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Let's Fire Some Chips!

4 6

3 -1

We call an assignment of an integer to each vertex of a graph a chip
configuration.
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We call an assignment of an integer to each vertex of a graph a chip
configuration.
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configuration.
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Let's Fire Some Chips!
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Let's Fire Some Chips!

2 -6+1

3+1 -1
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Let's Fire Some Chips!

2 -5

Alex McDonough Chip-Firing on Representable Matroids



Let's Fire Some Chips!
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Let's Fire Some Chips!

2 -5

4-3 -1
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Let's Fire Some Chips!

2+1 -5+1

1 -1+1
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Let's Fire Some Chips!

3 4
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Let's Fire Some Chips!

3 41

1-1 0
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Let's Fire Some Chips!

3 -5

0 0+2
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Let's Fire Some Chips!
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Let's Fire Some Chips!

3 -5

0 2

Does the order of firings matter?
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Let's Fire Some Chips!

3 -5

0 2

Does the order of firings matter?
No. For this reason, this is often called the “Abelian Sandpile Model".
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Let's Fire Some Chips!

3 -5

0 2

We say chip configurations ¢; and ¢, are firing equivalent if we can reach
¢, from c¢; by firing moves.
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Let's Fire Some Chips!

3 -5

0 2

We say chip configurations ¢; and ¢, are firing equivalent if we can reach
¢, from c¢; by firing moves.
It's not hard to show that firing equivalence is an equivalence relation.
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Let's Fire Some Chips!

3 -5

0 2

Are there any chip-configurations that we definitely can’t get to?

Alex McDonough Chip-Firing on Representable Matroids



Let's Fire Some Chips!

3 -5

0 2

Are there any chip-configurations that we definitely can’t get to?
We can't change the total number of chips.
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The Sandpile Group on Graphs

o Call chip configurations with 0 total chips cyclic chip configurations.

Alex McDonough Chip-Firing on Representable Matroids



The Sandpile Group on Graphs

o Call chip configurations with 0 total chips cyclic chip configurations.

Definition (Sandpile Group)

The sandpile group of a graph G, denoted S(G), is the group of cyclic chip
configurations under pointwise addition modulo the firing equivalence relation.
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The Sandpile Group on Graphs

o Call chip configurations with 0 total chips cyclic chip configurations.

Definition (Sandpile Group)

The sandpile group of a graph G, denoted S(G), is the group of cyclic chip
configurations under pointwise addition modulo the firing equivalence relation.

@ The sandpile group of G is also called the critical group, Pic’(G), or Jac(G).
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The Sandpile Group on Graphs

o Call chip configurations with 0 total chips cyclic chip configurations.

Definition (Sandpile Group)

The sandpile group of a graph G, denoted S(G), is the group of cyclic chip
configurations under pointwise addition modulo the firing equivalence relation.

@ The sandpile group of G is also called the critical group, Pic’(G), or Jac(G).

Theorem (Sandpile Matrix-Tree Theorem)

The size of S(G) is the number of spanning trees of G.
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Edge-labeled Chip-Firing

@ Instead of working with chips let's imagine some Frito-Lay transportation
trucks driving from vertex to vertex.
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Edge-labeled Chip-Firing

@ Instead of working with chips let's imagine some Frito-Lay transportation
trucks driving from vertex to vertex.
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Edge-labeled Chip-Firing

@ Instead of working with chips let's imagine some Frito-Lay transportation
trucks driving from vertex to vertex.

o If we choose an orientation for our graph, we can get rid of arrows on our
chip trucks.
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Edge-labeled Chip-Firing

@ Instead of working with chips let's imagine some Frito-Lay transportation
trucks driving from vertex to vertex.

o If we choose an orientation for our graph, we can get rid of arrows on our
chip trucks.
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Edge-labeled Chip-Firing

@ Instead of working with chips let's imagine some Frito-Lay transportation
trucks driving from vertex to vertex.

o If we choose an orientation for our graph, we can get rid of arrows on our
chip trucks.

@ Note that the this is not a directed graph: the orientation is just for
bookkeeping.
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Edge-labeled Chip-Firing

@ Instead of working with chips let's imagine some Frito-Lay transportation
trucks driving from vertex to vertex.

o If we choose an orientation for our graph, we can get rid of arrows on our
chip trucks.

@ Note that the this is not a directed graph: the orientation is just for
bookkeeping.
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Edge-labeled Chip-Firing

@ We call an assignment of an integer to each edge of an oriented graph an
edge configuration.
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Edge-labeled Chip-Firing

@ We call an assignment of an integer to each edge of an oriented graph an
edge configuration.

