
Evolution equations

Alexandru Ionescu

September 9, 2021

Alexandru Ionescu Evolution equations



Examples

Linear evolution equations:

• the Schrödinger equation on Euclidean spaces:

i∂tu +∆u = 0, u(0) = ϕ;

• the heat equation on Euclidean spaces:

∂tu −∆u = 0, u(0) = ϕ;

• the wave equation on Euclidean spaces:

∂2
t u −∆u = 0, u(0) = ϕ0, ∂tu(0) = ϕ1.

• The linear equations can be solved explicitly using the Fourier
transform, for example for the Schrödinger equation

u(t) = e it∆ϕ, û(ξ, t) = e−it|ξ|2 ϕ̂(ξ).
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Examples

Semilinear evolution equations:

• the pure power NLS: u : Rd × [0,T ] → C,

i∂tu +∆u = ±u|u|2p, u(0) = ϕ.

• the KdV equation: u : R× [0,T ] → R,

∂tu + ∂3
xu = u∂xu, u(0) = ϕ.

• the Schrödinger maps equation u : Rd × [0,T ] → S2,

∂tu = u ×∆u, u(0) = ϕ.
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Examples

The Navier-Stokes equations on Euclidean spaces:
u : Rd × [0,T ] → Rd

∂tu −∆u + (u · ∇u) +∇p = 0, divu = 0,

u(0) = ϕ.

Explicitly, if u = (u1, . . . , ud) then

∂tuk −∆uk + uj∂juk + ∂kp = 0, ∂juj = 0,

u(0) = ϕ.

Leray formulation: take divergence of the equation to solve for the
pressure

−∆p = ∂j∂k(ujuk).
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Examples

Quasilinear evolution equations:

• The Euler equations: u : Rd × [0,T ] → Rd

∂tu + (u · ∇u) +∇p = 0, divu = 0,

u(0) = ϕ.

• The Einstein-vacuum equations of General Relativity: g
Lorentzian metric in an open set,

Ric(g) = 0.

In local coordinates this is a coupled system of wave equations for
the metric components

□̃ggαµ = ∂αΓµ + ∂µΓα + F≥2
αµ (g , ∂g),

where □̃g := gαβ∂α∂β denotes the reduced wave operator. In wave
coordinates Γα = 0 this becomes a quasilinear system of wave
equations for the metric components.
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Local well-posedness: fixed-point argument

We recall the Leray formulation of the Navier-Stokes equations

∂tuk −∆uk = Nk(u),

Nk(u) = −∂a(uauk)− ∂k(RaRb(uaub)),
(1)

where Ra = |∇|−1∂a denote the Riesz transforms.

Theorem: (local well-posedness)
Assume ϕ ∈ Hρ(Rd), ρ > d/2, satisfies ∥ϕ∥Hρ < R and the
divergence-free condition ∂jϕj = 0. Then there is T = T (R) > 0
and a unique solution u ∈ C ([0,T ] : Hρ) of the equation (1),
which is divergence-free ∂juj(x , t) = 0.

Moreover, the flow map ϕ → u is a continuous map from the ball
of radius R in Hρ(Rd) to the ball of radius 2R in C ([0,T ] : Hρ).
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Local well-posedness: fixed-point argument

We rewrite the equation (1) in integral form (Duhamel formula)

u(t) = et∆ϕ+

∫ t

0
e(t−s)∆N (u(s)) ds.

We would like to construct the solution by the recursive scheme

u(n+1)(t) = et∆ϕ+

∫ t

0
e(t−s)∆N (u(n)(s)) ds,

u(0)(t) = et∆ϕ.

