Chip-Firing on Representable Matroids GOCC

Alex McDonough

5/6/20

Does the order of firings matter?

Does the order of firings matter?

No. For this reason, this is often called the "Abelian Sandpile Model".

We say chip configurations c_1 and c_2 are *firing equivalent* if we can reach c_2 from c_1 by firing moves.

We say chip configurations c_1 and c_2 are *firing equivalent* if we can reach c_2 from c_1 by firing moves.

It's not hard to show that firing equivalence is an equivalence relation.

Are there any chip-configurations that we definitely can't get to?

Are there any chip-configurations that we definitely can't get to? We can't change the total number of chips.

• Call chip configurations with 0 total chips *cyclic* chip configurations.

• Call chip configurations with 0 total chips *cyclic* chip configurations.

Definition (Sandpile Group)

The sandpile group of a graph G, denoted S(G), is the group of cyclic chip configurations under pointwise addition modulo the firing equivalence relation.

• Call chip configurations with 0 total chips *cyclic* chip configurations.

Definition (Sandpile Group)

The sandpile group of a graph G, denoted S(G), is the group of cyclic chip configurations under pointwise addition modulo the firing equivalence relation.

• The sandpile group of G is also called the critical group, $Pic^0(G)$, or Jac(G).

• Call chip configurations with 0 total chips *cyclic* chip configurations.

Definition (Sandpile Group)

The sandpile group of a graph G, denoted S(G), is the group of cyclic chip configurations under pointwise addition modulo the firing equivalence relation.

• The sandpile group of G is also called the critical group, $Pic^0(G)$, or Jac(G).

Theorem (Sandpile Matrix-Tree Theorem)

The size of S(G) is the number of spanning trees of G.

Edge-labeled Chip-Firing

• Instead of working with chips let's imagine some Frito-Lay transportation trucks driving from vertex to vertex.

Edge-labeled Chip-Firing

• Instead of working with chips let's imagine some Frito-Lay transportation trucks driving from vertex to vertex.

Edge-labeled Chip-Firing

- Instead of working with chips let's imagine some Frito-Lay transportation trucks driving from vertex to vertex.
- If we choose an *orientation* for our graph, we can get rid of arrows on our chip trucks.

- Instead of working with chips let's imagine some Frito-Lay transportation trucks driving from vertex to vertex.
- If we choose an *orientation* for our graph, we can get rid of arrows on our chip trucks.

- Instead of working with chips let's imagine some Frito-Lay transportation trucks driving from vertex to vertex.
- If we choose an orientation for our graph, we can get rid of arrows on our chip trucks.
- Note that the this is not a directed graph: the orientation is just for bookkeeping.

- Instead of working with chips let's imagine some Frito-Lay transportation trucks driving from vertex to vertex.
- If we choose an orientation for our graph, we can get rid of arrows on our chip trucks.
- Note that the this is not a directed graph: the orientation is just for bookkeeping.

• We call an assignment of an integer to each edge of an oriented graph an edge configuration.

- We call an assignment of an integer to each edge of an oriented graph an edge configuration.
- We can get a chip configuration from an edge configuration by having each truck take one chip from its starting vertex and deliver it to the ending vertex.

- We call an assignment of an integer to each edge of an oriented graph an edge configuration.
- We can get a chip configuration from an edge configuration by having each truck take one chip from its starting vertex and deliver it to the ending vertex.

- We call an assignment of an integer to each edge of an oriented graph an edge configuration.
- We can get a chip configuration from an edge configuration by having each truck take one chip from its starting vertex and deliver it to the ending vertex.
- ullet We call this map from edge configurations to chip configurations $\partial.$

- We call an assignment of an integer to each edge of an oriented graph an edge configuration.
- We can get a chip configuration from an edge configuration by having each truck take one chip from its starting vertex and deliver it to the ending vertex.
- ullet We call this map from edge configurations to chip configurations $\partial.$
- Note that ∂ always maps to cyclic chip configurations.

• We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.

• We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.

Definition (Edge-labeled Sandpile Group)

The edge-labeled sandpile group of a graph G, denoted $S^e(G)$, is the group of edge configurations under pointwise addition modulo the edge firing equivalence relation.

• We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.

Definition (Edge-labeled Sandpile Group)

The edge-labeled sandpile group of a graph G, denoted $S^e(G)$, is the group of edge configurations under pointwise addition modulo the edge firing equivalence relation.