@ We can get a chip configuration from an edge configuration by having each
truck take one chip from its starting vertex and deliver it to the ending vertex.
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Edge-labeled Chip-Firing

@ We call an assignment of an integer to each edge of an oriented graph an
edge configuration.

@ We can get a chip configuration from an edge configuration by having each
truck take one chip from its starting vertex and deliver it to the ending vertex.
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Edge-labeled Chip-Firing

@ We call an assignment of an integer to each edge of an oriented graph an
edge configuration.

@ We can get a chip configuration from an edge configuration by having each
truck take one chip from its starting vertex and deliver it to the ending vertex.

@ We call this map from edge configurations to chip configurations 0.

1 ~s —3
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Edge-labeled Chip-Firing

@ We call an assignment of an integer to each edge of an oriented graph an
edge configuration.

@ We can get a chip configuration from an edge configuration by having each
truck take one chip from its starting vertex and deliver it to the ending vertex.

@ We call this map from edge configurations to chip configurations 0.
@ Note that O always maps to cyclic chip configurations.

1 ~e —3
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Edge-labeled Chip-Firing

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.
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Edge-labeled Chip-Firing

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.

Definition (Edge-labeled Sandpile Group)

The edge-labeled sandpile group of a graph G, denoted §¢(G), is the group of
edge configurations under pointwise addition modulo the edge firing equivalence

relation.
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Edge-labeled Chip-Firing

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.

Definition (Edge-labeled Sandpile Group)

The edge-labeled sandpile group of a graph G, denoted §¢(G), is the group of
edge configurations under pointwise addition modulo the edge firing equivalence

relation.

Definition (Sandpile Group)

The sandpile group of a graph G, denoted S(G), is the group of cyclic chip
configurations under pointwise addition modulo the firing equivalence relation.
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Edge-labeled Chip-Firing

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.

Definition (Edge-labeled Sandpile Group)

The edge-labeled sandpile group of a graph G, denoted §¢(G), is the group of
edge configurations under pointwise addition modulo the edge firing equivalence

relation.

Definition (Sandpile Group)

The sandpile group of a graph G, denoted S(G), is the group of cyclic chip
configurations under pointwise addition modulo the firing equivalence relation.

Topology Timel!!
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Topology Time!!

@ Chip configurations are also called 0-chains. The group of 0-chains under
pointwise addition is denoted (.
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@ Chip configurations are also called 0-chains. The group of 0-chains under
pointwise addition is denoted (.

o Edge configurations are also called I-chains. The group of 1-chains under
pointwise addition is denoted C;.
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@ Chip configurations are also called 0-chains. The group of 0-chains under
pointwise addition is denoted (.

o Edge configurations are also called I-chains. The group of 1-chains under
pointwise addition is denoted C;.

@ Let ¢ be the map Cy — Z that outputs the total number of chips.
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@ Chip configurations are also called 0-chains. The group of 0-chains under
pointwise addition is denoted (.

o Edge configurations are also called I-chains. The group of 1-chains under
pointwise addition is denoted C;.

@ Let ¢ be the map Cy — Z that outputs the total number of chips.
@ Then, ker ¢ is the group of cyclic chip configurations.
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@ Chip configurations are also called 0-chains. The group of 0-chains under
pointwise addition is denoted (.

Edge configurations are also called I-chains. The group of 1-chains under
pointwise addition is denoted C;.

Let € be the map Co — Z that outputs the total number of chips.

Then, ker e is the group of cyclic chip configurations.

Recall that 0 is a map from G — Cy.
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@ Chip configurations are also called 0-chains. The group of 0-chains under
pointwise addition is denoted (.

Edge configurations are also called I-chains. The group of 1-chains under
pointwise addition is denoted C;.

Let € be the map Co — Z that outputs the total number of chips.

Then, ker e is the group of cyclic chip configurations.

Recall that 0 is a map from G — Cy.

C1%C0—>Z
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Chip configurations are also called 0-chains. The group of 0-chains under
pointwise addition is denoted (.

Edge configurations are also called I-chains. The group of 1-chains under
pointwise addition is denoted C;.

Let € be the map Co — Z that outputs the total number of chips.
Then, ker e is the group of cyclic chip configurations.
Recall that 0 is a map from G — Cy.

C1%Co—>Z

We observed that im 0 C kere.
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@ Chip configurations are also called 0-chains. The group of 0-chains under
pointwise addition is denoted (.

o Edge configurations are also called I-chains. The group of 1-chains under
pointwise addition is denoted C;.