The procedure converges if∥∥∥∫ t

0
e(t−s)∆N (f (s)) ds−

∫ t

0
e(t−s)∆N (g(s)) ds

∥∥∥
L∞T Hρ

≪ ∥f−g∥L∞T Hρ

(2)
for any f , g ∈ C ([0,T ] : Hρ) with ∥f ∥L∞T Hρ , ∥g∥L∞T Hρ ≤ 2R.
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Local well-posedness: fixed-point argument

Recall that Hρ is an algebra, ρ > d/2, and

Nk(u) = −∂a(uauk)− ∂k(RaRb(uaub)),

Therefore

∥N (f )−N (g)∥L∞T Hρ−1 ≲ρ R∥f − g∥L∞T Hρ

Since e−λ|ξ|2 ≲ (1 + λ|ξ|2)−1/2, it follows that∥∥e(t−s)∆
{
N (f )−N (g)

}∥∥
Hρ ≲ρ R|t − s|−1/2∥f − g∥L∞T Hρ

for any s ≤ t ∈ [0,T ]. Thus, for any t ∈ [0,T ]∥∥∥∫ t

0
e(t−s)∆

[
N (f (s))−N (g(s))

]
ds
∥∥∥
Hρ

≪ RT 1/2∥f − g∥L∞T Hρ ,

which gives the desired bounds (2) if T ≪ρ (1 + R)−2.
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Local well-posedness: energy estimates

We consider the Euler equations (the Leray formulation)

∂tuk = Nk(u),

Nk(u) = −∂a(uauk)− ∂k(RaRb(uaub)),
(3)

where Ra = |∇|−1∂a denote the Riesz transforms.

Theorem: (local well-posedness)
Assume ϕ ∈ Hρ(Rd), ρ > d/2 + 1, satisfies ∥ϕ∥Hρ < R and the
divergence-free condition ∂jϕj = 0. Then there is T = T (R) > 0
and a unique solution u ∈ C ([0,T ] : Hρ) of the equation (3),
which is divergence-free ∂juj(x , t) = 0.

Moreover, the flow map ϕ → u is a continuous map from the ball
of radius R in Hρ(Rd) to the ball of radius 2R in C ([0,T ] : Hρ).
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Local well-posedness: energy estimates

The key point is the a priori energy estimate: assume that
u ∈ C ([0,T ] : Hρ is a divergence-free solution of the Euler
equation

∂tuk + ∂a(uauk) + ∂kp = 0,

p = RaRb(uaub)
(4)

and consider the high-order energy functional

E (t) :=
1

2

∫
Rd

⟨∇⟩ρuk(t)⟨∇⟩ρuk(t) dx ,

where ⟨∇⟩ρ is given by the Fourier multiplier ξ → (1 + |ξ|2)ρ/2.
Then

∂tE =

∫
Rd

⟨∇⟩ρ∂tuk · ⟨∇⟩ρuk dx

= −
∫
Rd

⟨∇⟩ρ(ua∂auk) · ⟨∇⟩ρuk dx .
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Local well-posedness: energy estimates

Kato-Ponce inequality∥∥⟨∇⟩ρ(f ∂g)− f ⟨∇⟩ρ(∂g)∥L2
≲ ∥∇f ∥L∞∥g∥Hρ + ∥∇g∥L∞∥f ∥Hρ .

(5)

In our case, since∫
Rd

ua⟨∇⟩ρ(∂auk) · ⟨∇⟩ρuk dx = 0,

we have

|∂tE (t)| ≲ E (t)∥∇u(t)∥L∞ ,

which gives the a priori energy estimate

E (t) ≤ E (0) + C

∫ t

0
E (s)∥∇u(s)∥L∞ ds. (6)
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Local well-posedness: energy estimates

To prove local well-posedness we proceed in several steps:

Step 1: (parabolic regularization) We construct solutions u(ν) of
the regularized Navier-Stokes equation (ν > 0)

∂tu
(ν)
k − ν∆u

(ν)
k + ∂a(u

(ν)
a u

(ν)
k ) + ∂kp

(ν) = 0,

p(ν) = RaRb(u
(ν)
a u

(ν)
b ),

(7)

with the same initial data u(ν) = ϕ. The solutions are constructed
on a short time-interval [0,T (ν)], with T (ν) ≈

√
ν, but satisfy the

same a priori energy inequality

E (ν)(t) ≤ E (0) + C

∫ t

0
E (ν)(s)∥∇u(ν)(s)∥L∞ ds.

Since ρ > d/2 + 1 we have ∥∇u(ν)(s)∥L∞ ≲ρ E (ν)(s).
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Local well-posedness: energy estimates

Use then use Gronwall’s inequality to extend the solutions u(ν) to
an interval [0,T ] where T = T (R) depends only on the size of the
initial data.

