
1. q-factorials and the norm

Recall from [Ang15] that the Norm map of Witt vectors W (R)
N−→W (R) is given

by

N(x) = x− V δ(x)

and characterized by

FNx = xp,

Nx = x mod V.

This descends to a map Wn(R)
N−→Wn+1(R) which is multiplicative (and additive

mod V ), generalizing the Teichmüller lift. The existence of this map is basically
the “Frobenius rigidity lemma” (I may be the only one who calls it that)

x ≡ y mod pn =⇒ xp ≡ yp mod pn+1.

Now let R be a perfectoid ring, and let A = Ainf(R). How can we understand
the Norm at the level of Ainf(R), rather than W (R)? I will view Wn(R) as an

A-algebra via the map θ̃nφ
−1, which identifies Wn(R) = A/[pn]A, where

[pn]A = ξφ(ξ) · · ·φn−1(ξ).

Let me just do this for W1(R)
N−→W2(R), the general case is similar. The above

characterization of the Norm becomes: N(x) ∈ A lifts N(x mod ξ) ∈W2(R) iff

N(x) = xp mod ξ

N(x) = φ(x) mod φ(ξ)

Now we can easily write down a general formula for this:

N(x) = φ(x)− φ(ξ)

δ(ξ)
δ(x).

This should look familiar: if φ(ξ) | φ(x), then Bhatt-Scholze [BS19, Notation 16.1]
define the “[p]q-th divided power” of x to be

γ(x) =
φ(x)

φ(ξ)
δ(ξ)− δ(x) !!!

Actually, they don’t include δ(ξ), but δ(ξ) = 1 mod ξ over the q-de Rham prism.
One hope is that the Norm could be used to develop a version of the q-crystalline
site over general prisms.

Note that γ above is really a q-analogue of xp

p , rather than xp

p! ; in the p-local

context you can get away with this. But we can do better when R = Zcycl
p , so that

A = Zp[q
1/p∞ ]∧(p,q−1) is the perfection of the q-de Rham prism; here ξ = [p]q1/p ,

and more generally [pn]A = [pn]q1/p , this is the motivation for the notation.
For x, y ∈ A with δ(x) = δ(y) = 0, define the “q-twisted power”

(x− y)[p]q = (x− y)(x− qy) · · · (x− qp−1y)

Despite the notation, this depends on x and y, not just on x − y. But one checks
that (x− y)[p]q is a lift of N(x− y), distinct from N(x− y) unless p = 2, since

(x− y)[p]q = (x− y)p mod [p]q1/p

(x− y)[p]q = φ(x− y) mod [p]q
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It might seem annoying that γ and (x − y)[p]q are defined at the level of Ainf ,
whereas the Norm exists only at the level of the system W•(R). However, the
fact that those expressions descend to a map A/ξ → A/ξφ(ξ) is equivalent to the
“fundamental lemma of q-crystalline cohomology” [BS19, Lemma 16.7]!

Here is a similar, but more basic phenomenon. In the above normalization, the
Frobenius and Verschiebung become

W2(R)

F

��
W1(R)

V

YY

=

A/ξφ(ξ)

can

��
A/ξ

φ(ξ)/δ(ξ)

YY

so the “prism condition” φ(ξ) = up mod ξ is equivalent to FV = p. This condition
is required for the Witt vectors to form what we in equivariant homotopy call a
Mackey functor ; the Norm promotes this to a Tambara functor. So these very subtle
properties of prisms are equivalent to saying that prisms give rise to an “equivariant
commutative ring” in our sense! I think this is very striking.

This is documented in my paper [Sul20, §3.3]. That paper is very difficult, but
all the essential ideas are contained in §3.1, which is fairly elementary.

The goal of that paper was to study the slice filtration—a variant of the Nygaard
filtration which is in some ways more natural from the point of view of equivariant
homotopy theory—on perfectoid rings. This should globalize to give a slice filtration
on prismatic cohomology. So far I have no idea what this looks like for schemes,
but here is what I expect.