Definition (Sandpile Group)

The sandpile group of a graph G, denoted S(G), is the group of cyclic chip configurations under pointwise addition modulo the firing equivalence relation.

• We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.

Definition (Edge-labeled Sandpile Group)

The edge-labeled sandpile group of a graph G, denoted $S^e(G)$, is the group of edge configurations under pointwise addition modulo the edge firing equivalence relation.

Definition (Sandpile Group)

The sandpile group of a graph G, denoted S(G), is the group of cyclic chip configurations under pointwise addition modulo the firing equivalence relation.

• Chip configurations are also called *0-chains*. The group of 0-chains under pointwise addition is denoted C_0 .

- Chip configurations are also called *0-chains*. The group of 0-chains under pointwise addition is denoted C_0 .
- Edge configurations are also called *1-chains*. The group of 1-chains under pointwise addition is denoted C_1 .

- Chip configurations are also called *0-chains*. The group of 0-chains under pointwise addition is denoted C_0 .
- Edge configurations are also called *1-chains*. The group of 1-chains under pointwise addition is denoted C_1 .
- Let ϵ be the map $C_0 \to \mathbb{Z}$ that outputs the total number of chips.

- Chip configurations are also called *0-chains*. The group of 0-chains under pointwise addition is denoted C_0 .
- Edge configurations are also called *1-chains*. The group of 1-chains under pointwise addition is denoted C_1 .
- Let ϵ be the map $C_0 \to \mathbb{Z}$ that outputs the total number of chips.
- Then, $\ker \epsilon$ is the group of cyclic chip configurations.

- Chip configurations are also called *0-chains*. The group of 0-chains under pointwise addition is denoted C_0 .
- Edge configurations are also called *1-chains*. The group of 1-chains under pointwise addition is denoted C_1 .
- Let ϵ be the map $C_0 \to \mathbb{Z}$ that outputs the total number of chips.
- Then, $\ker \epsilon$ is the group of cyclic chip configurations.
- Recall that ∂ is a map from $C_1 \to C_0$.

- Chip configurations are also called *0-chains*. The group of 0-chains under pointwise addition is denoted C_0 .
- Edge configurations are also called *1-chains*. The group of 1-chains under pointwise addition is denoted C_1 .
- Let ϵ be the map $C_0 \to \mathbb{Z}$ that outputs the total number of chips.
- ullet Then, $\ker \epsilon$ is the group of cyclic chip configurations.
- Recall that ∂ is a map from $C_1 \to C_0$.

$$C_1 \xrightarrow{\partial} C_0 \xrightarrow{\epsilon} \mathbb{Z}$$

- Chip configurations are also called *0-chains*. The group of 0-chains under pointwise addition is denoted C_0 .
- Edge configurations are also called *1-chains*. The group of 1-chains under pointwise addition is denoted C_1 .
- Let ϵ be the map $C_0 \to \mathbb{Z}$ that outputs the total number of chips.
- Then, $\ker \epsilon$ is the group of cyclic chip configurations.
- Recall that ∂ is a map from $C_1 \to C_0$.

$$C_1 \xrightarrow{\partial} C_0 \xrightarrow{\epsilon} \mathbb{Z}$$

• We observed that im $\partial \subseteq \ker \epsilon$.

- Chip configurations are also called *0-chains*. The group of 0-chains under pointwise addition is denoted C_0 .
- Edge configurations are also called *1-chains*. The group of 1-chains under pointwise addition is denoted C_1 .
- Let ϵ be the map $C_0 \to \mathbb{Z}$ that outputs the total number of chips.
- Then, $\ker \epsilon$ is the group of cyclic chip configurations.
- Recall that ∂ is a map from $C_1 \to C_0$.

$$C_1 \xrightarrow{\partial} C_0 \xrightarrow{\epsilon} \mathbb{Z}$$

• We observed that im $\partial \subseteq \ker \epsilon$.

Definition (Reduced Homology)

The group $\ker \epsilon / \operatorname{im} \partial$ is called the reduced 0^{th} homology group and is denoted $\tilde{H}_0(G)$.

• How are $\mathcal{S}(G)$ and $\mathcal{S}^e(G)$ related?

- How are S(G) and $S^e(G)$ related?
- We can think of these groups as $\ker \epsilon$ and $\operatorname{im} \partial$ respectively with the same equivalence relation.