@ Let ¢ be the map Cy — Z that outputs the total number of chips.
@ Then, ker ¢ is the group of cyclic chip configurations.
@ Recall that 9 is a map from C; — C.

@ We observed that im0 C kere.

Definition (Reduced Homology)

The group kere/im 0 is called the reduced 0" homology group and is denoted
Ho(G).
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The Two Sandpile Groups

@ How are S(G) and S§¢(G) related?
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The Two Sandpile Groups

@ How are S(G) and S§¢(G) related?

@ We can think of these groups as ker e and im 0 respectively with the same
equivalence relation.
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The Two Sandpile Groups

@ How are S(G) and S§¢(G) related?

@ We can think of these groups as ker e and im 0 respectively with the same
equivalence relation.

o S(G) = 8(G) if and only if Hy(G) = 0.
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The Two Sandpile Groups

@ How are S(G) and S§¢(G) related?

@ We can think of these groups as ker e and im 0 respectively with the same
equivalence relation.

o S(G) = 8(G) if and only if Hy(G) = 0.

o Hy(G) = Z¥~1 where k is the number of connected components of G.
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The Two Sandpile Groups

@ How are S(G) and S§¢(G) related?

@ We can think of these groups as ker e and im 0 respectively with the same
equivalence relation.

o S(G) = 8(G) if and only if Hy(G) = 0.

o Hy(G) = Z¥~1 where k is the number of connected components of G.

Proposition
S(G) =2 8¢(G) if and only if G is connected.
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The Two Sandpile Groups

@ How are S(G) and S§¢(G) related?

@ We can think of these groups as ker e and im 0 respectively with the same
equivalence relation.

o S(G) = 8(G) if and only if Hy(G) = 0.

o Hy(G) = Z¥~1 where k is the number of connected components of G.

Proposition

S(G) =2 8¢(G) if and only if G is connected. In general, if Gy, ..., Gy are the
connected components of G, then S¢(G) = S(G1) @ - - - ® S(G).
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The Two Sandpile Groups

@ How are S(G) and S§¢(G) related?

@ We can think of these groups as ker e and im 0 respectively with the same
equivalence relation.

o S(G) = 8(G) if and only if Hy(G) = 0.

o Hy(G) = Z¥~1 where k is the number of connected components of G.

Proposition

S(G) =2 8¢(G) if and only if G is connected. In general, if Gy, ..., Gy are the
connected components of G, then S¢(G) = S(G1) @ - - - ® S(G).

o Lets play around with S¢(G).
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The Edge-Labeled Sandpile Group

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.
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The Edge-Labeled Sandpile Group

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.

@ Can we make a more useful definition?
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The Edge-Labeled Sandpile Group

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.

@ Can we make a more useful definition?

@ Let's start by taking a closer look at 0.
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The Edge-Labeled Sandpile Group

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.

@ Can we make a more useful definition?

@ Let's start by taking a closer look at 0.

B _C
b Y AB AC AD BC CD

1 0 0 -1 0
0 1 0 1 -1
0 0 1 0 1

Onw>

Y
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The Edge-Labeled Sandpile Group

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.

@ Can we make a more useful definition?

@ Let's start by taking a closer look at 0.

B _C
b Y AB AC AD BC CD
A/1 -1 -1 0 0
B(1 o0 o0 -1 0
C 0 1 0 1 -1
p\o o 1 0 1
‘V
A D

@ What happens when we fire a vertex?
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The Edge-Labeled Sandpile Group

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.

@ Can we make a more useful definition?
@ Let's start by taking a closer look at 0.
B 1 +1 C

>

b AB AC AD BC CD

-1

A/1 -1 -1 0 0
B(1 o0 o0 -1 0
C 0 1 0 1 -1
41 p\o o 1 0 1
‘V
A D

@ What happens when we fire a vertex?
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The Edge-Labeled Sandpile Group

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.

@ Can we make a more useful definition?

@ Let's start by taking a closer look at 0.

B +1  C
¢ ' AB AC AD BC CD
A/1 -1 -1 0 0
B(1 o o0 -1 o0
-1 clo 1 o 1 4
Db\o o 1 o0 1
‘V
A D

@ What happens when we fire a vertex?
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The Edge-Labeled Sandpile Group

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.

@ Can we make a more useful definition?

@ Let's start by taking a closer look at 0.

B +1  C
: - AB AC AD BC CD

A/1 -1 -1 0 0
B[1 o 0o -1 o0
-1 clo 1 o 1 4
pb\o o0 1 0 1
‘V
A D

@ What happens when we fire a vertex?
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The Edge-Labeled Sandpile Group

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.

