1. q-FACTORIALS AND THE NORM

Recall from Ang15 that the Norm map of Witt vectors $W(R) \xrightarrow{N} W(R)$ is given by

$$
N(x)=x-V \delta(x)
$$

and characterized by

$$
\begin{aligned}
F N x & =x^{p} \\
N x & =x \quad \bmod V .
\end{aligned}
$$

This descends to a map $W_{n}(R) \xrightarrow{N} W_{n+1}(R)$ which is multiplicative (and additive $\bmod V)$, generalizing the Teichmüller lift. The existence of this map is basically the "Frobenius rigidity lemma" (I may be the only one who calls it that)

$$
x \equiv y \quad \bmod p^{n} \Longrightarrow x^{p} \equiv y^{p} \quad \bmod p^{n+1}
$$

Now let R be a perfectoid ring, and let $A=\mathbf{A}_{\text {inf }}(R)$. How can we understand the Norm at the level of $\mathbf{A}_{\text {inf }}(R)$, rather than $W(R)$? I will view $W_{n}(R)$ as an A-algebra via the map $\widetilde{\theta}_{n} \phi^{-1}$, which identifies $W_{n}(R)=A /\left[p^{n}\right]_{A}$, where

$$
\left[p^{n}\right]_{A}=\xi \phi(\xi) \cdots \phi^{n-1}(\xi)
$$

Let me just do this for $W_{1}(R) \xrightarrow{N} W_{2}(R)$, the general case is similar. The above characterization of the Norm becomes: $\mathfrak{N}(x) \in A$ lifts $N(x \bmod \xi) \in W_{2}(R)$ iff

$$
\begin{aligned}
& \mathfrak{N}(x)=x^{p} \bmod \xi \\
& \mathfrak{N}(x)=\phi(x) \bmod \phi(\xi)
\end{aligned}
$$

Now we can easily write down a general formula for this:

$$
\mathfrak{N}(x)=\phi(x)-\frac{\phi(\xi)}{\delta(\xi)} \delta(x)
$$

This should look familiar: if $\phi(\xi) \mid \phi(x)$, then Bhatt-Scholze [BS19, Notation 16.1] define the " $[p]_{q}$-th divided power" of x to be

$$
\gamma(x)=\frac{\phi(x)}{\phi(\xi)} \delta(\xi)-\delta(x) \quad!!!
$$

Actually, they don't include $\delta(\xi)$, but $\delta(\xi)=1 \bmod \xi$ over the q-de Rham prism. One hope is that the Norm could be used to develop a version of the q-crystalline site over general prisms.

Note that γ above is really a q-analogue of $\frac{x^{p}}{p}$, rather than $\frac{x^{p}}{p!}$; in the p-local context you can get away with this. But we can do better when $R=\mathbf{Z}_{p}^{\text {cycl }}$, so that $A=\mathbf{Z}_{p}\left[q^{1 / p^{\infty}}\right]_{(p, q-1)}^{\wedge}$ is the perfection of the q-de Rham prism; here $\xi=[p]_{q^{1 / p}}$, and more generally $\left[p^{n}\right]_{A}=\left[p^{n}\right]_{q^{1 / p}}$, this is the motivation for the notation.

For $x, y \in A$ with $\delta(x)=\delta(y)=0$, define the " q-twisted power"

$$
(x-y)^{[p]_{q}}=(x-y)(x-q y) \cdots\left(x-q^{p-1} y\right)
$$

Despite the notation, this depends on x and y, not just on $x-y$. But one checks that $(x-y)^{[p]_{q}}$ is a lift of $N(x-y)$, distinct from $\mathfrak{N}(x-y)$ unless $p=2$, since

$$
\begin{array}{ll}
(x-y)^{[p]_{q}}=(x-y)^{p} & \bmod [p]_{q^{1 / p}} \\
(x-y)^{[p]_{q}}=\phi(x-y) & \bmod [p]_{q}
\end{array}
$$

It might seem annoying that γ and $(x-y)^{[p]_{q}}$ are defined at the level of $\mathbf{A}_{\text {inf }}$, whereas the Norm exists only at the level of the system $W_{\bullet}(R)$. However, the fact that those expressions descend to a map $A / \xi \rightarrow A / \xi \phi(\xi)$ is equivalent to the "fundamental lemma of q-crystalline cohomology" BS19, Lemma 16.7]!