- How are $\mathcal{S}(G)$ and $\mathcal{S}^e(G)$ related?
- We can think of these groups as $\ker \epsilon$ and $\operatorname{im} \partial$ respectively with the same equivalence relation.
- ullet $\mathcal{S}(G)\cong\mathcal{S}^e(G)$ if and only if $ilde{\mathcal{H}}_0(G)\cong 0$.

- How are S(G) and $S^e(G)$ related?
- We can think of these groups as $\ker \epsilon$ and $\operatorname{im} \partial$ respectively with the same equivalence relation.
- $\mathcal{S}(G)\cong\mathcal{S}^e(G)$ if and only if $\tilde{\mathcal{H}}_0(G)\cong 0$.
- $\tilde{H}_0(G) \cong \mathbb{Z}^{k-1}$ where k is the number of connected components of G.

- How are $\mathcal{S}(G)$ and $\mathcal{S}^e(G)$ related?
- We can think of these groups as $\ker \epsilon$ and $\operatorname{im} \partial$ respectively with the same equivalence relation.
- $\mathcal{S}(G)\cong\mathcal{S}^e(G)$ if and only if $\tilde{\mathcal{H}}_0(G)\cong 0$.
- $\tilde{H}_0(G) \cong \mathbb{Z}^{k-1}$ where k is the number of connected components of G.

Proposition

 $\mathcal{S}(G)\cong\mathcal{S}^e(G)$ if and only if G is connected.

- How are S(G) and $S^e(G)$ related?
- We can think of these groups as $\ker \epsilon$ and $\operatorname{im} \partial$ respectively with the same equivalence relation.
- $\mathcal{S}(G)\cong\mathcal{S}^e(G)$ if and only if $\tilde{\mathcal{H}}_0(G)\cong 0$.
- $\tilde{H}_0(G) \cong \mathbb{Z}^{k-1}$ where k is the number of connected components of G.

Proposition

 $\mathcal{S}(G) \cong \mathcal{S}^e(G)$ if and only if G is connected. In general, if G_1, \ldots, G_k are the connected components of G, then $\mathcal{S}^e(G) \cong \mathcal{S}(G_1) \oplus \cdots \oplus \mathcal{S}(G_k)$.

5/6/20

- How are S(G) and $S^e(G)$ related?
- We can think of these groups as $\ker \epsilon$ and $\operatorname{im} \partial$ respectively with the same equivalence relation.
- $\mathcal{S}(G)\cong\mathcal{S}^e(G)$ if and only if $\tilde{\mathcal{H}}_0(G)\cong 0$.
- $\tilde{H}_0(G) \cong \mathbb{Z}^{k-1}$ where k is the number of connected components of G.

Proposition

 $\mathcal{S}(G) \cong \mathcal{S}^e(G)$ if and only if G is connected. In general, if G_1, \ldots, G_k are the connected components of G, then $\mathcal{S}^e(G) \cong \mathcal{S}(G_1) \oplus \cdots \oplus \mathcal{S}(G_k)$.

• Lets play around with $S^e(G)$.

• We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.

- We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.
- Can we make a more useful definition?

- We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.
- Can we make a more useful definition?
- Let's start by taking a closer look at ∂ .

- We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.
- Can we make a more useful definition?
- Let's start by taking a closer look at ∂ .

- We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.
- Can we make a more useful definition?
- Let's start by taking a closer look at ∂ .

- We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.
- Can we make a more useful definition?
- Let's start by taking a closer look at ∂ .

- We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.
- Can we make a more useful definition?
- Let's start by taking a closer look at ∂ .

- We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.
- Can we make a more useful definition?
- Let's start by taking a closer look at ∂ .

- We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.
- Can we make a more useful definition?
- Let's start by taking a closer look at ∂ .

• What happens when we fire a vertex? We subtract a row of ∂ .

- We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.
- Can we make a more useful definition?
- Let's start by taking a closer look at ∂ .

• What happens when we fire a vertex? We subtract a row of ∂ . A collection of firings adds an element of $\operatorname{im}_{\mathbb{Z}}(\partial^T)$.

- We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.
- Can we make a more useful definition?
- Let's start by taking a closer look at ∂ .

- What happens when we fire a vertex? We subtract a row of ∂ . A collection of firings adds an element of $\operatorname{im}_{\mathbb{Z}}(\partial^T)$.
- We can also add a 1-chain with trivial boundary.

9 / 20

- We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.
- Can we make a more useful definition?
- Let's start by taking a closer look at ∂ .