@ Can we make a more useful definition?

@ Let's start by taking a closer look at 0.

B +1  C
¢ ' AB AC AD BC CD
A/1 -1 -1 0 0
B[1 o 0o -1 o0
-1 clo 1 o 1 4
Db\o o 1 o0 1

‘V
A D

@ What happens when we fire a vertex? We subtract a row of 0.
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The Edge-Labeled Sandpile Group

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.

@ Can we make a more useful definition?

@ Let's start by taking a closer look at 0.

B +1  C
¢ ” AB AC AD BC CD
A/1 -1 -1 0 0
B(1 o o -1 o0
-1 clo 1 o 1 2
pb\o o 1 0 1
‘V
A D

@ What happens when we fire a vertex? We subtract a row of 9. A collection
of firings adds an element of imz(97).
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The Edge-Labeled Sandpile Group

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.

@ Can we make a more useful definition?

@ Let's start by taking a closer look at 0.

B _C
b Y AB AC AD BC CD
-1 -1 -1 0 0

1 0 0 -1 0
o 1 0 1 -
o o 1 o0 1

Onw>

Y

A )
@ What happens when we fire a vertex? We subtract a row of 9. A collection

of firings adds an element of imz(97).
@ We can also add a 1-chain with trivial boundary.
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The Edge-Labeled Sandpile Group

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.

@ Can we make a more useful definition?

@ Let's start by taking a closer look at 0.

B +1  C
¢ ” AB AC AD BC CD
A/ -1 -1 0 0
B[1 o o -1 o
+1 1oclo 1 0 1 4
pb\o o 1 o0 1

;V
A 1 D

@ What happens when we fire a vertex? We subtract a row of 9. A collection
of firings adds an element of imz(97).

@ We can also add a 1-chain with trivial boundary.
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The Edge-Labeled Sandpile Group

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.
@ Can we make a more useful definition?

@ Let's start by taking a closer look at 0.

B +1  C
¢ > AB AC AD BC CD
A/l -1 -1 0 0
B[1 o o -1 o
+1 1oclo 1 0 1
p\o o 1 o0 1

;V
A 1 D

@ What happens when we fire a vertex? We subtract a row of 9. A collection
of firings adds an element of imz(97).

@ We can also add a 1-chain with trivial boundary.
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The Edge-Labeled Sandpile Group

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
9(c1) and 9(cp) are firing equivalent.

@ Can we make a more useful definition?

@ Let's start by taking a closer look at 0.

B +1  C
¢ > AB AC AD BC CD
A/l -1 -1 0 0
B[1 o o -1 o
+1 1oclo 1 0 1
p\o o 1 o0 1

;V
A 1 D

@ What happens when we fire a vertex? We subtract a row of 9. A collection
of firings adds an element of imz(97).

@ We can also add a 1-chain with trivial boundary. This new type of firing adds
an element of kerz(0).
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The Edge-Labeled Sandpile Group

o We say that 2 edge configurations ¢; and ¢, are edge firing equivalent if
c — 2 € (imz(07) @ kerz(9)).

@ Can we make a more useful definition?

@ Let's start by taking a closer look at 0.

B _C
b Y AB AC AD BC CD
A/1 -1 -1 0 0
B(1 o0 o0 -1 0
C 0 1 0 1 -1
p\o o 1 0 1
‘V
A D

@ What happens when we fire a vertex? We subtract a row of 9. A collection
of firings adds an element of imz(97).

@ We can also add a 1-chain with trivial boundary. This new type of firing adds
an element of kerz(0).
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Let's Talk About Matroids

@ In general, a matroid is a pair (E, B) where B C P(E) satisfying some
conditions. E is called the ground set while B is called the set of bases. .
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Let's Talk About Matroids

@ In general, a matroid is a pair (E, B) where B C P(E) satisfying some
conditions. E is called the ground set while B is called the set of bases.

@ For this talk, we will only work with representable matroids.
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Let's Talk About Matroids

@ In general, a matroid is a pair (E, B) where B C P(E) satisfying some
conditions. E is called the ground set while B is called the set of bases.

@ For this talk, we will only work with representable matroids.

o Start with a matrix. The columns form the ground set and the maximal
linearly independent collections of column vectors are the bases.
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Let's Talk About Matroids

@ In general, a matroid is a pair (E, B) where B C P(E) satisfying some
conditions. E is called the ground set while B is called the set of bases.

@ For this talk, we will only work with representable matroids.

o Start with a matrix. The columns form the ground set and the maximal
linearly independent collections of column vectors are the bases.