Just as the Nygaard filtration N≥i is where φ is divisible by [p]iq, the slice

filtration S≥i should be where φ is divisible by [pi]q! (you can make sense of this
over any prism). For instance on the prism itself, we should have

N≥iA = ξiA

S≥iA = ξiφ(ξ)bi/pcφ2(ξ)bi/p
2c · · ·A

Note that these agree for i < p, so we expect the slice filtration to mainly be
interesting for schemes of dimension ≥ p. The slice filtration on �X should “stack”
scaled copies of the Nygaard filtration of all the Frobenius twists of X, presumably
through the Cartier isomorphism. Just as x 7→ xn takes N≥i to N≥in, x 7→ N(x)
should take S≥i to S≥ip.

One problem is that I don’t know how the Norm works in degrees > 0. One
could expect maps

WnΩkX
N−→Wn+1ΩkpX

and maybe

Hk
cris(X/Wn)

N−→ Hkp
cris(X/Wn+1)

lifting the pth power maps, but I’m not sure yet; translating from the topological
story is nontrivial.

The other lead I have is: the formulas in [Sul20, Theorem 1.3], despite looking
kind of crazy, are very similar to formulas appearing in work of Gros-Le Stum-
Quirós. I’m still trying to understand their work.
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2. Prismatic Witt vectors

For an oriented prism (A, ξ), continue to write [pn]A = ξφ(ξ) · · ·φn−1(ξ) as
before, and R = A/ξ. If A is not perfect, it is no longer true that A/[pn]A ∼= Wn(R).
However, there is still a comparison map

Wn(R)→ A/[pn]A

which is an injection for transversal prisms. This is constructed carefully in [Mol20],
but here is the basic idea. For transversal prisms (i.e. R is p-torsionfree), there is
an injection

A/[pn]A ↪→
n−1∏
i=0

A/φi(ξ)

by [AB19, Lemma 3.7]. Let me call this “transversal coordinates”. If we use ghost
coordinates on the source and transversal coordinates on the target, then the map
is given by

Wn(R)→ A/[pn]A

(w0, . . . , wn−1) 7→ (wn−1, φ(wn−2), . . . , φn−1(w0))

This is compatible with F in the source (hence the weird reversal) and the projection
in the target, so taking the limit, we get a map Ainf(R)→ A. (The isomorphism

lim
←−
F

Wn(R) ∼= lim
←−
R

Wn(lim
←−
ϕ

R/p)

is valid for any p-adic ring, not just perfectoids, so that’s what I mean by Ainf). For
example, for the Breuil-Kisin prism this is the inclusion W (k) ↪→W (k)[[z]] = S.

This formula is easier to understand by considering the case n = 2, where we
have pullbacks

W2(A/ξ)y
��

// A/[p2]Ay
��

// A/ξ

can

��
A/ξ

φ
// A/φ(ξ)

can
// A/(ξ, φ(ξ))

In the case of the Breuil-Kisin prism, the bottom row is expressing that the Frobe-

nius OK
φ−→ OK/p extends along OK [π1/p]. So we can think of A/[pn]A as “Witt

vectors with ramification”. (This may be related to ramified Witt vectors, but I
don’t understand those). More generally, we can write

A/[pn]A = {(w0, . . . , wn−1) ∈Wn(A/φn−1(ξ)) | wi ∈ A/φn−i−1(ξ)}.
I would like to characterize the image of Wn(R) in A/[pn]A in terms of transversal

coordinates. Here is a way to do that (maybe you have to squint a little to see that’s
what it’s doing). Define the prismatic ghost polynomials

wξ0 = a0

wξ1 = aφ0 + φ(ξ)a1

wξ2 = aφ
2

0 + φ2(ξ)aφ1 + φ([p2]A)a2

wξn =

n∑
i=0

φn−i+1([pi]A)aφ
n−i

i
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Note that unlike the usual ghost polynomials, these are additive (but still not
multiplicative). Now define the prismatic Witt vectors W ξ

n(R) by

W ξ
n(R) = image of (wξ0, . . . , w

ξ
n−1) in

n∏
i=1

A/[pi]A.