- What happens when we fire a vertex? We subtract a row of ∂ . A collection of firings adds an element of $\operatorname{im}_{\mathbb{Z}}(\partial^T)$.
- We can also add a 1-chain with trivial boundary.

- We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.
- Can we make a more useful definition?
- Let's start by taking a closer look at ∂ .

- What happens when we fire a vertex? We subtract a row of ∂ . A collection of firings adds an element of $\operatorname{im}_{\mathbb{Z}}(\partial^T)$.
- We can also add a 1-chain with trivial boundary.

- We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $\partial(c_1)$ and $\partial(c_2)$ are firing equivalent.
- Can we make a more useful definition?
- Let's start by taking a closer look at ∂ .

- What happens when we fire a vertex? We subtract a row of ∂ . A collection of firings adds an element of $\operatorname{im}_{\mathbb{Z}}(\partial^T)$.
- We can also add a 1-chain with trivial boundary. This new type of firing adds an element of $\ker_{\mathbb{Z}}(\partial)$.

- We say that 2 edge configurations c_1 and c_2 are edge firing equivalent if $c_1 c_2 \in (\operatorname{im}_{\mathbb{Z}}(\partial^T) \oplus \ker_{\mathbb{Z}}(\partial))$.
- Can we make a more useful definition?
- Let's start by taking a closer look at ∂ .

- What happens when we fire a vertex? We subtract a row of ∂ . A collection of firings adds an element of $\operatorname{im}_{\mathbb{Z}}(\partial^T)$.
- We can also add a 1-chain with trivial boundary. This new type of firing adds an element of $\ker_{\mathbb{Z}}(\partial)$.

• In general, a *matroid* is a pair (E, \mathcal{B}) where $\mathcal{B} \subseteq \mathcal{P}(E)$ satisfying some conditions. E is called the *ground set* while \mathcal{B} is called the set of *bases*.

- In general, a matroid is a pair (E, \mathcal{B}) where $\mathcal{B} \subseteq \mathcal{P}(E)$ satisfying some conditions. E is called the *ground set* while \mathcal{B} is called the set of bases.
- For this talk, we will only work with representable matroids.

- In general, a matroid is a pair (E, \mathcal{B}) where $\mathcal{B} \subseteq \mathcal{P}(E)$ satisfying some conditions. E is called the *ground set* while \mathcal{B} is called the set of bases.
- For this talk, we will only work with representable matroids.
- Start with a matrix. The columns form the *ground set* and the maximal linearly independent collections of column vectors are the *bases*.

- In general, a matroid is a pair (E, \mathcal{B}) where $\mathcal{B} \subseteq \mathcal{P}(E)$ satisfying some conditions. E is called the *ground set* while \mathcal{B} is called the set of bases.
- For this talk, we will only work with representable matroids.
- Start with a matrix. The columns form the *ground set* and the maximal linearly independent collections of column vectors are the *bases*.

$$\begin{pmatrix} A & B & C & D & E & F \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

• The matroid arising from this matrix has $E = \{A, B, C, D, E, F\}$ and $\mathcal{B} = \{\{A, B, D\}, \{A, C, D\}, \{A, D, F\}, \{B, C, D\}, \{B, D, F\}\}.$

• What do we get when we find the matroid represented by the boundary matrix of a graph?

• What do we get when we find the matroid represented by the boundary matrix of a graph?

• What do we get when we find the matroid represented by the boundary matrix of a graph?

• The ground set corresponds to the edges of G

11/20

• What do we get when we find the matroid represented by the boundary matrix of a graph?

• The ground set corresponds to the edges of G and bases correspond to spanning trees of G.

11/20

• We give a useful alternative method for producing a matrix D that represents the same matroid as ∂ .

 $lue{}$ Choose any spanning tree T.

$$D = \begin{pmatrix} AB & BC & CD \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Choose any spanning tree T.
- ② Write the identity matrix in the first |T| columns of M. Associate these columns with the edges of T.