A B C D E F
1 0 1 1 0 1
(0 1 1 1 0 1)
0 0 0 1 0 O

@ The matroid arising from this matrix has E = {A, B, C,D, E, F} and
B = {{A’ B, D}v {Av o D}7 {A> D, F}a {Bv C, D}7 {B, D, F}}
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Graphical Matroid

@ What do we get when we find the matroid represented by the boundary
matrix of a graph?
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Graphical Matroid

@ What do we get when we find the matroid represented by the boundary
matrix of a graph?

B e AB AC AD BC CD
4 Ay/1 -1 -1 0 0
B[1 o0 o0 -1 0
clo 1 o 1 -1
Db\o o0 1 o0 1
‘V
A "D
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Graphical Matroid

@ What do we get when we find the matroid represented by the boundary
matrix of a graph?

B e AB AC AD BC CD
A A/1 -1 -1 0 0
B(1 o o0 -1 0
clo 1 o 1 -1
D\o 0 1 0 1
‘V
A "D

@ The ground set corresponds to the edges of G
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Graphical Matroid

@ What do we get when we find the matroid represented by the boundary
matrix of a graph?

B e AB AC AD BC CD
A A/1 -1 -1 0 0
B(1 o o0 -1 0
clo 1 o 1 -1
D\o 0 1 0 1
‘V
A "D

@ The ground set corresponds to the edges of G and bases correspond to
spanning trees of G.

Alex McDonough

Chip-Firing on Representable Matroids




Another Graph Representation

o We give a useful alternative method for producing a matrix D that represents
the same matroid as 0.

B C
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Another Graph Representation

o We give a useful alternative method for producing a matrix D that represents
the same matroid as 0.

B C

A D

@ Choose any spanning tree T.
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Another Graph Representation

o We give a useful alternative method for producing a matrix D that represents
the same matroid as 0.

B C

AB BC CD

1 0 0
D—(O 1 0 >
0 0 1

A D

@ Choose any spanning tree T.

@ Write the identity matrix in the first | T| columns of M. Associate these
columns with the edges of T.
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Another Graph Representation

o We give a useful alternative method for producing a matrix D that represents
the same matroid as 0.

B _C
¢ > AB BC CD

1 0 0
D—(O 1 0 >
0 0 1

A D

@ Choose any spanning tree T.

@ Write the identity matrix in the first | T| columns of M. Associate these
columns with the edges of T.

© Choose a leaf of T to act as a root and orient the tree away from this point.
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Another Graph Representation

o We give a useful alternative method for producing a matrix D that represents
the same matroid as 0.

B C
A

\

AB BC CD AC AD

1 0 0 1 1
D—(o 1 0 1 1)
0 0 1 0 1

Y

A D

@ Choose any spanning tree T.

@ Write the identity matrix in the first | T| columns of M. Associate these
columns with the edges of T.

© Choose a leaf of T to act as a root and orient the tree away from this point.

@ Orient the remaining edges and fill in the columns to give the desired
dependencies. (This step is easier to describe verbally).
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Back to S¢(G)

Y

4

A

D

X

AB BC CD AC AD
1 0 0 1 1
0 1 0 1 1 )

0 0 1 0 1

o We saw before that ¢; and ¢, are edge firing equivalent if and only if they are
equivalent modulo imz(07) @ kerz(9).
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Back to S¢(G)

B

A

A

Y

4

C

D

AB BC CD AC AD

1 0 0 1 1
D:(o 1 0 1 1)
0 0 1 0 1

o We saw before that ¢; and ¢, are edge firing equivalent if and only if they are
equivalent modulo imz(07) @ kerz(9).

@ In fact, ¢; and ¢ are also edge firing equivalent if and only if they are
equivalent modulo imz(DT) @ kerz(D).
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Back to S¢(G)

B

A

A

Y

4

C

D

X

AB BC CD AC AD
1 0 0 1 1
0 1 0 1 1 )

0 0 1 0 1

o We saw before that ¢; and ¢, are edge firing equivalent if and only if they are
equivalent modulo imz(07) @ kerz(9).

@ In fact, ¢; and ¢ are also edge firing equivalent if and only if they are
equivalent modulo imz(DT) @ kerz(D).

@ Let's add a few rows to D to get D. Call the last 2 rows D.
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Back to S¢(G)

B C AB BC CD AC AD
b ’ 1 0 0 1 1
0 1 0 1 1

D=]0 0 1 0 1

-1 -1 0 1 0

-y -1 -1 -1 0 1

A D

@ We saw before that ¢; and ¢, are edge firing equivalent if and only if they are
equivalent modulo imz(97) @ kerz(9).

