding to a value ¢ between 0 and
1 will be a 1-dimensional sphere expressed as a union
of convex cells (in fact a nonagon). As t approaches 1,
this level set goes to dA%. As t approaches 0, this level
set approaches a decomposition of the 1-sphere into
three pairs of segments which are mapped to the three
edges of 8A? by the Hopf mapping which identifies
each point x of ! with its antipodal point (—1)x (see
figure 3A).

The corresponding decomposition of RP? given in
coordinates uses the height function &(xg,x1,%2) =
(x0)%. Consider the 2-ball D? = {[xo,%,%,]]x3 = 1/2} with
boundary S! = {[1/V2,x,%]|(x1)* + (x2)* = 1/2}, and
the 2-sphere S' = {[0,x1,%,]|x3 + x5 = 1}. Any point

not on either D? or S! can be written uniquely as
[rx,x] with 0 <r < 1/V2 and therefore it uniquely
determines points [1/\/5_, x1,%,] on S and [0,%1,%,] on
Sl. All level sets of ¢ between 12 and 0 are 1-spheres
and as the level approaches 1/2, this 1-sphere ap-
proaches the boundary of the ball D2 As the level ap-
proaches 0, this 1-sphere approaches a double cov-
ering of the non-bounding 1-sphere S.

We now carry out the same analysis in the complex
case. To obtain a different description of CP? we start
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with the complex plane C? and add a “line at infinity”
consisting of one (abstract) point for each equivalence
class of parallel complex lines in C2. This is topologi-
cally the same as taking the open unit 4-ball B* < R*
= C? and for each complex line ¢ through the origin,
identifying the intersection ¢ N 8B to a point. This is
just the identification given by the Hopf map h : 9B* =
$3 — §2 which in coordinates reads as h(z,w) = z/w €
C U {=} = $? for (z,w) e C? satisfying zz + ww = 1.
(One can express this fact by saying that CP? repre-
sents the mapping cone of h : $* — S2).

Now as already mentioned above, our M‘é has the
duality property that opposite to any 4-simplex spanned
by five vertices (e.g.: 56789) there is a non-bounding
2-cycle given by the boundary of the 3-simplex
spanned by the remaining four vertices (e.g.: 3(1234)).
Opposite to each A? there is the boundary of a A%. Any
point of M2 not lying either in the 4-simplex A* = 56789
or in the boundary of A3 = 1234 can be expressed as
t times a point of 8A* plus (1 — f) times a point of 9A>.
Any level set corresponding to a value t between 0 and
1 will be a 3-dimensional sphere expressed as a union
of convex cells. As t approaches 1, this level set goes
to 0A%; and as t approaches 0, this level set approaches
a decomposition of the 3-sphere into four solid tori S!
x A2 which are mapped to the four triangles of 6A> by
the Hopf map (see figure 3B). (A more precise argu-
ment would use the technique of “collapsing”, a stan-
dard method in PL topology).

The corresponding decomposition of CP? given in
coordinates uses the height function &(z¢,z1,22) : = 2¢2g
: consider the 4-ball B* = {[zg,z1,2:]|2020 = 1/2} with
boundary $°* = {{1/V2,21,2,]lz4%: + 2%, = 1/2} and the
2-sphere §? = {[0,21,2,]|2:Z1 + 22, = 1}. Any point not
in either this 4-ball or in this 2-sphere can be written
uniquely as [r,z;,z;] where 0 <r < 1/V2, and therefore
it uniquely determines points [1/V2,z1,2(] € $* and
[0,21,25] € S% All d-level sets between 1/2 and 0 are 3-
spheres, and as the level approaches 1/2, this 3-sphere
approaches the boundary of the 4-ball B%. As the level
approaches 0, this 3-sphere approaches the non-
bounding 2-sphere S? = {[0,21,2,]}, giving a represen-
tation of the mapping cone of the Hopf map.

This decomposition gives an explicit correspondence
between the CP? defined in terms of coordinates and
this M} which we can now write as CPj, the 9-vertex
complex projective plane. It is a well known fact that from
the Hopf map h : S — S?, we obtain a nontrivial S'-
bundle over S?, called the Hopf bundle, so in some way
CP? contains this bundle. More precisely the natural
retraction CPAB* — S? gives a nontrivial 2-disc-bundle
over S? the boundary 1-sphere-bundle of which is just
the Hopf bundle.

