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Linear evolution equations:
e the Schrodinger equation on Euclidean spaces:

iO:u+ Au =0, u(0) = ¢;

e the heat equation on Euclidean spaces:

Oru — Au =0, u(0) = ¢;

e the wave equation on Euclidean spaces:

Ofu—Du=0,  u(0)= o, Bru(0) = ¢1.

e The linear equations can be solved explicitly using the Fourier
transform, for example for the Schrodinger equation

u(t) = ™o, T(E, 1) = e M g(e).
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Semilinear evolution equations:

e the pure power NLS: u: RY x [0, T] — C,

i0cu + Au = +ulu)P, u(0) = ¢.

e the KdV equation: uv:R x [0, T] = R,

Oru+ O3u = udyu, u(0) = ¢.

e the Schrédinger maps equation u : RY x [0, T] — S?,

Oru = u x Au, u(0) = ¢.
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The Navier-Stokes equations on Euclidean spaces:
u:RIx[0, T] = RY

Oty — Au+ (u-Vu)+Vp=0, divu =0,
u(0) = ¢.

Explicitly, if v = (v1,...,uq) then

Oruk — Auy + ujOjuy + Okp = 0, djuj =0,
u(0) = ¢.

Leray formulation: take divergence of the equation to solve for the
pressure

—Ap = ajak(ujuk).
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Quasilinear evolution equations:

e The Euler equations: v :R? x [0, T] — RY
Otu+ (u-Vu)+Vp =0, divu =0,
u(0) = ¢.

e The Einstein-vacuum equations of General Relativity: g
Lorentzian metric in an open set,

Ric(g) = 0.
In local coordinates this is a coupled system of wave equations for
the metric components

If|ggoz,u = aar,u + a,ura + Foczuz(gv ag),

where ﬁg = gaﬁﬁaf}g denotes the reduced wave operator. In wave
coordinates I, = 0 this becomes a quasilinear system of wave
equations for the metric components.
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We recall the Leray formulation of the Navier-Stokes equations

Orux — Aug = Ni(u),

Ni(u) = —0,(uauy) — Ok(RaRp(uaup)), (1)

where R, = |V|710, denote the Riesz transforms.

Theorem: (local well-posedness)

Assume ¢ € H?(RY), p > d/2, satisfies ||¢||» < R and the
divergence-free condition 0j¢; = 0. Then thereis T = T(R) > 0
and a unique solution u € C([0, T]: H?) of the equation (1),
which is divergence-free 0;uj(x, t) = 0.

Moreover, the flow map ¢ — u is a continuous map from the ball
of radius R in H?(RY) to the ball of radius 2R in C([0, T] : H”).
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We rewrite the equation (1) in integral form (Duhamel formula)
t
u(t) = et + / et N (u(s)) ds.
0
We would like to construct the solution by the recursive scheme
t
ul (1) = B¢ + / et N (4" (s)) ds,
0
uO(t) = et2¢.

The procedure converges if

t t
H / (=B N/(f(s)) ds— / e“—s)AN(g(s))dsH <[ —gllesere
0 0 L HP

(2)
for any f,g € C([0, T] : H?) with HfHL%OHp, HgHL%oHp < 2R.
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Recall that H” is an algebra, p > d/2, and
Ni(u) = —0,(uauy) — Ok(RaRp(uaup)),
Therefore
IN(F) = N(@)llse o1 Sp RIF = gllLsone
Since e M < (14 A[¢[2)~1/2, it follows that
[ ELN(F) = N (@)}l o Sp RIE = sI72IF — glligee

for any s <t € [0, T]. Thus, for any t € [0, T]
t
H/ e(t=s)A [N(f(s)) — N(g(s))] dsHHP < RTY2||f — gl He,
0

which gives the desired bounds (2) if T <, (1+ R)™2.
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We consider the Euler equations (the Leray formulation)

Orux = Ni(u),
Nk(u) = _aa(uauk) - ak("'-\)a'L_\’b(ua'»lb))7

where R, = |V|710, denote the Riesz transforms.

Theorem: (local well-posedness)

Assume ¢ € H?(RY), p > d/2 + 1, satisfies ||¢||y» < R and the
divergence-free condition 0j¢; = 0. Then thereis T = T(R) >0
and a unique solution u € C([0, T] : H?) of the equation (3),
which is divergence-free djuj(x, t) = 0.