@ In fact, ¢; and ¢, are also edge firing equivalent if and only if they are
equivalent modulo imz(D7) @ kerz(D).

@ Let's add a few rows to D to get D. Call the last 2 rows D.

Alex McDonough Chip-Firing on Representable Matroids



Back to S¢(G)

B C AB BC CD AC AD
i ’ 1 0 0 1 1
0 1 0 1 1

D=]0 0 1 0 1

-1 -1 0 1 0

Y -1 -1 -1 0 1

A D

@ We saw before that ¢; and ¢, are edge firing equivalent if and only if they are
equivalent modulo imz(97) @ kerz(9).

@ In fact, ¢; and ¢, are also edge firing equivalent if and only if they are
equivalent modulo imz(D7) @ kerz(D).

@ Let's add a few rows to D to get D. Call the last 2 rows D.

Proposition

imz(DT) = kerz(D).
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Back to S¢(G)

B C AB BC CD AC AD
i ’ 1 0 0 1 1
0 1 0 1 1

D=]0 0 1 0 1

-1 -1 0 1 0

Y -1 -1 -1 0 1

A D

@ We saw before that ¢; and ¢, are edge firing equivalent if and only if they are
equivalent modulo imz(97) @ kerz(9).

@ In fact, ¢; and ¢, are also edge firing equivalent if and only if they are
equivalent modulo imz(D7) @ kerz(D).

@ Let's add a few rows to D to get D. Call the last 2 rows D.

Proposition

imz(DT) = kerz(D). This implies that imz(DT) @ kerz(D) = imz(DT)
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The Matrix Sandpile Group

e Let D be an n x (n+ m) matrix of the form: ( I, | M ) where M is any
n X m integer matrix.
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The Matrix Sandpile Group

e Let D be an n x (n+ m) matrix of the form: ( I, | M ) where M is any
n X m integer matrix.

Definition (Matrix Sandpile Group)

The sandpile lattice of D, denoted S(D), is imz(D ™) @ kerz(D). The sandpile
group of D is Z™™™/ (imz(DT) & kerz(D)) .
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The Matrix Sandpile Group

e Let D be an n x (n+ m) matrix of the form: ( I, | M ) where M is any
n X m integer matrix.

Definition (Matrix Sandpile Group)

The sandpile lattice of D, denoted S(D), is imz(D ™) @ kerz(D). The sandpile
group of D is Z™™™/ (imz(DT) & kerz(D)) .

o Let D be the m x (n+ m) matrix ( —M7 | I, ).
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The Matrix Sandpile Group

e Let D be an n x (n+ m) matrix of the form: ( I, | M ) where M is any
n X m integer matrix.

Definition (Matrix Sandpile Group)

The sandpile lattice of D, denoted S(D), is imz(D ™) @ kerz(D). The sandpile
group of D is Z™™™/ (imz(DT) & kerz(D)) .

o Let D be the m x (n+ m) matrix ( —M7 | I, ).

D
e Let D be the (n+ m) x (n+ m) matrix<D>—< hn M).
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The Matrix Sandpile Group

e Let D be an n x (n+ m) matrix of the form: ( I, | M ) where M is any
n X m integer matrix.

Definition (Matrix Sandpile Group)

The sandpile lattice of D, denoted S(D), is imz(D ™) @ kerz(D). The sandpile
group of D is Z™™™/ (imz(DT) & kerz(D)) .

o Let D be the m x (n+ m) matrix ( —M7 | I, ).

D
e Let D be the (n+ m) x (n+ m) matrix<D>—< hn M).

imz(DT) @ kerz(D) = imz(DT).
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The Matrix Sandpile Group

e Let D be an n x (n+ m) matrix of the form: ( I, | M ) where M is any
n X m integer matrix.

Definition (Matrix Sandpile Group)

The sandpile lattice of D, denoted S(D), is imz(D ™) @ kerz(D). The sandpile
group of D is Z™™™/ (imz(DT) & kerz(D)) .

o Let D be the m x (n+ m) matrix ( —M7 | I, ).

D
e Let D be the (n+ m) x (n+ m) matrix<D>—< hn M).

imz(D") @ kerz(D) = imz(DT). Furthermore,

S(D)| = |DJ.
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Finding |D|

D] =|D-DT|
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Finding |D|

D] =|D-DT| \
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Finding |D|
Dl = D-DT| \

_ L, | M M-M"+1,|] 0\ (D-DT|0O
2= () = () = (B ) ¢

@ For s C [n+ m], let Ds be D restricted to columns of s.
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Finding |D|
Dl = - D7 l

_ L, | M M-M"+1,|] 0\ (D-DT|0O
2= () = () = (B ) ¢

@ For s C [n+ m], let Ds be D restricted to columns of s.