To find a polyhedral analogue in our model CP} we
take again the 4-simplex A* = 56789 and the opposite
non-bounding 2-sphere dA% = 9(1234). For each vertex
or edge or triangle in 9A% we can take its “preimage”,
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Figure 5

The image of V; is the plane equilateral triangle
spanned by (1,0,0), (0,1,0) and (0,0,1) where the pre-
image of each interior point is a “torus” S° x S0 in
RP2. The image of V, is well known as Steiner’'s Roman
surface (see figure 5). The locus of self-intersection of
this surface is the set of intervals (—1/2,1/2) on the
three coordinate axes meeting at the origin which is a
triple point. It is interesting to observe that the four
circles on the boundary of the convex hull (inscribed
in the faces of a regular tetrahedron), together with
these three straight line segments along the axes, form
Fano’s projective plane of order 2 with seven points
and seven lines (see figure 6).

Similar observations can be made for RP2 : choose
the six vertices to be the points V2 (1,+1,0), /V2
(0,1, %1), /V2 (+1,0,1) in S% These are mapped by
the Veronese embedding to the vertices of a (nonreg-
ular) 5-simplex. The first part of the Veronese mapping
sends these points two by two to the three midpoints
of the edges of the equilateral triangle and the preim-
- age of each interior point of that smaller triangle is
four points, a “torus” S x S°in RP2. The second part
sends these six points to the vertices of a regular oc-
tahedron, and the induced simplexwise linear map-
ping gives a polyhedral versin of Steiner’s surface con-
taining four of the eight triangles of this octahedron—
no two of which are adjacent (see figure 7). This ex-
ample is classically known as the heptahedron model
of RP2. All these mappings defined on RP? are tight
~ because they are linear projections of tight embed-
dings.

Similarly for CP? the Mannoury embedding splits
into

Figure 6

Figure 7

V1 [20,21,22] = (2020,2121,222,) € R3
and
Vo [20,21,22] = (2021,2122,20%)) € C°.

The image of V; is the same equilateral triangle as in
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the real case but now the preimage of each interior
point of the triangle is a torus S x S! in CP? The
image of V, looks more complicated. Its self-intersec-
tion behavior is analogous to the real case: the self-
intersections are three unit discs in the three complex
coordinate axes with singularities along their bound-
aries and with the origin as a triple point.

In order to get polyhedral analogues of V; and V5,
we first have to find a good way to choose the nine
vertices as actual points in CP2. One approach is to use
the fact from algebraic geometry that any nonsingular
cubic curve in CP? has exactly nine inflection points.
Any such curve (sometimes called an “elliptic curve”)
is homeomorphic to a torus S! X S! and it carries the
structure of an abelian group defined by correspon-
dences which mean roughly that the sum of any three
collinear points is zero. The nine inflection points are
exactly the order 3 elements in this group. Now which
of the various cubic curves should we choose? The first
idea might be to take the curve z§ + 2§ + 2z} = 0 with
the inflection points [1, —®%0]. [0,1, —0’], [—®?0,1]
wherev = 0,1,2and 0 = ™8 = 1/2(-1 + V -3) is
a cube root of unity. However it turns out that this
configuration has too many symmetries to fit our trian-
gulation in the best possible way. Instead of this we
prefer to use the three cubics

A+A-B=0R-3+3=0-F+Z+5=0

The inflection points of these three cubics in CP? are
the following 18 points:

[1,+07,0], [0,1, 0] [+0",0,1], v = 0,1,2.

Now choose the 9 vertices of CP3 to be the following
points

1 4 7 [lw,0] [0le] [w,0,1]
2 5 8 = [1,(1)2,0] [0/110)2] [(1)2,0,1]
3 6 9 [1, 1,0 [0,1,1 1] [1,0,1]

and choose the 9 barycenters of the edges 12,23,31,45,
56,64,78,89,97 to be the points

23 56 §9 1,-0,0] [01,-0] [~©,01]
31 64 97| = | [L-0%0] [0,1,—0%] [-0%0,1]
12 45 78 [1,-1,0] [0,1,-1] [-1,0,1]

We can now give an outline to show why this choice
of points fits our triangulation.

First of all it is remarkable that the Veronese map-
ping sends any of these two sets of 9 points to the
vertices of a regular 8-simplex. The partial mapping V;
sends them three by three to the midpoints of the
edges of the equilateral triangle (as in the real case),
and V, sends them to three equilateral triangles in the
~ three complex coordinate axes in C3. This, of course,
induces piecewise linear versions of V; and V,. The
image of V; will be the same triangle as in the real case
and it is interesting to observe that the interior of that
triangle is covered by 27 of the 36 4-simplexes of CP3,
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Figure 8

namely the orbit of 12459 under the symmetry group.
In fact the preimage of each interior point of that tri-
angle is a torus (in a subdivision of CP3) decomposed
by 27 vertices and 27 quadrilaterals which is shown in
figure 8 (we owe B. Morin this symmetric hexagonal
arrangement).