Here is a similar, but more basic phenomenon. In the above normalization, the Frobenius and Verschiebung become

$$
\begin{array}{cc}
W_{2}(R) & A / \xi \phi(\xi) \\
F()_{W_{1}(R)} V & =\operatorname{can}\left(\int_{A / \xi} \phi(\xi) / \delta(\xi)\right.
\end{array}
$$

so the "prism condition" $\phi(\xi)=u p \bmod \xi$ is equivalent to $F V=p$. This condition is required for the Witt vectors to form what we in equivariant homotopy call a Mackey functor; the Norm promotes this to a Tambara functor. So these very subtle properties of prisms are equivalent to saying that prisms give rise to an "equivariant commutative ring" in our sense! I think this is very striking.

This is documented in my paper [Sul20, §3.3]. That paper is very difficult, but all the essential ideas are contained in §3.1, which is fairly elementary.

The goal of that paper was to study the slice filtration - a variant of the Nygaard filtration which is in some ways more natural from the point of view of equivariant homotopy theory - on perfectoid rings. This should globalize to give a slice filtration on prismatic cohomology. So far I have no idea what this looks like for schemes, but here is what I expect.

Just as the Nygaard filtration $\mathcal{N} \geq i$ is where ϕ is divisible by $[p]_{q}^{i}$, the slice filtration $\mathcal{S}^{\geq i}$ should be where ϕ is divisible by $[p i]_{q}$! (you can make sense of this over any prism). For instance on the prism itself, we should have

$$
\begin{aligned}
\mathcal{N}^{\geq i} A & =\xi^{i} A \\
\mathcal{S}^{\geq i} A & =\xi^{i} \phi(\xi)^{\lfloor i / p\rfloor} \phi^{2}(\xi)^{\left\lfloor i / p^{2}\right\rfloor} \cdots A
\end{aligned}
$$

Note that these agree for $i<p$, so we expect the slice filtration to mainly be interesting for schemes of dimension $\geq p$. The slice filtration on Δ_{X} should "stack" scaled copies of the Nygaard filtration of all the Frobenius twists of X, presumably through the Cartier isomorphism. Just as $x \mapsto x^{n}$ takes $\mathcal{N} \geq i$ to $\mathcal{N} \geq i n, x \mapsto N(x)$ should take $\mathcal{S}^{\geq i}$ to $\mathcal{S}^{\geq i p}$.

One problem is that I don't know how the Norm works in degrees >0. One could expect maps

$$
W_{n} \Omega_{X}^{k} \xrightarrow{N} W_{n+1} \Omega_{X}^{k p}
$$

and maybe

$$
H_{\text {cris }}^{k}\left(X / W_{n}\right) \xrightarrow{N} H_{\text {cris }}^{k p}\left(X / W_{n+1}\right)
$$

lifting the p th power maps, but I'm not sure yet; translating from the topological story is nontrivial.

The other lead I have is: the formulas in Sul20, Theorem 1.3], despite looking kind of crazy, are very similar to formulas appearing in work of Gros-Le StumQuirós. I'm still trying to understand their work.

2. Prismatic Witt vectors

For an oriented $\operatorname{prism}(A, \xi)$, continue to write $\left[p^{n}\right]_{A}=\xi \phi(\xi) \cdots \phi^{n-1}(\xi)$ as before, and $R=A / \xi$. If A is not perfect, it is no longer true that $A /\left[p^{n}\right]_{A} \cong W_{n}(R)$. However, there is still a comparison map

$$
W_{n}(R) \rightarrow A /\left[p^{n}\right]_{A}
$$

which is an injection for transversal prisms. This is constructed carefully in Mol20, but here is the basic idea. For transversal prisms (i.e. R is p-torsionfree), there is an injection

$$
A /\left[p^{n}\right]_{A} \hookrightarrow \prod_{i=0}^{n-1} A / \phi^{i}(\xi)
$$

by [AB19, Lemma 3.7]. Let me call this "transversal coordinates". If we use ghost coordinates on the source and transversal coordinates on the target, then the map is given by

$$
\begin{aligned}
W_{n}(R) & \rightarrow A /\left[p^{n}\right]_{A} \\
\left(w_{0}, \ldots, w_{n-1}\right) & \mapsto\left(w_{n-1}, \phi\left(w_{n-2}\right), \ldots, \phi^{n-1}\left(w_{0}\right)\right)
\end{aligned}
$$

This is compatible with F in the source (hence the weird reversal) and the projection in the target, so taking the limit, we get a map $\mathbf{A}_{\mathrm{inf}}(R) \rightarrow A$. (The isomorphism

$$
\lim _{F} W_{n}(R) \cong \underset{R}{\lim _{\leftarrow}} W_{n}\left({\underset{\zeta}{\overleftarrow{~ l i m}}}_{\leftarrow} R / p\right)
$$

is valid for any p-adic ring, not just perfectoids, so that's what I mean by $\mathbf{A}_{\text {inf }}$). For example, for the Breuil-Kisin prism this is the inclusion $W(k) \hookrightarrow W(k) \llbracket z \rrbracket=\mathfrak{S}$.