- lacktriangle Choose any spanning tree T.
- ② Write the identity matrix in the first |T| columns of M. Associate these columns with the edges of T.
- lacktriangle Choose a leaf of T to act as a *root* and orient the tree away from this point.

$$D = \begin{pmatrix} AB & BC & CD & AC & AD \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

- Choose any spanning tree T.
- ② Write the identity matrix in the first |T| columns of M. Associate these columns with the edges of T.
- lacktriangle Choose a leaf of T to act as a root and orient the tree away from this point.
- Orient the remaining edges and fill in the columns to give the desired dependencies. (This step is easier to describe verbally).

$$D = \begin{pmatrix} AB & BC & CD & AC & AD \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

• We saw before that c_1 and c_2 are edge firing equivalent if and only if they are equivalent modulo $\operatorname{im}_{\mathbb{Z}}(\partial^T) \oplus \ker_{\mathbb{Z}}(\partial)$.

$$D = \begin{pmatrix} \mathsf{AB} & \mathsf{BC} & \mathsf{CD} & \mathsf{AC} & \mathsf{AD} \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

- We saw before that c_1 and c_2 are edge firing equivalent if and only if they are equivalent modulo $\operatorname{im}_{\mathbb{Z}}(\partial^T) \oplus \ker_{\mathbb{Z}}(\partial)$.
- In fact, c_1 and c_2 are also edge firing equivalent if and only if they are equivalent modulo $\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D)$.

$$D = \begin{pmatrix} \mathsf{AB} & \mathsf{BC} & \mathsf{CD} & \mathsf{AC} & \mathsf{AD} \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

- We saw before that c_1 and c_2 are edge firing equivalent if and only if they are equivalent modulo $\operatorname{im}_{\mathbb{Z}}(\partial^T) \oplus \ker_{\mathbb{Z}}(\partial)$.
- In fact, c_1 and c_2 are also edge firing equivalent if and only if they are equivalent modulo $\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D)$.
- Let's add a few rows to D to get \mathcal{D} . Call the last 2 rows \hat{D} .

- We saw before that c_1 and c_2 are edge firing equivalent if and only if they are equivalent modulo $\operatorname{im}_{\mathbb{Z}}(\partial^T) \oplus \ker_{\mathbb{Z}}(\partial)$.
- In fact, c_1 and c_2 are also edge firing equivalent if and only if they are equivalent modulo $\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D)$.
- Let's add a few rows to D to get \mathcal{D} . Call the last 2 rows \hat{D} .

- We saw before that c_1 and c_2 are edge firing equivalent if and only if they are equivalent modulo $\operatorname{im}_{\mathbb{Z}}(\partial^T) \oplus \ker_{\mathbb{Z}}(\partial)$.
- In fact, c_1 and c_2 are also edge firing equivalent if and only if they are equivalent modulo $\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D)$.
- Let's add a few rows to D to get \mathcal{D} . Call the last 2 rows \hat{D} .

Proposition

$$\operatorname{\mathsf{im}}_{\mathbb{Z}}(\hat{D}^T) = \ker_{\mathbb{Z}}(D).$$

- We saw before that c_1 and c_2 are edge firing equivalent if and only if they are equivalent modulo $\operatorname{im}_{\mathbb{Z}}(\partial^T) \oplus \ker_{\mathbb{Z}}(\partial)$.
- In fact, c_1 and c_2 are also edge firing equivalent if and only if they are equivalent modulo $\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D)$.
- Let's add a few rows to D to get \mathcal{D} . Call the last 2 rows \hat{D} .

Proposition

 $\operatorname{im}_{\mathbb{Z}}(\hat{D}^{\mathsf{T}}) = \ker_{\mathbb{Z}}(D)$. This implies that $\operatorname{im}_{\mathbb{Z}}(D^{\mathsf{T}}) \oplus \ker_{\mathbb{Z}}(D) = \operatorname{im}_{\mathbb{Z}}(\mathcal{D}^{\mathsf{T}})$

• Let D be an $n \times (n+m)$ matrix of the form: $(I_n \mid M)$ where M is any $n \times m$ integer matrix.

• Let D be an $n \times (n+m)$ matrix of the form: $(I_n \mid M)$ where M is any $n \times m$ integer matrix.

Definition (Matrix Sandpile Group)

The sandpile lattice of D, denoted S(D), is $\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D)$. The sandpile group of D is $\mathbb{Z}^{n+m}/(\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D))$.

• Let D be an $n \times (n+m)$ matrix of the form: $(I_n \mid M)$ where M is any $n \times m$ integer matrix.

Definition (Matrix Sandpile Group)

The sandpile lattice of D, denoted S(D), is $\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D)$. The sandpile group of D is $\mathbb{Z}^{n+m}/(\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D))$.

• Let \hat{D} be the $m \times (n+m)$ matrix $(-M^T \mid I_m)$.