Moreover, the flow map ¢ — u is a continuous map from the ball
of radius R in H?(R?) to the ball of radius 2R in C([0, T] : H?).
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The key point is the a priori energy estimate: assume that
u e C([0, T]: H” is a divergence-free solution of the Euler
equation
Oruy + 0s(usuk) + Okp = 0,
p = RaRb(uaup)
and consider the high-order energy functional
1

E(t) := 5 /Rd<V>puk(t)<V>puk(t) dx,

where (V)? is given by the Fourier multiplier &€ — (1 4 [£[2)°/2.
Then

OLE — / (V)P Deux - (V)P ug dx
]Rd
T /]Rd (V)P (uaOauk) - (V) uy dx.
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Kato-Ponce inequality

(V)7 (fog) — £(V)*(0g)ll2

S IVl lglls + Il e
In our case, since
[, 0at9 (@) - (9 e = 0
we have
|0:E(8)] S E()[Vu(t)]L~,
which gives the a priori energy estimate
E(t) < E(0) + c/ s)IVu(s)| Lo ds. (6)
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To prove local well-posedness we proceed in several steps:

Step 1: (parabolic regularization) We construct solutions u®) of
the regularized Navier-Stokes equation (v > 0)

el — vAul) + 0,(ulul) + 9,p™) = 0,

’ (7)
p) = RyRu(ulufl),

with the same initial data u(*) = ¢. The solutions are constructed
on a short time-interval [0, T®)], with T*) ~ /v, but satisfy the
same a priori energy inequality

EO(t) < E(0) + c/ ()| V) (5)]| 1 ds.
Since p > d/2 + 1 we have ||[Vu®)(s)|| 1= <, E®)(s).
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Use then use Gronwall’s inequality to extend the solutions u(*) to
an interval [0, T] where T = T(R) depends only on the size of the
initial data.

To summarize, we showed that for any v > 0 there is a unique
solution u(*) € C([0, T] : H?) of the initial-value problem (7) that
satisfies the uniform bounds

|t (t)][1e < 2R (8)

forany v >0 and t € [0, T].
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Step 2. We would like now to let v — 0. Look at v := u”' — u”
which satisfies the equation

devic = Ni(v + u)) = Nie(u)) + v/ Au™) —vau®),
with v(0) = 0. We perform energy estimates for v in L2: define

0E(t) = ;/Rd vi(t)vi(t) dx.

Then
0,(9E) = / Vi vi dx. 9)
Rd
Notice that
Vil Nk (v + u)) = Nie(u™)]
= —v 0 [p*) — p)]
— v [(va + ugu))ﬁavk + vaﬁau,(f)].
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Recalling (8) and integrating by parts we have
]/ Vi Vi dx’ Sk OE(t) + (v + V) E(t)/2,
Rd

Since E(0) = 0 it follows from (9) that

sup 0E(t) Sr, (v + V)%
te[0,T]

if T = T(R,p) is sufficiently small. In particular, the limit

u= lim u®
v—0

exists in L2 (and in H”' for any p/ < p). The limit
u € C([0, T] : HP) is a solution of the Euler equation satisfying

sup |lu(t)||He < 2R. (10)
tel0,T]

This gives the existence part of the local well-posedness theorem.
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Step 3: (uniqueness) Assuming u, u’ are regular solutions of the
Euler equation with the same initial data we can let as before
v = ' — u which satisfies the equation

Orvic = Ni(v + u) — N (u).

We define the L2 energy
1
SE(t) = / Ve(E)vi(£) dx,
2 Rd
and show as before that
0:(0E)(t) Sr,p GE(t).

Since E(0) = 0 it follows that dE(t) = 0 for all ¢t € [0, T], thus
u=1don [0, T].
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Step 4: (continuous dependence) The uniqueness argument shows
that the flow map is continuous from the ball of radius R in H” to
L2 (or to H” for any p/ < p, due to the uniform bounds (10)).

To prove that the map is continuous in H” we need the
Bona-Smith approximations.

If v =u — u recall that
O¢ Vi :Nk(v + U) —Nk(u)

and

/\fk(v+u) —./\/k(u)
= _ak[p, - P] - (Va + Ua)aavk + Va0, ug.
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The energy estimates for the difference argument shows that

[u'(t) = u(t) | o1 Sryp 14'(0) = u(0)] o1 (11)
and
[u'(t) = u(t)|[ne
Sk [16/(0) = u(0)|[me + [1u'(0) — u(0)[| o-1][u(0)[ o1

for any t € [0, T].
This can be combined with Littlewood-Paley projections to prove
continuity in H”.

(12)
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