Theorem (Consequence of Cauchy-Biney Formula)

ID-DT|= > ID

sClntml.|s|=n
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Cellular Matrix-Tree Theorem

Theorem (Duval-Klivans-Martin, 2009)

sO)l= Y IDP

sC[n+m],|s|=n
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Cellular Matrix-Tree Theorem

Theorem (Duval-Klivans-Martin, 2009)

sO)l= Y IDP

sC[n+m],|s|=n
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Cellular Matrix-Tree Theorem

Theorem (Duval-Klivans-Martin, 2009)
[S)= > D

sC[n+m],|s|=n

1 0 2
D—(é (1) §> D= 0 1 3
-2 =31
2 2 2
_ 110 12 0 2 5, 20,/ o2
|S(D)_|D|_‘0 1 +'O 3 +‘1 3 1 +3° 4+ (-2)* =14
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Cellular Matrix-Tree Theorem

Theorem (Duval-Klivans-Martin, 2009)

sO)l= Y IDP

sC[n+m],|s|=n

1 0 2
D—(é?i) D=0 1 3
-2 -3 1
2 2 2
|10 12 2
IS(D)—IDI—‘01 +'03 +‘13 = 12432+ (-2) =14

@ For each s C [n+ m] of size n, |Ds| # 0 iff s corresponds to a basis of D.
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Cellular Matrix-Tree Theorem

Theorem (Duval-Klivans-Martin, 2009)

S(D) = > D
seB(D)
1 0 2
D—(é (1) §> D= 0 1 3
-2 -3 1
2 2 2
10 1 2 0 2
|S(D):|D|:‘0 1 +'o 3 +‘1 3 =124+32+ (=22 =14

@ For each s C [n+ m] of size n, |Ds| # 0 iff s corresponds to a basis of D.

Alex McDonough
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Regular Matroids

Definition

A matrix whose square submatrices all have determinant 0, 1, or -1 is called
totally unimodular.
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Regular Matroids

Definition

A matrix whose square submatrices all have determinant 0, 1, or -1 is called
totally unimodular. A matroid represented by a totally unimodular matrix is called
regular.
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Regular Matroids

Definition

A matrix whose square submatrices all have determinant 0, 1, or -1 is called
totally unimodular. A matroid represented by a totally unimodular matrix is called
regular.

Proposition

If D is totally unimodular,

S(D)| = |B(D)|
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Regular Matroids

Definition

A matrix whose square submatrices all have determinant 0, 1, or -1 is called
totally unimodular. A matroid represented by a totally unimodular matrix is called
regular.

Proposition

If D is totally unimodular, |S(D)| = |B(D)|.

Proposition (Tutte, 1958)

Graphical matroids are always regular.

Alex McDonough Chip-Firing on Representable Matroids



Regular Matroids

Definition

A matrix whose square submatrices all have determinant 0, 1, or -1 is called
totally unimodular. A matroid represented by a totally unimodular matrix is called
regular.

Proposition
If D is totally unimodular, |S(D)| = |B(D)|.

Proposition (Tutte, 1958)

Graphical matroids are always regular.

@ This proves the Sandpile Matrix-Tree Theorem for graphs.

Theorem (Sandpile Matrix-Tree Theorem)
The size of S(G) is the number of spanning trees of G.
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Cell Complex Chip-Firing

o A simplicial complex is a higher dimensional analogue of a graph.
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Cell Complex Chip-Firing

o A simplicial complex is a higher dimensional analogue of a graph. We can
construct a matroid on an n-dimensional simplicial complex from the
boundary map from n-chains to (n — 1)-chains.
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Cell Complex Chip-Firing

o A simplicial complex is a higher dimensional analogue of a graph. We can
construct a matroid on an n-dimensional simplicial complex from the
boundary map from n-chains to (n — 1)-chains.

Theorem (Cordovil-Las Vergnas, Lindstrom 1979)

The complete 2-dimensional simplicial complex on 6 vertices is not regular.
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Cell Complex Chip-Firing

o A simplicial complex is a higher dimensional analogue of a graph. We can
construct a matroid on an n-dimensional simplicial complex from the
boundary map from n-chains to (n — 1)-chains.

Theorem (Cordovil-Las Vergnas, Lindstrom 1979)

The complete 2-dimensional simplicial complex on 6 vertices is not regular.