This formula is easier to understand by considering the case $n=2$, where we have pullbacks

In the case of the Breuil-Kisin prism, the bottom row is expressing that the Frobenius $\mathcal{O}_{K} \xrightarrow{\phi} \mathcal{O}_{K} / p$ extends along $\mathcal{O}_{K}\left[\pi^{1 / p}\right]$. So we can think of $A /\left[p^{n}\right]_{A}$ as "Witt vectors with ramification". (This may be related to ramified Witt vectors, but I don't understand those). More generally, we can write

$$
A /\left[p^{n}\right]_{A}=\left\{\left(w_{0}, \ldots, w_{n-1}\right) \in W_{n}\left(A / \phi^{n-1}(\xi)\right) \mid w_{i} \in A / \phi^{n-i-1}(\xi)\right\}
$$

I would like to characterize the image of $W_{n}(R)$ in $A /\left[p^{n}\right]_{A}$ in terms of transversal coordinates. Here is a way to do that (maybe you have to squint a little to see that's what it's doing). Define the prismatic ghost polynomials

$$
\begin{aligned}
w_{0}^{\xi} & =a_{0} \\
w_{1}^{\xi} & =a_{0}^{\phi}+\phi(\xi) a_{1} \\
w_{2}^{\xi} & =a_{0}^{\phi^{2}}+\phi^{2}(\xi) a_{1}^{\phi}+\phi\left(\left[p^{2}\right]_{A}\right) a_{2} \\
w_{n}^{\xi} & =\sum_{i=0}^{n} \phi^{n-i+1}\left(\left[p^{i}\right]_{A}\right) a_{i}^{\phi^{n-i}}
\end{aligned}
$$

Note that unlike the usual ghost polynomials, these are additive (but still not multiplicative). Now define the prismatic Witt vectors $W_{n}^{\xi}(R)$ by

$$
W_{n}^{\xi}(R)=\text { image of }\left(w_{0}^{\xi}, \ldots, w_{n-1}^{\xi}\right) \text { in } \prod_{i=1}^{n} A /\left[p^{i}\right]_{A}
$$

For instance, in the case $n=2$ we have a pullback

Proposition/Conjecture: $W_{n}^{\xi}(R) \cong W_{n}(R)$. The Proposition part is that this is almost immediate from the topological perspective: the definition is rigged so that $W_{n}^{\xi}(R) \cong \operatorname{TR}_{0}^{n}\left(R / \mathbf{S}_{A}\right)$, while we know that $\mathrm{TR}_{0}^{n}(R)=W_{n}(R)$. But the absolute and relative TR should agree on π_{0}. Here \mathbf{S}_{A} (which isn't guaranteed to exist) is such that $\mathbf{S}_{A} \otimes_{\mathbf{S}} \mathbf{Z}=A$; for example in the Breuil-Kisin case $\mathbf{S}_{\mathfrak{S}}=\mathbf{S}_{W(k)} \llbracket z \rrbracket$, where $\mathbf{S}_{W(k)}$ is Lurie's "spherical Witt vectors". The Conjecture part is to prove this purely algebraically; it's essentially a version of the Cartier-Dieudonné-Dwork lemma.

The " A-analogues" might also give a way to calculate prismatic cohomology in local coordinates, generalizing the q-de Rham complex. Set $[n]_{A}=\left[p^{v_{p}(n)}\right]_{A}$, so that $\phi\left([n]_{A}\right)=u n \bmod \xi$ for a unit u (depending on $\left.n\right)$. This is ugly, but will work up to units. Then in local coordinates we can define

$$
\nabla_{A}\left(x^{n}\right)=[n]_{A} x^{n} \operatorname{dlog} x
$$

to get a version of $A \Omega$. This is lacking the more elegant formula $\nabla_{q} f(x)=\frac{f(q x)-f(x)}{q x-x}$ that we have for the q-derivative, but otherwise behaves the same.

3. Floating Rings

Consider the ring $A=\mathbf{Z}[q]$. This has two interesting pieces of structure: Adams operations $\psi^{n}(q)=q^{n}$ (lifting Frobenius when n is prime), and q-analogues $[n]_{q}=$ $\frac{q^{n}-1}{q-1}$. This should be the basic example of an "integral prism", whatever that is $\left.\right|^{1}$

So let's see how to encode this. For any semiring B, write B^{\bullet} for the underlying multiplicative monoid of B. Of course the Adams operations give a monoid map

$$
\mathbf{N}^{\bullet} \rightarrow \operatorname{End}_{\operatorname{Ring}}(A)
$$

q-analogues are semi-multiplicative with respect to this action:

$$
[m n]_{q}=\frac{q^{m n}-1}{q^{n}-1} \frac{q^{n}-1}{q-1}=\psi^{n}\left([m]_{q}\right)[n]_{q}
$$

That is, Adams operations and q-analogues assemble to give a map

$$
\begin{aligned}
\mathbf{N}^{\bullet} & \rightarrow A^{\bullet} \rtimes \operatorname{End}_{\text {Ring }}(A) \\
n & \mapsto\left([n]_{q}, \psi^{n}\right)
\end{aligned}
$$

This is cool because now we can put any ring on the right-hand side and any monoid on the left-hand side.