Secondly the cubic 23 + 2§ — 23 = 0 forms a torus
in CP2 going through the 9 points 12,23,§1,4,5,6,7,8,9.
The following figure 9 shows a natural polyhedral an-
alogue in the first barycentric subdivision of CPj.

The same is true for the two other cubics by sym-
metry. It is very important to note the fact that the
combinatorial symmetry group of CP3 generated by «,
B, T admits a representation in the group of projective
(or antiprojective) transformation of CP? leaving the
two sets- of 9 points invariant. Each such projective
transformation can be considered to be a unitary trans-
formation of C? represented by a complex (3 X 3)-
matrix. Now the correspondence is the following:

Represented by:
0 0 1
a = (147)(258)(369) multiplication by 1 00
in C® 010
1 00
B = (123)(654) multiplication by (0 w 0
in C 0 01
1 00
vy = (123)(456)(789) multiplication by 0 o 0
in C® 0 0 o
7 = (12)(45)(78) complex conjugation o

in C3, 0(20,21,22) = (Z0,Z1,22)-



Figure 9

But note the fact that the symmetry group of the con-
figuration of the two sets of 9 points is larger: the ad-
ditional matrix

0 0 1
010
100

represents also such a symmetry but the corre-
sponding permutation of the vertices (15)(24)(36)(78) is
not a symmetry of CP3. From this it follows that CP}
is not simply a quotient of well known configurations
in C3 like the Hessian polyhedron or Gosset's polytope
because the symmetry group of these quotients con-
tains the full Hessian group of order 216 (see [2]). This
makes our construction of the 54 element group dif-
ferent from related constructions by Coxeter. In order
to get CP3 from the configuration of the two sets of 9
points we necessarily have to break the natural sym-
metry of this configuration.

A recent communication from M. Yoshida indicates
a close connection between this example and complex
crystallographic groups and this direction may lead to
direct descriptions of the triangulation in CP2.
 Furthermore it follows that the transposition 7 acts
like complex conjugation o on CP3. Remember the fact
that the quotient space CP%o of CP? mod conjugation
is the 4-sphere S%. This has been shown independently
by W. S. Massey and N. H. Kuiper (see [11],[7]).

~ Therefore we have the sequence

RP? = Fix(o) - CP?2 — CP%s = S,

and in a perfect analogy we have for our triangulation

RP? = Fix(r) - CP}— CPYr = aA°

where the quotient space CP%/r turns out to be the
boundary of the simplex spanned by the vertices
3,6,9,12,45,78, and where the fixed point set of 7
spanned by the vertices 3,6,9,12,45, 78 in the first bary-
centric subdivision is combinatorially an RP? as shown
in figure 10 (on the following page). This figure takes
place in the real plane (xg,x1,1) with the line x, = 0 at
infinity. Note that the whole triangulation is given by
seven straight lines in RP2. Now we are back to the
point we started from: the 6-vertex real projective
plane.

We hope that the reader has enjoyed learning some
aspects-of the 9-vertex complex projective plane, as we
have over the last two years. The first discussion of
this example took place at the Geometrie-Tagung in
Oberwolfach in September 1980. That began our col-
laboration in the exploration of the properties of this
remarkable 4-manifold and its relation to different
parts of mathematics. We have been encouraged by
the responses of many mathematicians who have sug-
gested new questions and pointed out additional re-
lationships to other fields. In particular, we would like
to thank M. Atiyah, P. Cartier, H. S. M. Coxeter, H.
Clemens, D. Ferus, F. Hirzebruch, H. Karcher, N. H.
Kuiper, C. McCrory, R. MacPherson, B. Morin, W. F.
Pohl and Chr. Zeeman. We also acknowledge grate-
fully the hospitality of the . H.E.S. in Bures-sur-Yvette
and of the Sonderforschungsbereich “Theoretische
Mathematik™ at the University of Bonn which made it
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Figure 10

possible for the authors to work together on this
project. The work continues and we look forward to
the responses of many more mathematicians as we
pursue the topics brought forward by the 9-vertex
complex projective plane.
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