@ We can also work with cell complexes (aka finite CW complexes) whose
boundary maps can be any collection of integers.
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Cell Complex Chip-Firing

o A simplicial complex is a higher dimensional analogue of a graph. We can
construct a matroid on an n-dimensional simplicial complex from the
boundary map from n-chains to (n — 1)-chains.

Theorem (Cordovil-Las Vergnas, Lindstrom 1979)

The complete 2-dimensional simplicial complex on 6 vertices is not regular.

@ We can also work with cell complexes (aka finite CW complexes) whose
boundary maps can be any collection of integers.

@ In general, given a cell complex ¥, we want to convert the top boundary map
to the form ( I, | M ) and then we get the Cellular Matrix-Tree Theorem.
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Cell Complex Chip-Firing

o A simplicial complex is a higher dimensional analogue of a graph. We can
construct a matroid on an n-dimensional simplicial complex from the
boundary map from n-chains to (n — 1)-chains.

Theorem (Cordovil-Las Vergnas, Lindstrom 1979)

The complete 2-dimensional simplicial complex on 6 vertices is not regular.

@ We can also work with cell complexes (aka finite CW complexes) whose
boundary maps can be any collection of integers.

@ In general, given a cell complex ¥, we want to convert the top boundary map
to the form ( I, | M ) and then we get the Cellular Matrix-Tree Theorem.

@ This works as long as ¥ contains at least one basis with determinant 1 or -1.
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Cell Complex Chip-Firing

o A simplicial complex is a higher dimensional analogue of a graph. We can
construct a matroid on an n-dimensional simplicial complex from the
boundary map from n-chains to (n — 1)-chains.

Theorem (Cordovil-Las Vergnas, Lindstrom 1979)

The complete 2-dimensional simplicial complex on 6 vertices is not regular.

@ We can also work with cell complexes (aka finite CW complexes) whose
boundary maps can be any collection of integers.

@ In general, given a cell complex ¥, we want to convert the top boundary map
to the form ( I, | M ) and then we get the Cellular Matrix-Tree Theorem.
@ This works as long as ¥ contains at least one basis with determinant 1 or -1.

In particular, this works when ¥ is the complete simplicial complex in any
dimension and with any number of vertices.
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Sandpile Torsors

Theorem (Duval-Klivans-Martin, 2009)

[S(D) =Y [Dsf

seB(D)

e Can we find a combinatorially interesting map f from S(D) — B(D) such
that for each s € B(D), we have f~(s) = |Ds|??
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Sandpile Torsors

Theorem (Duval-Klivans-Martin, 2009)

[S(D) =Y [Dsf

seB(D)

e Can we find a combinatorially interesting map f from S(D) — B(D) such
that for each s € B(D), we have f~(s) = |Ds|??

@ When D is from a graphical matroid, these are bijections called sandpile
torsors.
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Sandpile Torsors

Theorem (Duval-Klivans-Martin, 2009)

[S(D) =Y [Dsf

seB(D)

e Can we find a combinatorially interesting map f from S(D) — B(D) such
that for each s € B(D), we have f~(s) = |Ds|??

@ When D is from a graphical matroid, these are bijections called sandpile
torsors.

@ Some sandpile torsors are from the rotor-routing process (Holroyd et al,
(2008)) and the Bernardi Process (Baker-Wang, (2017)).
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Sandpile Torsors

Theorem (Duval-Klivans-Martin, 2009)

[S(D) =Y [Dsf

seB(D)

e Can we find a combinatorially interesting map f from S(D) — B(D) such
that for each s € B(D), we have f~(s) = |Ds|??

@ When D is from a graphical matroid, these are bijections called sandpile
torsors.

@ Some sandpile torsors are from the rotor-routing process (Holroyd et al,
(2008)) and the Bernardi Process (Baker-Wang, (2017)).

@ When D is from a regular matroid, a bijection is given by Backman, Baker,
and Yuen (2019).
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Sandpile Torsors

Theorem (Duval-Klivans-Martin, 2009)

[S(D) =Y [Dsf

seB(D)

e Can we find a combinatorially interesting map f from S(D) — B(D) such
that for each s € B(D), we have f~(s) = |Ds|??

@ When D is from a graphical matroid, these are bijections called sandpile
torsors.

@ Some sandpile torsors are from the rotor-routing process (Holroyd et al,
(2008)) and the Bernardi Process (Baker-Wang, (2017)).

@ When D is from a regular matroid, a bijection is given by Backman, Baker,
and Yuen (2019).

@ The general result for any D = ( I, ‘ M ) will appear in my upcoming paper.
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Thanks For Listening!!!
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