• Let D be an $n \times (n+m)$ matrix of the form: $(I_n \mid M)$ where M is any $n \times m$ integer matrix.

Definition (Matrix Sandpile Group)

The sandpile lattice of D, denoted S(D), is $\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D)$. The sandpile group of D is $\mathbb{Z}^{n+m}/(\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D))$.

- ullet Let \hat{D} be the m imes (n+m) matrix $(-M^{\mathcal{T}} \mid I_m)$.
- Let \mathcal{D} be the $(n+m) \times (n+m)$ matrix $\left(\frac{D}{\hat{D}}\right) = \left(\frac{I_n \mid M}{-M^T \mid I_m}\right)$.

• Let D be an $n \times (n+m)$ matrix of the form: $(I_n \mid M)$ where M is any $n \times m$ integer matrix.

Definition (Matrix Sandpile Group)

The sandpile lattice of D, denoted S(D), is $\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D)$. The sandpile group of D is $\mathbb{Z}^{n+m}/(\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D))$.

- ullet Let \hat{D} be the m imes (n+m) matrix $(-M^{\mathcal{T}} \mid I_m)$.
- Let \mathcal{D} be the $(n+m) \times (n+m)$ matrix $\left(\frac{D}{\hat{D}}\right) = \left(\frac{I_n \mid M}{-M^T \mid I_m}\right)$.

Theorem

$$\operatorname{im}_{\mathbb{Z}}(D^{\mathsf{T}}) \oplus \ker_{\mathbb{Z}}(D) = \operatorname{im}_{\mathbb{Z}}(\mathcal{D}^{\mathsf{T}}).$$

• Let D be an $n \times (n+m)$ matrix of the form: $(I_n \mid M)$ where M is any $n \times m$ integer matrix.

Definition (Matrix Sandpile Group)

The sandpile lattice of D, denoted S(D), is $\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D)$. The sandpile group of D is $\mathbb{Z}^{n+m}/(\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D))$.

- ullet Let \hat{D} be the m imes (n+m) matrix $(-M^{\mathcal{T}} \mid I_m)$.
- Let \mathcal{D} be the $(n+m) \times (n+m)$ matrix $\left(\frac{D}{\hat{D}}\right) = \left(\frac{I_n \mid M}{-M^T \mid I_m}\right)$.

Theorem

 $\operatorname{im}_{\mathbb{Z}}(D^T) \oplus \ker_{\mathbb{Z}}(D) = \operatorname{im}_{\mathbb{Z}}(\mathcal{D}^T)$. Furthermore, $|\mathcal{S}(D)| = |\mathcal{D}|$.

Lemma

 $|\mathcal{D}| = |D \cdot D^T|$

Lemma

$$|\mathcal{D}| = |D \cdot D^T|$$

Proof.

$$\mathcal{D} = \left(\begin{array}{c|c} I_n & M \\ \hline -M^T & I_m \end{array}\right) \to \left(\begin{array}{c|c} M \cdot M^T + I_n & 0 \\ \hline -M^T & I_m \end{array}\right) = \left(\begin{array}{c|c} D \cdot D^T & 0 \\ \hline -M^T & I_m \end{array}\right) \to \odot$$

Lemma

$$|\mathcal{D}| = |D \cdot D^T|$$

Proof.

$$\mathcal{D} = \left(\begin{array}{c|c} I_n & M \\ \hline -M^T & I_m \end{array}\right) \to \left(\begin{array}{c|c} M \cdot M^T + I_n & 0 \\ \hline -M^T & I_m \end{array}\right) = \left(\begin{array}{c|c} D \cdot D^T & 0 \\ \hline -M^T & I_m \end{array}\right) \to \odot$$

• For $s \subset [n+m]$, let D_s be D restricted to columns of s.

Lemma

$$|\mathcal{D}| = |D \cdot D^T|$$

Proof.

$$\mathcal{D} = \left(\begin{array}{c|c} I_n & M \\ \hline -M^T & I_m \end{array} \right) \rightarrow \left(\begin{array}{c|c} M \cdot M^T + I_n & 0 \\ \hline -M^T & I_m \end{array} \right) = \left(\begin{array}{c|c} D \cdot D^T & 0 \\ \hline -M^T & I_m \end{array} \right) \rightarrow \odot$$

• For $s \subset [n+m]$, let D_s be D restricted to columns of s.