For instance, in the case n = 2 we have a pullback

W ξ
2 (R) //

��

y A/ξ

φ

��
A/[p2]A can

// A/φ(ξ)

Proposition/Conjecture: W ξ
n(R) ∼= Wn(R). The Proposition part is that this is

almost immediate from the topological perspective: the definition is rigged so that
W ξ
n(R) ∼= TRn

0 (R/SA), while we know that TRn
0 (R) = Wn(R). But the absolute

and relative TR should agree on π0. Here SA (which isn’t guaranteed to exist)
is such that SA ⊗S Z = A; for example in the Breuil-Kisin case SS = SW (k)[[z]],
where SW (k) is Lurie’s “spherical Witt vectors”. The Conjecture part is to prove
this purely algebraically; it’s essentially a version of the Cartier-Dieudonné-Dwork
lemma.

The “A-analogues” might also give a way to calculate prismatic cohomology in
local coordinates, generalizing the q-de Rham complex. Set [n]A = [pvp(n)]A, so
that φ([n]A) = un mod ξ for a unit u (depending on n). This is ugly, but will
work up to units. Then in local coordinates we can define

∇A(xn) = [n]Ax
n dlog x

to get a version ofAΩ. This is lacking the more elegant formula∇qf(x) = f(qx)−f(x)
qx−x

that we have for the q-derivative, but otherwise behaves the same.

3. Floating rings

Consider the ring A = Z[q]. This has two interesting pieces of structure: Adams
operations ψn(q) = qn (lifting Frobenius when n is prime), and q-analogues [n]q =
qn−1
q−1 . This should be the basic example of an “integral prism”, whatever that is.1

So let’s see how to encode this. For any semiring B, write B• for the underlying
multiplicative monoid of B. Of course the Adams operations give a monoid map

N• → EndRing(A).

q-analogues are semi-multiplicative with respect to this action:

[mn]q =
qmn − 1

qn − 1

qn − 1

q − 1
= ψn([m]q)[n]q

That is, Adams operations and q-analogues assemble to give a map

N• → A• o EndRing(A)

n 7→ ([n]q, ψ
n)

This is cool because now we can put any ring on the right-hand side and any monoid
on the left-hand side.

1One might complain that we should complete at (q − 1), but Mao [Zho21] has recently given
a decompleted notion of prism: rather than δ(ξ) ∈ A×, one asks that δ(ξ) ∈ (A/ξ)×.
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Example: a map C2 → A•oEndRing(A) consists of an involution A→ A, z 7→ z̄
with ¯̄z = z, together with an element ε ∈ A such that εε̄ = 1 (“of norm one”,
if you like). This is precisely the input for Hermitian K-theory! (Taking ε = 1
corresponds to symmetric bilinear forms, ε = −1 corresponds to skew-symmetric
bilinear forms.) Actually this gives the wrong thing for non-commutative rings, but
you can fix that by taking into account C2 action on Ring that sends A 7→ Aop.

The second observation is that the right-hand side is actually the endomorphisms

of A in a new category. For any category C equipped with a functor C U−→ Mon
to the category of monoids, we can define a new category D which has the same
objects as C, but where

D(X,Y ) = U(Y )× C(X,Y )

EndD(X) = U(X) o EndC(X)

The fancy way to say this is we compose with the delooping functor Mon
B−→ Cat

and apply the Grothendieck construction.
The motivating example of this is the functor Vectk → Mon sending a k-vector

space V to the monoid (V,+). Then this construction gives the category of affine
spaces over k! An affine space is the same thing as a vector space, but there are more
morphisms between them. So we think of the functor U as specifying “translations”
that we want to add into our category.

So apply this construction to the functor Ring → Mon sending A 7→ A•. It
would be horrible to say “affine ring”, so let me call this the category of “floating
rings”. A floating ring is the same thing as a ring, but a map of floating rings (or
a “floating map” of rings) is a ring homomorphism times a constant.

Then we can interpret the structure on Z[q], the input for Hermitian K-theory,
and p-typical (oriented) prisms as representations of N•, C2, and (N,+) ∼= pN ⊂ N•

respectively in the category of floating rings.
The category of floating rings is equivalent to the category of pairs (A,M) where

A ∈ Ring and M is a free A-module of rank one, since the category of such M is
a model of BA•. This makes it look a little less exotic. Anyway, this seems like it
could be a very interesting category.

Along with the observations in §1, this strongly suggests that there should be a
generalization of “prism” associated to a monoid M acting on a compact Lie group
G. This would presumably be related to Dress-Siebeneicher’s G-Witt vectors, which
I don’t understand.
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