To summarize, we showed that for any ν > 0 there is a unique
solution u(ν) ∈ C ([0,T ] : Hρ) of the initial-value problem (7) that
satisfies the uniform bounds

∥u(ν)(t)∥Hρ ≤ 2R (8)

for any ν > 0 and t ∈ [0,T ].
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Local well-posedness: energy estimates

Step 2. We would like now to let ν → 0. Look at v := uν
′ − uν

which satisfies the equation

∂tvk = Nk(v + u(ν))−Nk(u
(ν)) + ν ′∆u(ν

′) − ν∆u(ν),

with v(0) = 0. We perform energy estimates for v in L2: define

δE (t) :=
1

2

∫
Rd

vk(t)vk(t) dx .

Then

∂t(δE ) =

∫
Rd

vk∂tvk dx . (9)

Notice that

vk [Nk(v + u(ν))−Nk(u
(ν))]

= −vk∂k [p
(ν′) − p(ν)]

− vk
[
(va + u

(ν)
a )∂avk + va∂au

(ν)
k

]
.
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Local well-posedness: energy estimates

Recalling (8) and integrating by parts we have∣∣∣ ∫
Rd

vk∂tvk dx
∣∣∣ ≲R,ρ δE (t) + (ν + ν ′)δE (t)1/2.

Since δE (0) = 0 it follows from (9) that

sup
t∈[0,T ]

δE (t) ≲R,ρ (ν + ν ′)2.

if T = T (R, ρ) is sufficiently small. In particular, the limit

u = lim
ν→0

u(ν)

exists in L2 (and in Hρ′ for any ρ′ < ρ). The limit
u ∈ C ([0,T ] : Hρ) is a solution of the Euler equation satisfying

sup
t∈[0,T ]

∥u(t)∥Hρ ≤ 2R. (10)

This gives the existence part of the local well-posedness theorem.
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Local well-posedness: energy estimates

Step 3: (uniqueness) Assuming u, u′ are regular solutions of the
Euler equation with the same initial data we can let as before
v = u′ − u which satisfies the equation

∂tvk = Nk(v + u)−Nk(u).

We define the L2 energy

δE (t) :=
1

2

∫
Rd

vk(t)vk(t) dx ,

and show as before that

|∂t(δE )(t)| ≲R,ρ δE (t).

Since δE (0) = 0 it follows that δE (t) = 0 for all t ∈ [0,T ], thus
u = u′ on [0,T ].
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Local well-posedness: energy estimates

Step 4: (continuous dependence) The uniqueness argument shows
that the flow map is continuous from the ball of radius R in Hρ to
L2 (or to Hρ′ for any ρ′ < ρ, due to the uniform bounds (10)).

To prove that the map is continuous in Hρ we need the
Bona-Smith approximations.

If v = u′ − u recall that

∂tvk = Nk(v + u)−Nk(u)

and

Nk(v + u)−Nk(u)

= −∂k [p
′ − p]− (va + ua)∂avk + va∂auk .
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Local well-posedness: energy estimates

The energy estimates for the difference argument shows that

∥u′(t)− u(t)∥Hρ−1 ≲R,ρ ∥u′(0)− u(0)∥Hρ−1 (11)

and

∥u′(t)− u(t)∥Hρ

≲R,ρ ∥u′(0)− u(0)∥Hρ + ∥u′(0)− u(0)∥Hρ−1∥u(0)∥Hρ+1 .
(12)

for any t ∈ [0,T ].
This can be combined with Littlewood-Paley projections to prove
continuity in Hρ.
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