Theorem (Consequence of Cauchy-Biney Formula)

$$|D \cdot D^T| = \sum_{s \subseteq [n+m], |s|=n} |D_s|^2$$

Cellular Matrix-Tree Theorem

Theorem (Duval-Klivans-Martin, 2009)

$$|\mathcal{S}(D)| = \sum_{s \subseteq [n+m], |s|=n} |D_s|^2$$

$$|\mathcal{S}(D)| = \sum_{s \subseteq [n+m], |s|=n} |D_s|^2$$

$$D = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ -2 & -3 & 1 \end{pmatrix}$$

$$|\mathcal{S}(D)| = \sum_{s \subseteq [n+m], |s|=n} |D_s|^2$$

$$D = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ -2 & -3 & 1 \end{pmatrix}$$

$$|S(D)| = |D| = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}^2 + \begin{vmatrix} 1 & 2 \\ 0 & 3 \end{vmatrix}^2 + \begin{vmatrix} 0 & 2 \\ 1 & 3 \end{vmatrix}^2 = 1^2 + 3^2 + (-2)^2 = 14$$

Theorem (Duval-Klivans-Martin, 2009)

$$|\mathcal{S}(D)| = \sum_{s \subseteq [n+m], |s|=n} |D_s|^2$$

$$D = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ -2 & -3 & 1 \end{pmatrix}$$

$$|S(D)| = |D| = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}^2 + \begin{vmatrix} 1 & 2 \\ 0 & 3 \end{vmatrix}^2 + \begin{vmatrix} 0 & 2 \\ 1 & 3 \end{vmatrix}^2 = 1^2 + 3^2 + (-2)^2 = 14$$

• For each $s \subseteq [n+m]$ of size n, $|D_s| \neq 0$ iff s corresponds to a basis of D.

Theorem (Duval-Klivans-Martin, 2009)

$$|\mathcal{S}(D)| = \sum_{s \in \mathcal{B}(D)} |D_s|^2$$

$$D = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ -2 & -3 & 1 \end{pmatrix}$$

$$|S(D)| = |D| = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}^2 + \begin{vmatrix} 1 & 2 \\ 0 & 3 \end{vmatrix}^2 + \begin{vmatrix} 0 & 2 \\ 1 & 3 \end{vmatrix}^2 = 1^2 + 3^2 + (-2)^2 = 14$$

• For each $s \subseteq [n+m]$ of size n, $|D_s| \neq 0$ iff s corresponds to a basis of D.

Definition

A matrix whose square submatrices all have determinant 0, 1, or -1 is called *totally unimodular*.

Definition

A matrix whose square submatrices all have determinant 0, 1, or -1 is called *totally unimodular*. A matroid represented by a totally unimodular matrix is called *regular*.

Definition

A matrix whose square submatrices all have determinant 0, 1, or -1 is called *totally unimodular*. A matroid represented by a totally unimodular matrix is called *regular*.

Proposition

If D is totally unimodular, |S(D)| = |B(D)|.

Definition

A matrix whose square submatrices all have determinant 0, 1, or -1 is called *totally unimodular*. A matroid represented by a totally unimodular matrix is called *regular*.

Proposition

If D is totally unimodular, |S(D)| = |B(D)|.

Proposition (Tutte, 1958)

Graphical matroids are always regular.

Definition

A matrix whose square submatrices all have determinant 0, 1, or -1 is called *totally unimodular*. A matroid represented by a totally unimodular matrix is called *regular*.

Proposition

If D is totally unimodular, |S(D)| = |B(D)|.

Proposition (Tutte, 1958)

Graphical matroids are always regular.

• This proves the Sandpile Matrix-Tree Theorem for graphs.

Theorem (Sandpile Matrix-Tree Theorem)

The size of S(G) is the number of spanning trees of G.

• A simplicial complex is a higher dimensional analogue of a graph.

• A simplicial complex is a higher dimensional analogue of a graph. We can construct a matroid on an n-dimensional simplicial complex from the boundary map from n-chains to (n-1)-chains.

• A simplicial complex is a higher dimensional analogue of a graph. We can construct a matroid on an n-dimensional simplicial complex from the boundary map from n-chains to (n-1)-chains.

Theorem (Cordovil-Las Vergnas, Lindström 1979)

• A simplicial complex is a higher dimensional analogue of a graph. We can construct a matroid on an n-dimensional simplicial complex from the boundary map from n-chains to (n-1)-chains.

Theorem (Cordovil-Las Vergnas, Lindström 1979)

The complete 2-dimensional simplicial complex on 6 vertices is not regular.