[^0]Example: a map $C_{2} \rightarrow A^{\bullet} \rtimes \operatorname{End}_{\text {Ring }}(A)$ consists of an involution $A \rightarrow A, z \mapsto \bar{z}$ with $\overline{\bar{z}}=z$, together with an element $\epsilon \in A$ such that $\epsilon \bar{\epsilon}=1$ ("of norm one", if you like). This is precisely the input for Hermitian K-theory! (Taking $\epsilon=1$ corresponds to symmetric bilinear forms, $\epsilon=-1$ corresponds to skew-symmetric bilinear forms.) Actually this gives the wrong thing for non-commutative rings, but you can fix that by taking into account C_{2} action on Ring that sends $A \mapsto A^{\mathrm{op}}$.

The second observation is that the right-hand side is actually the endomorphisms of A in a new category. For any category \mathcal{C} equipped with a functor $\mathcal{C} \xrightarrow{U}$ Mon to the category of monoids, we can define a new category \mathcal{D} which has the same objects as \mathcal{C}, but where

$$
\begin{aligned}
\mathcal{D}(X, Y) & =U(Y) \times \mathcal{C}(X, Y) \\
\operatorname{End}_{\mathcal{D}}(X) & =U(X) \rtimes \operatorname{End}_{\mathcal{C}}(X)
\end{aligned}
$$

The fancy way to say this is we compose with the delooping functor Mon \xrightarrow{B} Cat and apply the Grothendieck construction.

The motivating example of this is the functor Vect $_{k} \rightarrow$ Mon sending a k-vector space V to the monoid $(V,+)$. Then this construction gives the category of affine spaces over k ! An affine space is the same thing as a vector space, but there are more morphisms between them. So we think of the functor U as specifying "translations" that we want to add into our category.

So apply this construction to the functor Ring \rightarrow Mon sending $A \mapsto A^{\bullet}$. It would be horrible to say "affine ring", so let me call this the category of "floating rings". A floating ring is the same thing as a ring, but a map of floating rings (or a "floating map" of rings) is a ring homomorphism times a constant.

Then we can interpret the structure on $\mathbf{Z}[q]$, the input for Hermitian K-theory, and p-typical (oriented) prisms as representations of $\mathbf{N}^{\bullet}, C_{2}$, and $(\mathbf{N},+) \cong p^{\mathbf{N}} \subset \mathbf{N}^{\bullet}$ respectively in the category of floating rings.

The category of floating rings is equivalent to the category of pairs (A, M) where $A \in$ Ring and M is a free A-module of rank one, since the category of such M is a model of $B A^{\bullet}$. This makes it look a little less exotic. Anyway, this seems like it could be a very interesting category.

Along with the observations in $\S 1$, this strongly suggests that there should be a generalization of "prism" associated to a monoid M acting on a compact Lie group G. This would presumably be related to Dress-Siebeneicher's G-Witt vectors, which I don't understand.

References

[AB19] Johannes Anschütz and Artur César-Le Bras, The p-completed cyclotomic trace in degree 2, https://arxiv.org/abs/1907.10530v1
[Ang15] Vigleik Angeltveit, The norm map of Witt vectors, Comptes Rendus Mathematique 353 (2015), no. 5, 381-386.
[BS19] Bhargav Bhatt and Peter Scholze, Prisms and prismatic cohomology, https://arxiv. org/abs/1905.08229v1
[Mol20] Semen Molokov, Prismatic cohomology and de Rham-Witt forms, https://arxiv.org/ abs/2008.04956
[Sul20] Yuri J. F. Sulyma, A slice refinement of Bökstedt periodicity, https://arxiv.org/abs/ 2007.13817
[Zho21] Zhouhang Mao, Revisiting derived crystalline cohomology, https://arxiv.org/abs/ 2107.02921

[^0]: ${ }^{1}$ One might complain that we should complete at $(q-1)$, but Mao Zho21 has recently given a decompleted notion of prism: rather than $\delta(\xi) \in A^{\times}$, one asks that $\delta(\xi) \in(A / \xi)^{\times}$.