• We can also work with *cell complexes* (aka finite CW complexes) whose boundary maps can be any collection of integers.

5/6/20

• A simplicial complex is a higher dimensional analogue of a graph. We can construct a matroid on an n-dimensional simplicial complex from the boundary map from n-chains to (n-1)-chains.

Theorem (Cordovil-Las Vergnas, Lindström 1979)

- We can also work with *cell complexes* (aka finite CW complexes) whose boundary maps can be any collection of integers.
- In general, given a cell complex Σ , we want to convert the top boundary map to the form $(I_n \mid M)$ and then we get the Cellular Matrix-Tree Theorem.

• A simplicial complex is a higher dimensional analogue of a graph. We can construct a matroid on an n-dimensional simplicial complex from the boundary map from n-chains to (n-1)-chains.

Theorem (Cordovil-Las Vergnas, Lindström 1979)

- We can also work with *cell complexes* (aka finite CW complexes) whose boundary maps can be any collection of integers.
- In general, given a cell complex Σ , we want to convert the top boundary map to the form $(I_n \mid M)$ and then we get the Cellular Matrix-Tree Theorem.
- \bullet This works as long as Σ contains at least one basis with determinant 1 or -1.

• A simplicial complex is a higher dimensional analogue of a graph. We can construct a matroid on an n-dimensional simplicial complex from the boundary map from n-chains to (n-1)-chains.

Theorem (Cordovil-Las Vergnas, Lindström 1979)

- We can also work with *cell complexes* (aka finite CW complexes) whose boundary maps can be any collection of integers.
- In general, given a cell complex Σ , we want to convert the top boundary map to the form $(I_n \mid M)$ and then we get the Cellular Matrix-Tree Theorem.
- This works as long as Σ contains at least one basis with determinant 1 or -1. In particular, this works when Σ is the complete simplicial complex in any dimension and with any number of vertices.

Theorem (Duval-Klivans-Martin, 2009)

$$|\mathcal{S}(D)| = \sum_{s \in \mathcal{B}(D)} |D_s|^2$$

• Can we find a combinatorially interesting map f from $S(D) \to B(D)$ such that for each $s \in B(D)$, we have $f^{-1}(s) = |D_s|^2$?

$$|\mathcal{S}(D)| = \sum_{s \in \mathcal{B}(D)} |D_s|^2$$

- Can we find a combinatorially interesting map f from $S(D) \to B(D)$ such that for each $s \in B(D)$, we have $f^{-1}(s) = |D_s|^2$?
- When D is from a graphical matroid, these are bijections called sandpile torsors.

$$|\mathcal{S}(D)| = \sum_{s \in \mathcal{B}(D)} |D_s|^2$$

- Can we find a combinatorially interesting map f from $S(D) \to B(D)$ such that for each $s \in B(D)$, we have $f^{-1}(s) = |D_s|^2$?
- When D is from a graphical matroid, these are bijections called sandpile torsors.
- Some sandpile torsors are from the rotor-routing process (Holroyd et al, (2008)) and the Bernardi Process (Baker-Wang, (2017)).

$$|\mathcal{S}(D)| = \sum_{s \in \mathcal{B}(D)} |D_s|^2$$

- Can we find a combinatorially interesting map f from $S(D) \to B(D)$ such that for each $s \in B(D)$, we have $f^{-1}(s) = |D_s|^2$?
- When D is from a graphical matroid, these are bijections called sandpile torsors.
- Some sandpile torsors are from the rotor-routing process (Holroyd et al, (2008)) and the Bernardi Process (Baker-Wang, (2017)).
- ullet When D is from a regular matroid, a bijection is given by Backman, Baker, and Yuen (2019).

$$|\mathcal{S}(D)| = \sum_{s \in \mathcal{B}(D)} |D_s|^2$$

- Can we find a combinatorially interesting map f from $S(D) \to B(D)$ such that for each $s \in B(D)$, we have $f^{-1}(s) = |D_s|^2$?
- When D is from a graphical matroid, these are bijections called sandpile torsors.
- Some sandpile torsors are from the rotor-routing process (Holroyd et al, (2008)) and the Bernardi Process (Baker-Wang, (2017)).
- When D is from a regular matroid, a bijection is given by Backman, Baker, and Yuen (2019).
- The general result for any $D = (I_n \mid M)$ will appear in my upcoming paper.

20 / 20